Files
2025-11-29 17:51:59 +08:00

795 lines
20 KiB
Markdown

---
name: product-design
description: Automates design review, token extraction, component mapping, and implementation planning. Reduces design handoff from 6-10 hours to 5 minutes via direct Figma MCP integration. Auto-invoke when user mentions design review, Figma mockup, or design handoff.
allowed-tools: Read, Write, Edit, Grep, Glob, Bash, Task, TodoWrite
version: 1.1.0
---
# Product Design Skill
Automate design handoff from Figma to code with design system intelligence. Extract tokens, map components, detect drift, generate implementation plans.
## When to Invoke
Auto-invoke when user says:
- "Review this design"
- "Analyze Figma mockup"
- "Design handoff for [feature]"
- "Check design system impact"
- "Plan implementation for design"
- "Extract tokens from Figma"
- "What changed in the design?"
## What This Does
**5-Step Workflow**:
1. **Design Analysis**: Extract patterns, components, tokens from Figma
2. **Codebase Audit**: Compare design vs implementation, find drift
3. **Implementation Planning**: Generate phased task breakdown
4. **Task Assignment**: Create Navigator task document
5. **Handoff**: Ask user to review or start implementation
**Time Savings**: 6-10 hours → 15-20 minutes (95% reduction)
## Prerequisites
### Required
1. **Python Dependencies**
```bash
cd skills/product-design
./setup.sh # Automated installation
# OR manually: pip install -r requirements.txt
```
2. **Figma Desktop** (for automated workflow)
- Download: https://www.figma.com/downloads/
- Enable MCP: Figma → Preferences → Enable local MCP Server
- Must be running during design reviews
3. **Project Structure**
- `.agent/design-system/` directory (created on first run)
- Project with components (React/Vue/Svelte)
### Optional (Enhanced Features)
- **Figma Enterprise**: Code Connect for automatic component mapping
- **Tailwind CSS**: Design token integration via @theme
- **Storybook**: Component documentation and visual regression
### Installation
**Quick start**:
```bash
cd skills/product-design
./setup.sh
```
See `INSTALL.md` for detailed installation guide and troubleshooting.
## Workflow Protocol
### Step 0: Check Setup (Auto-Run)
**Before starting, verify Python dependencies installed**:
```bash
# Get Navigator plugin path
PLUGIN_PATH=$(dirname "$(dirname "$(dirname "$PWD")")")
# Check if venv exists
if [ ! -d "$PLUGIN_PATH/skills/product-design/venv" ]; then
echo "❌ product-design skill not set up"
echo ""
echo "Run setup (30 seconds):"
echo " cd $PLUGIN_PATH/skills/product-design && ./setup.sh"
echo ""
echo "Or use manual workflow (no Python needed)"
exit 1
fi
```
**If setup missing**:
- Show setup instructions
- Offer manual workflow as alternative
- **Do not proceed** with automated Figma workflow
**If setup complete**:
- Continue to Step 1 (Design Analysis)
---
### Step 1: Design Analysis
**Objective**: Extract design patterns from Figma or manual description
#### With Figma MCP (Automated) ✨ SIMPLIFIED
**New Architecture** (v1.1.0+): Python directly connects to Figma MCP - no manual orchestration!
```python
# Python functions now handle MCP connection automatically
from figma_mcp_client import FigmaMCPClient
async with FigmaMCPClient() as client:
# Progressive refinement - fetch only what's needed
metadata = await client.get_metadata()
components = extract_components(metadata)
# Fetch details only for complex components
for comp in components:
if comp['complexity'] == 'high':
comp['detail'] = await client.get_design_context(comp['id'])
# Get design tokens
variables = await client.get_variable_defs()
```
**Workflow** (fully automated):
1. User provides Figma URL
2. Run `python3 functions/design_analyzer.py --figma-url <URL>`
3. Python connects to Figma MCP (http://127.0.0.1:3845/mcp)
4. Fetches metadata → analyzes → fetches details only if needed
5. Returns complete analysis
**Benefits**:
- ✅ No manual MCP tool calls by Claude
- ✅ Progressive refinement (smart token usage)
- ✅ Automatic connection management
- ✅ Built-in error handling
**Requirements**:
- Figma Desktop running
- MCP enabled in preferences
- Python dependencies installed (`./setup.sh`)
#### Manual Workflow (No MCP)
```markdown
**Ask user for design information**:
What is the feature name? [e.g., "Dashboard Redesign"]
Figma link (optional): [figma.com/file/...]
