4.9 KiB
description, allowed-tools
| description | allowed-tools |
|---|---|
| Detailed help for Warpio local AI management | Read |
Warpio Local AI Help
Local AI Overview
Warpio uses local AI providers for quick, cost-effective, and low-latency tasks while reserving Claude (the main AI) for complex reasoning and planning.
Supported Providers
🤖 LM Studio (Recommended)
Best for: Most users with GPU-enabled systems
Setup:
- Download from https://lmstudio.ai
- Install models (qwen3-4b-instruct-2507 recommended)
- Start local server on port 1234
- Configure in Warpio with
/warpio-local-config
Configuration:
LOCAL_AI_PROVIDER=lmstudio
LMSTUDIO_API_URL=http://192.168.86.20:1234/v1
LMSTUDIO_MODEL=qwen3-4b-instruct-2507
LMSTUDIO_API_KEY=lm-studio
🦙 Ollama
Best for: CPU-only systems or alternative models
Setup:
- Install Ollama from https://ollama.ai
- Pull models:
ollama pull llama3.2 - Start service:
ollama serve - Configure in Warpio
Configuration:
LOCAL_AI_PROVIDER=ollama
OLLAMA_API_URL=http://localhost:11434/v1
OLLAMA_MODEL=llama3.2
Local AI Commands
Check Status
/warpio-local-status
Shows connection status, response times, and capabilities.
Configure Provider
/warpio-local-config
Interactive setup for LM Studio, Ollama, or custom providers.
Test Connection
/warpio-local-test
Tests connectivity, authentication, and basic functionality.
When to Use Local AI
✅ Ideal for Local AI
- Quick Analysis: Statistical summaries, data validation
- Format Conversion: HDF5→Parquet, data restructuring
- Documentation: Code documentation, README generation
- Simple Queries: Lookups, basic explanations
- Real-time Tasks: Interactive analysis, quick iterations
✅ Best for Claude (Main AI)
- Complex Reasoning: Multi-step problem solving
- Creative Tasks: Brainstorming, design decisions
- Deep Analysis: Comprehensive research and planning
- Large Tasks: Code generation, architectural decisions
- Context-Heavy: Tasks requiring extensive conversation history
Performance Optimization
Speed Benefits
- Local Processing: No network latency
- Direct Access: Immediate response to local resources
- Optimized Hardware: Uses your local GPU/CPU efficiently
Cost Benefits
- No API Costs: Free for local model inference
- Scalable: Run multiple models simultaneously
- Privacy: Data stays on your machine
Configuration Examples
Basic LM Studio Setup
# .env file
LOCAL_AI_PROVIDER=lmstudio
LMSTUDIO_API_URL=http://localhost:1234/v1
LMSTUDIO_MODEL=qwen3-4b-instruct-2507
LMSTUDIO_API_KEY=lm-studio
Advanced LM Studio Setup
# .env file
LOCAL_AI_PROVIDER=lmstudio
LMSTUDIO_API_URL=http://192.168.1.100:1234/v1
LMSTUDIO_MODEL=qwen3-8b-instruct
LMSTUDIO_API_KEY=your-custom-key
Ollama Setup
# .env file
LOCAL_AI_PROVIDER=ollama
OLLAMA_API_URL=http://localhost:11434/v1
OLLAMA_MODEL=llama3.2:8b
Troubleshooting
Connection Issues
Problem: "Connection failed"
- Check if LM Studio/Ollama is running
- Verify API URL is correct
- Check firewall settings
- Try different port
Problem: "Authentication failed"
- Verify API key matches server configuration
- Check API key format
- Ensure proper permissions
Performance Issues
Problem: "Slow response times"
- Check system resources (CPU/GPU usage)
- Verify model is loaded in memory
- Consider using a smaller/faster model
- Close other resource-intensive applications
Model Issues
Problem: "Model not found"
- Check model name spelling
- Verify model is installed and available
- Try listing available models
- Reinstall model if corrupted
Integration with Experts
Local AI is automatically used by experts for appropriate tasks:
- Data Expert: Quick format validation, metadata extraction
- Analysis Expert: Statistical summaries, basic plotting
- Research Expert: Literature search, citation formatting
- Workflow Expert: Pipeline validation, simple automation
Best Practices
- Start Simple: Use default configurations initially
- Test Thoroughly: Use
/warpio-local-testafter changes - Monitor Performance: Check
/warpio-local-statusregularly - Choose Right Model: Balance speed vs. capability
- Keep Updated: Update models periodically for best performance
Advanced Configuration
Custom API Endpoints
# For custom OpenAI-compatible APIs
LOCAL_AI_PROVIDER=custom
CUSTOM_API_URL=https://your-api-endpoint/v1
CUSTOM_API_KEY=your-api-key
CUSTOM_MODEL=your-model-name
Multiple Models
You can configure different models for different tasks by updating the .env file and restarting your local AI provider.
Resource Management
- Monitor GPU/CPU usage during intensive tasks
- Adjust model parameters for your hardware
- Use model quantization for better performance on limited hardware