Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 09:08:22 +08:00
commit a25d9dfcd0
28 changed files with 3680 additions and 0 deletions

View File

@@ -0,0 +1,207 @@
---
description: Refactor and clean up code following best practices
model: claude-sonnet-4-5
---
Clean up and refactor the following code to improve readability, maintainability, and follow best practices.
## Code to Clean
$ARGUMENTS
## Cleanup Checklist for Solo Developers
### 1. **Code Smells to Fix**
**Naming**
-  Descriptive variable/function names
-  Consistent naming conventions (camelCase, PascalCase)
-  Avoid abbreviations unless obvious
-  Boolean names start with is/has/can
**Functions**
-  Single responsibility per function
-  Keep functions small (<50 lines)
-  Reduce parameters (max 3-4)
-  Extract complex logic
-  Avoid side effects where possible
**DRY (Don't Repeat Yourself)**
-  Extract repeated code to utilities
-  Create reusable components
-  Use TypeScript generics for type reuse
-  Centralize constants/configuration
**Complexity**
-  Reduce nested if statements
-  Replace complex conditions with functions
-  Use early returns
-  Simplify boolean logic
**TypeScript**
-  Remove `any` types
-  Add proper type annotations
-  Use interfaces for object shapes
-  Leverage utility types (Pick, Omit, Partial)
### 2. **Modern Patterns to Apply**
**JavaScript/TypeScript**
```typescript
// Use optional chaining
const value = obj?.prop?.nested
// Use nullish coalescing
const result = value ?? defaultValue
// Use destructuring
const { name, email } = user
// Use template literals
const message = `Hello, ${name}!`
// Use array methods
const filtered = arr.filter(x => x.active)
```
**React**
```typescript
// Extract custom hooks
const useUserData = () => {
// logic here
}
// Use proper TypeScript types
interface Props {
user: User
onUpdate: (user: User) => void
}
// Avoid prop drilling with composition
<Provider value={data}>
<Component />
</Provider>
```
### 3. **Refactoring Techniques**
**Extract Function**
```typescript
// Before
const process = () => {
// 50 lines of code
}
// After
const validate = () => { /* ... */ }
const transform = () => { /* ... */ }
const save = () => { /* ... */ }
const process = () => {
validate()
const data = transform()
save(data)
}
```
**Replace Conditional with Polymorphism**
```typescript
// Before
if (type === 'A') return processA()
if (type === 'B') return processB()
// After
const processors = {
A: processA,
B: processB
}
return processors[type]()
```
**Introduce Parameter Object**
```typescript
// Before
function create(name, email, age, address)
// After
interface UserData {
name: string
email: string
age: number
address: string
}
function create(userData: UserData)
```
### 4. **Common Cleanup Tasks**
**Remove Dead Code**
- Unused imports
- Unreachable code
- Commented out code
- Unused variables
**Improve Error Handling**
```typescript
// Before
try { doSomething() } catch (e) { console.log(e) }
// After
try {
doSomething()
} catch (error) {
if (error instanceof ValidationError) {
// Handle validation
} else {
logger.error('Unexpected error', { error })
throw error
}
}
```
**Consistent Formatting**
- Proper indentation
- Consistent quotes
- Line length (<100 characters)
- Organized imports
**Better Comments**
- Remove obvious comments
- Add why, not what
- Document complex logic
- Update outdated comments
### 5. **Next.js/React Specific**
**Server vs Client Components**
```typescript
// Move state to client component
'use client'
function Interactive() {
const [state, setState] = useState()
}
// Keep data fetching in server component
async function Page() {
const data = await fetchData()
}
```
**Proper Data Fetching**
```typescript
// Use SWR/React Query for client
const { data } = useSWR('/api/user')
// Use direct fetch in server components
const data = await fetch('/api/user').then(r => r.json())
```
## Output Format
1. **Issues Found** - List of code smells and problems
2. **Cleaned Code** - Refactored version
3. **Explanations** - What changed and why
4. **Before/After Comparison** - Side-by-side if helpful
5. **Further Improvements** - Optional enhancements
Focus on practical improvements that make code more maintainable without over-engineering. Balance clean code with pragmatism.