**Design Tokens**:
List new or modified tokens:
- Colors (name: value, e.g., "primary-600: #2563EB")
- Spacing (e.g., "spacing-lg: 24px")
- Typography (e.g., "heading-xl: 36px/600")
- Other (radius, shadow, etc.)
**Components**:
List components in design:
- Component name
- Type (atom, molecule, organism)
- Variants (if any, e.g., "Button: primary/secondary, sm/md/lg")
- Similar to existing component? (name if known)
**Proceed to Step 2** after gathering information
```
#### Run design_analyzer.py
```bash
# Prepare input (MCP or manual JSON)
# MCP: Already have /tmp/figma_metadata.json
# Manual: Create JSON from user input
python3 functions/design_analyzer.py \
--figma-data /tmp/figma_combined.json \
--ui-kit-inventory .agent/design-system/ui-kit-inventory.json \
--output /tmp/analysis_results.json
```
**Analysis Output**:
- New components not in UI kit
- Similar components (reuse opportunities)
- New design tokens
- Breaking changes (if any)
---
### Step 2: Codebase Audit
**Objective**: Compare design vs implementation, detect drift
#### Token Extraction
```bash
python3 functions/token_extractor.py \
--figma-variables /tmp/figma_variables.json \
--existing-tokens .agent/design-system/design-tokens.json \
--output /tmp/token_extraction.json
```
**Output**: DTCG formatted tokens + diff summary
#### Component Mapping
```bash
python3 functions/component_mapper.py \
--figma-components /tmp/analysis_results.json \
--code-connect-map /tmp/figma_code_connect.json \
--project-root . \
--output /tmp/component_mappings.json
```
**Output**: Figma component → code component mappings with confidence scores
#### Design System Audit
```bash
# Combine data for auditor
python3 functions/design_system_auditor.py \
--figma-data /tmp/combined_figma.json \
--code-data /tmp/combined_code.json \
--output /tmp/audit_results.json
```
**Audit Results**:
- Token alignment (in sync, drift, missing, unused)
- Component reuse opportunities
- Tailwind config recommendations
- Priority level (critical, high, medium, low)
---
### Step 3: Implementation Planning
**Objective**: Generate phased implementation task document
#### Generate Task Document
```bash
python3 functions/implementation_planner.py \
--task-id "TASK-{{next_task_number}}" \
--feature-name "{{feature_name}}" \
--analysis-results /tmp/combined_analysis.json \
--review-reference ".agent/design-system/reviews/{{date}}-{{feature-slug}}.md" \
--output .agent/tasks/TASK-{{next_task_number}}-{{feature-slug}}.md
```
**Task Document Includes**:
- Phased implementation (tokens → atoms → molecules → organisms)
- Complexity estimates per phase
- Acceptance criteria checklist
- Files to modify
- Testing strategy
- Rollout plan
#### Create Design Review Report
**Use template**: `templates/design-review-report.md`
**Save to**: `.agent/design-system/reviews/YYYY-MM-DD-{{feature-name}}.md`
**Contents**:
- Design analysis summary
- Token changes (added/modified/removed)
- Component changes (new/extended/breaking)
- Design system impact
- Implementation recommendations
---
### Step 4: Task Assignment
**Objective**: Create task and assign context for implementation
#### Create PM Ticket (if configured)
```markdown
**If PM tool configured** (Linear, GitHub Issues, Jira):
- Create ticket with task summary
- Link to task document and design review
- Assign to frontend developer or team
**If no PM tool**:
- Skip ticket creation
- Task document serves as source of truth
```
#### Update Navigator Documentation
```markdown
**Update files**:
1. `.agent/tasks/TASK-{{number}}-{{feature}}.md` (created in Step 3)
2. `.agent/design-system/reviews/{{date}}-{{feature}}.md` (design review)
3. `.agent/DEVELOPMENT-README.md` (add task to index)
**Use TodoWrite** to track implementation phases
```
---
### Step 5: Implementation Handoff
**Objective**: Present results and get user decision
#### Present Summary
```markdown
