Files
gh-akougkas-claude-code-4-s…/commands/warpio-help-local.md
2025-11-29 17:51:51 +08:00

4.9 KiB

description, allowed-tools
description allowed-tools
Detailed help for Warpio local AI management Read

Warpio Local AI Help

Local AI Overview

Warpio uses local AI providers for quick, cost-effective, and low-latency tasks while reserving Claude (the main AI) for complex reasoning and planning.

Supported Providers

Best for: Most users with GPU-enabled systems

Setup:

  1. Download from https://lmstudio.ai
  2. Install models (qwen3-4b-instruct-2507 recommended)
  3. Start local server on port 1234
  4. Configure in Warpio with /warpio-local-config

Configuration:

LOCAL_AI_PROVIDER=lmstudio
LMSTUDIO_API_URL=http://192.168.86.20:1234/v1
LMSTUDIO_MODEL=qwen3-4b-instruct-2507
LMSTUDIO_API_KEY=lm-studio

🦙 Ollama

Best for: CPU-only systems or alternative models

Setup:

  1. Install Ollama from https://ollama.ai
  2. Pull models: ollama pull llama3.2
  3. Start service: ollama serve
  4. Configure in Warpio

Configuration:

LOCAL_AI_PROVIDER=ollama
OLLAMA_API_URL=http://localhost:11434/v1
OLLAMA_MODEL=llama3.2

Local AI Commands

Check Status

/warpio-local-status

Shows connection status, response times, and capabilities.

Configure Provider

/warpio-local-config

Interactive setup for LM Studio, Ollama, or custom providers.

Test Connection

/warpio-local-test

Tests connectivity, authentication, and basic functionality.

When to Use Local AI

Ideal for Local AI

  • Quick Analysis: Statistical summaries, data validation
  • Format Conversion: HDF5→Parquet, data restructuring
  • Documentation: Code documentation, README generation
  • Simple Queries: Lookups, basic explanations
  • Real-time Tasks: Interactive analysis, quick iterations

Best for Claude (Main AI)

  • Complex Reasoning: Multi-step problem solving
  • Creative Tasks: Brainstorming, design decisions
  • Deep Analysis: Comprehensive research and planning
  • Large Tasks: Code generation, architectural decisions
  • Context-Heavy: Tasks requiring extensive conversation history

Performance Optimization

Speed Benefits

  • Local Processing: No network latency
  • Direct Access: Immediate response to local resources
  • Optimized Hardware: Uses your local GPU/CPU efficiently

Cost Benefits

  • No API Costs: Free for local model inference
  • Scalable: Run multiple models simultaneously
  • Privacy: Data stays on your machine

Configuration Examples

Basic LM Studio Setup

# .env file
LOCAL_AI_PROVIDER=lmstudio
LMSTUDIO_API_URL=http://localhost:1234/v1
LMSTUDIO_MODEL=qwen3-4b-instruct-2507
LMSTUDIO_API_KEY=lm-studio

Advanced LM Studio Setup

# .env file
LOCAL_AI_PROVIDER=lmstudio
LMSTUDIO_API_URL=http://192.168.1.100:1234/v1
LMSTUDIO_MODEL=qwen3-8b-instruct
LMSTUDIO_API_KEY=your-custom-key

Ollama Setup

# .env file
LOCAL_AI_PROVIDER=ollama
OLLAMA_API_URL=http://localhost:11434/v1
OLLAMA_MODEL=llama3.2:8b

Troubleshooting

Connection Issues

Problem: "Connection failed"

  • Check if LM Studio/Ollama is running
  • Verify API URL is correct
  • Check firewall settings
  • Try different port

Problem: "Authentication failed"

  • Verify API key matches server configuration
  • Check API key format
  • Ensure proper permissions

Performance Issues

Problem: "Slow response times"

  • Check system resources (CPU/GPU usage)
  • Verify model is loaded in memory
  • Consider using a smaller/faster model
  • Close other resource-intensive applications

Model Issues

Problem: "Model not found"

  • Check model name spelling
  • Verify model is installed and available
  • Try listing available models
  • Reinstall model if corrupted

Integration with Experts

Local AI is automatically used by experts for appropriate tasks:

  • Data Expert: Quick format validation, metadata extraction
  • Analysis Expert: Statistical summaries, basic plotting
  • Research Expert: Literature search, citation formatting
  • Workflow Expert: Pipeline validation, simple automation

Best Practices

  1. Start Simple: Use default configurations initially
  2. Test Thoroughly: Use /warpio-local-test after changes
  3. Monitor Performance: Check /warpio-local-status regularly
  4. Choose Right Model: Balance speed vs. capability
  5. Keep Updated: Update models periodically for best performance

Advanced Configuration

Custom API Endpoints

# For custom OpenAI-compatible APIs
LOCAL_AI_PROVIDER=custom
CUSTOM_API_URL=https://your-api-endpoint/v1
CUSTOM_API_KEY=your-api-key
CUSTOM_MODEL=your-model-name

Multiple Models

You can configure different models for different tasks by updating the .env file and restarting your local AI provider.

Resource Management

  • Monitor GPU/CPU usage during intensive tasks
  • Adjust model parameters for your hardware
  • Use model quantization for better performance on limited hardware