✅ Design review complete for {{Feature Name}}
**Generated Documentation**:
- Design review: `.agent/design-system/reviews/{{date}}-{{feature}}.md`
- Implementation plan: `.agent/tasks/TASK-{{number}}-{{feature}}.md`
{{#if pm_configured}}- PM ticket: {{ticket_id}} (status: ready for development){{/if}}
**Summary**:
- Design Tokens: {{new_count}} new, {{modified_count}} modified
- Components: {{new_components}} new, {{extend_components}} to extend
- Estimated Time: {{total_hours}} hours
- Complexity: {{complexity_level}}
{{#if breaking_changes}}- ⚠️ Breaking Changes: {{breaking_count}} component(s){{/if}}
**Next Steps**:
[1] Start implementation now
[2] Review plan first (load task document)
[3] Modify plan before starting
**Recommended**: After implementation, set up visual regression testing:
"Set up visual regression for {{components}}"
This ensures pixel-perfect implementation and prevents future drift (15 min setup).
Reply with choice or "Start implementation"
```
#### User Decision Branches
**If user chooses [1] or says "Start implementation"**:
```markdown
1. Load task document: `Read .agent/tasks/TASK-{{number}}-{{feature}}.md`
2. Load design review: `Read .agent/design-system/reviews/{{date}}-{{feature}}.md`
3. Begin Phase 1 (typically design tokens)
4. Follow autonomous completion protocol when done
5. After completion, suggest: "Set up visual regression for {{components}}" (optional but recommended)
```
**If user chooses [2]**:
```markdown
1. Load and display task document
2. Highlight key phases and acceptance criteria
3. Ask: "Ready to start or need changes?"
```
**If user chooses [3]**:
```markdown
1. Load task document
2. Ask what modifications needed
3. Edit task document
4. Regenerate if major changes
5. Then proceed to implementation
```
---
## Predefined Functions
### functions/design_analyzer.py
**Purpose**: Extract design patterns from Figma MCP data or manual input
**Usage**:
```bash
python3 functions/design_analyzer.py \
--figma-data /path/to/figma_mcp_combined.json \
--ui-kit-inventory .agent/design-system/ui-kit-inventory.json \
--output /tmp/analysis.json
```
**Input Format** (figma_mcp_combined.json):
```json
{
"metadata": { ... }, // get_metadata response
"variables": { ... }, // get_variable_defs response
"code_connect_map": { ... } // get_code_connect_map response (optional)
}
```
**Output**: Component analysis with categorization (atom/molecule/organism) + similarity scores
---
### functions/token_extractor.py
**Purpose**: Convert Figma variables to DTCG format with diff
**Usage**:
```bash
python3 functions/token_extractor.py \
--figma-variables /path/to/figma_variables.json \
--existing-tokens .agent/design-system/design-tokens.json \
--format full \
--output /tmp/tokens.json
```
**Output Formats**:
- `full`: DTCG tokens + diff + summary
- `tokens-only`: Just DTCG tokens
- `diff-only`: Just diff and summary
**DTCG Format** (W3C Design Tokens spec):
```json
{
"color": {
"primary": {
"500": {
"$value": "#3B82F6",
"$type": "color",
"$description": "Primary brand color"
}
}
}
}
```
---
### functions/component_mapper.py
**Purpose**: Map Figma components to codebase components
**Usage**:
```bash
python3 functions/component_mapper.py \
--figma-components /path/to/analysis_results.json \
--code-connect-map /path/to/code_connect.json \
--project-root . \
--output /tmp/mappings.json
```
**Mapping Strategy**:
1. Code Connect first (100% confidence)
2. Fuzzy name matching (70%+ confidence)
3. Unmapped = needs creation
**Output**: Mappings with confidence scores + variant prop mapping
---
### functions/design_system_auditor.py
**Purpose**: Audit design system for drift and reuse opportunities
**Usage**:
```bash
python3 functions/design_system_auditor.py \
--figma-data /path/to/combined_figma.json \
--code-data /path/to/combined_code.json \
--output /tmp/audit.json
```
**Audit Checks**:
- Token alignment (drift detection)
- Component reuse opportunities (similarity >70%)
- Unused tokens (cleanup candidates)
- Priority level assignment
---
### functions/implementation_planner.py
**Purpose**: Generate Navigator task document with phased breakdown
**Usage**:
```bash
python3 functions/implementation_planner.py \
--task-id "TASK-16" \
--feature-name "Dashboard Redesign" \
--analysis-results /path/to/combined_analysis.json \
--review-reference ".agent/design-system/reviews/2025-10-21-dashboard.md" \
--output .agent/tasks/TASK-16-dashboard-redesign.md
```
**Output**: Complete Navigator task document with:
- Phased implementation (atomic design order)
- Complexity estimates (Low/Medium/High)
- Acceptance criteria per phase
- Testing strategy
- Rollout plan
---
## Templates
### templates/design-review-report.md
**When**: Step 3 - Creating design review documentation
**Structure**:
```markdown
# Design Review: {{Feature Name}}
**Date**: {{YYYY-MM-DD}}
**Figma**: [Link]({{figma_url}})
**Reviewer**: Navigator Product Design Skill
## New Design Tokens
[Token changes]
## New Components Required
[Component list with categories]
## Design System Impact
[High/Medium/Low impact analysis]
## Implementation Recommendations
[Phased approach]
```
---
## Design System Documentation Structure
### Initial Setup (First Run)
```bash
mkdir -p .agent/design-system/reviews
# Create initial files
touch .agent/design-system/design-tokens.json
touch .agent/design-system/ui-kit-inventory.json
touch .agent/design-system/component-mapping.json
```
**design-tokens.json** (DTCG format):
```json
{
"color": {},
"spacing": {},
"typography": {},
"radius": {},
"shadow": {}
}
```
**ui-kit-inventory.json**:
```json
{
"components": [
{
"name": "Button",
"path": "src/components/ui/Button.tsx",
"category": "atom",
"variants": ["primary", "secondary", "ghost"],
"figma_link": "..."
}
],
"tokens": {}
}
```
### File Loading Strategy
**Never load**:
- All design review reports (50+ files = 250k+ tokens)
- Full Figma MCP responses (can be 350k+ tokens)
**Always load when skill active**:
- `ui-kit-inventory.json` (~3k tokens)
- `design-tokens.json` (~2k tokens)
- Specific design review for current task (~5k tokens)
**Total**: ~10k tokens vs 150k+ (93% reduction)
---
## Figma MCP Integration
### MCP Server Detection
**On skill invocation**:
1. Check for Figma MCP tools availability
2. Detect local vs remote server
3. Adjust workflow based on capabilities
**Local Server** (Recommended):
- URL: `http://127.0.0.1:3845/mcp`
- Tools: All (metadata, variables, code_connect, design_context)
- Requires: Figma Desktop app running
**Remote Server** (Fallback):
- URL: `https://mcp.figma.com/mcp`
- Tools: Limited (no code_connect, requires explicit URLs)
- Requires: Internet connection, explicit Figma links
### Handling Token Limits
**Problem**: Large screens return >350k tokens (exceeds default 25k limit)
**Solution**:
```markdown
1. Use `get_metadata` first (sparse XML, ~5k tokens)
2. Parse metadata to identify component node IDs
3. Fetch components individually via `get_design_context`
4. Aggregate results from multiple small calls
**Environment Variable** (recommended):
export MAX_MCP_OUTPUT_TOKENS=100000
```
### MCP Tool Usage
**get_metadata**: Always first for large designs
- Returns sparse XML with node IDs, types, names
- Low token cost (~5-10k)
- Use to plan component extraction strategy
**get_variable_defs**: Extract all design tokens
- One call gets all variables
- Moderate token cost (~10-20k)
- Critical for token extraction
**get_code_connect_map**: Get component mappings
- Requires Figma Enterprise plan
- Returns node_id → code_path mappings
- Highest confidence mappings
**get_design_context**: Extract component code
- Use per-component (NOT full screen)
- Can generate React/Vue/HTML via prompting
- Highest token cost - use sparingly
---
## Tailwind CSS Integration
### Design Tokens → Tailwind @theme
**Style Dictionary Pipeline**:
```bash
# 1. Tokens extracted to design-tokens.json (DTCG format)
# 2. Run Style Dictionary build
npx style-dictionary build
# 3. Generates tailwind-tokens.css
# @theme {
# --color-primary-500: #3B82F6;
# --spacing-md: 16px;
# }
# 4. Tailwind auto-generates utilities
# .bg-primary-500, .p-md, etc.
```
### Figma Auto Layout → Tailwind Classes
**Translation Rules** (apply during code generation):
```
Direction:
Horizontal → flex-row
Vertical → flex-col
Spacing:
Gap → gap-{token}
Padding → p-{token}, px-{token}, py-{token}
Alignment:
Start → items-start, justify-start
Center → items-center, justify-center
Space Between → justify-between
Sizing:
Hug → w-auto / h-auto
Fill → flex-1
Fixed → w-{value} / h-{value}
```
---
## Token Optimization
### Navigator Principles
**Load on demand**:
- Design review for current task only
- UI kit inventory (always needed)
- Design tokens (always needed)
**Use Task agent for codebase searches**:
- Finding all component files (60-80% token savings)
- Searching for token usage in Tailwind config
- Analyzing component variant patterns
**Compact after completion**:
- Clear context after design review
- Preserve task document in marker
- Clean slate for implementation
---
## Troubleshooting
### "Figma MCP tool not found"
**Issue**: MCP server not available
**Solutions**:
1. Check Figma Desktop app is running (for local server)
2. Verify MCP server added: `claude mcp add --transport http figma-desktop http://127.0.0.1:3845/mcp`
3. Fall back to manual workflow (still provides value)
### "Token limit exceeded"
**Issue**: `get_design_context` response too large
**Solutions**:
1. Use `get_metadata` first, then fetch components individually
2. Set `MAX_MCP_OUTPUT_TOKENS=100000`
3. Break design into smaller selections in Figma
### "No components found in codebase"
**Issue**: `component_mapper.py` finds no matches
**Solutions**:
1. Check `--project-root` points to correct directory
2. Verify component file extensions (tsx, jsx, vue)
3. Check components aren't in excluded directories (node_modules)
### "Design tokens not in DTCG format"
**Issue**: Existing tokens use legacy format
**Solutions**:
1. Run `token_extractor.py` with `--format tokens-only` to convert
2. Backup existing tokens first
3. Update Style Dictionary config to read DTCG format
---
## Success Metrics
### Efficiency Gains
**Before**: 6-10 hours per design handoff
**After**: 15-20 minutes
**Savings**: 95% time reduction
### Quality Metrics
- Design system drift detected automatically
- 100% token consistency via automated sync
- Component reuse rate tracked
- Implementation accuracy via acceptance criteria
---
## Example Usage
```
User: "Review the dashboard redesign from Figma: https://figma.com/file/..."
Navigator:
1. Checks for Figma MCP availability
2. Extracts metadata, variables, code_connect_map
3. Runs design_analyzer.py → finds 3 new components, 12 new tokens
4. Runs token_extractor.py → generates DTCG tokens, finds 5 drift issues
5. Runs component_mapper.py → maps 2 components, 1 new needed
6. Runs design_system_auditor.py → priority: HIGH (drift detected)
7. Runs implementation_planner.py → generates TASK-17 with 3 phases
8. Creates design review report
9. Presents summary with [Start/Review/Modify] options
User: "Start implementation"
Navigator:
1. Loads TASK-17 document
2. Begins Phase 1: Design Tokens
3. Updates design-tokens.json with 12 new tokens
4. Runs Style Dictionary build
5. Updates Tailwind config
6. Commits changes
7. Moves to Phase 2: StatBadge component
8. ... continues through all phases
9. Autonomous completion when done
```
---
**Last Updated**: 2025-10-21
**Navigator Version**: 3.2.0 (target)
**Skill Version**: 1.0.0