View File

@@ -0,0 +1,849 @@
---
model: claude-sonnet-4-5
---
# Code Explanation and Analysis
You are a code education expert specializing in explaining complex code through clear narratives, visual diagrams, and step-by-step breakdowns. Transform difficult concepts into understandable explanations for developers at all levels.
## Context
The user needs help understanding complex code sections, algorithms, design patterns, or system architectures. Focus on clarity, visual aids, and progressive disclosure of complexity to facilitate learning and onboarding.
## Requirements
$ARGUMENTS
## Instructions
### 1. Code Comprehension Analysis
Analyze the code to determine complexity and structure:
**Code Complexity Assessment**
```python
import ast
import re
from typing import Dict, List, Tuple
class CodeAnalyzer:
def analyze_complexity(self, code: str) -> Dict:
"""
Analyze code complexity and structure
"""
analysis = {
'complexity_score': 0,
'concepts': [],
'patterns': [],
'dependencies': [],
'difficulty_level': 'beginner'
}
# Parse code structure
try:
tree = ast.parse(code)
# Analyze complexity metrics
analysis['metrics'] = {
'lines_of_code': len(code.splitlines()),
'cyclomatic_complexity': self._calculate_cyclomatic_complexity(tree),
'nesting_depth': self._calculate_max_nesting(tree),
'function_count': len([n for n in ast.walk(tree) if isinstance(n, ast.FunctionDef)]),
'class_count': len([n for n in ast.walk(tree) if isinstance(n, ast.ClassDef)])
}
# Identify concepts used
analysis['concepts'] = self._identify_concepts(tree)
# Detect design patterns
analysis['patterns'] = self._detect_patterns(tree)
# Extract dependencies
analysis['dependencies'] = self._extract_dependencies(tree)
# Determine difficulty level
analysis['difficulty_level'] = self._assess_difficulty(analysis)
except SyntaxError as e:
analysis['parse_error'] = str(e)
return analysis
def _identify_concepts(self, tree) -> List[str]:
"""
Identify programming concepts used in the code
"""
concepts = []
for node in ast.walk(tree):
# Async/await
if isinstance(node, (ast.AsyncFunctionDef, ast.AsyncWith, ast.AsyncFor)):
concepts.append('asynchronous programming')
# Decorators
elif isinstance(node, ast.FunctionDef) and node.decorator_list:
concepts.append('decorators')
# Context managers
elif isinstance(node, ast.With):
concepts.append('context managers')
# Generators
elif isinstance(node, ast.Yield):
concepts.append('generators')
# List/Dict/Set comprehensions
elif isinstance(node, (ast.ListComp, ast.DictComp, ast.SetComp)):
concepts.append('comprehensions')
# Lambda functions
elif isinstance(node, ast.Lambda):
concepts.append('lambda functions')
# Exception handling
elif isinstance(node, ast.Try):
concepts.append('exception handling')
return list(set(concepts))
```
### 2. Visual Explanation Generation
Create visual representations of code flow:
**Flow Diagram Generation**
````python
class VisualExplainer:
def generate_flow_diagram(self, code_structure):
"""
Generate Mermaid diagram showing code flow
"""
diagram = "```mermaid\nflowchart TD\n"
# Example: Function call flow
if code_structure['type'] == 'function_flow':
nodes = []
edges = []
for i, func in enumerate(code_structure['functions']):
node_id = f"F{i}"
nodes.append(f" {node_id}[{func['name']}]")
# Add function details
if func.get('parameters'):
nodes.append(f" {node_id}_params[/{', '.join(func['parameters'])}/]")
edges.append(f" {node_id}_params --> {node_id}")
# Add return value
if func.get('returns'):
nodes.append(f" {node_id}_return[{func['returns']}]")
edges.append(f" {node_id} --> {node_id}_return")
# Connect to called functions
for called in func.get('calls', []):
called_id = f"F{code_structure['function_map'][called]}"
edges.append(f" {node_id} --> {called_id}")
diagram += "\n".join(nodes) + "\n"
diagram += "\n".join(edges) + "\n"
diagram += "```"
return diagram
def generate_class_diagram(self, classes):
"""
Generate UML-style class diagram
"""
diagram = "```mermaid\nclassDiagram\n"
for cls in classes:
# Class definition
diagram += f" class {cls['name']} {{\n"
# Attributes
for attr in cls.get('attributes', []):
visibility = '+' if attr['public'] else '-'
diagram += f" {visibility}{attr['name']} : {attr['type']}\n"
# Methods
for method in cls.get('methods', []):
visibility = '+' if method['public'] else '-'
params = ', '.join(method.get('params', []))
diagram += f" {visibility}{method['name']}({params}) : {method['returns']}\n"
diagram += " }\n"
# Relationships
if cls.get('inherits'):
diagram += f" {cls['inherits']} <|-- {cls['name']}\n"
for composition in cls.get('compositions', []):
diagram += f" {cls['name']} *-- {composition}\n"
diagram += "```"
return diagram
````
### 3. Step-by-Step Explanation
Break down complex code into digestible steps:
**Progressive Explanation**
````python
def generate_step_by_step_explanation(self, code, analysis):
"""
Create progressive explanation from simple to complex
"""
explanation = {
'overview': self._generate_overview(code, analysis),
'steps': [],
'deep_dive': [],
'examples': []
}
# Level 1: High-level overview
explanation['overview'] = f"""
## What This Code Does
{self._summarize_purpose(code, analysis)}
**Key Concepts**: {', '.join(analysis['concepts'])}
**Difficulty Level**: {analysis['difficulty_level'].capitalize()}
"""
# Level 2: Step-by-step breakdown
if analysis.get('functions'):
for i, func in enumerate(analysis['functions']):
step = f"""
### Step {i+1}: {func['name']}
**Purpose**: {self._explain_function_purpose(func)}
**How it works**:
"""
# Break down function logic
for j, logic_step in enumerate(self._analyze_function_logic(func)):
step += f"{j+1}. {logic_step}\n"
# Add visual flow if complex
if func['complexity'] > 5:
step += f"\n{self._generate_function_flow(func)}\n"
explanation['steps'].append(step)
# Level 3: Deep dive into complex parts
for concept in analysis['concepts']:
deep_dive = self._explain_concept(concept, code)
explanation['deep_dive'].append(deep_dive)
return explanation
def _explain_concept(self, concept, code):
"""
Explain programming concept with examples
"""
explanations = {
'decorators': '''
## Understanding Decorators
Decorators are a way to modify or enhance functions without changing their code directly.
**Simple Analogy**: Think of a decorator like gift wrapping - it adds something extra around the original item.
**How it works**:
```python
# This decorator:
@timer
def slow_function():
time.sleep(1)
# Is equivalent to:
def slow_function():
time.sleep(1)
slow_function = timer(slow_function)
````
**In this code**: The decorator is used to {specific_use_in_code}
''',
'generators': '''
## Understanding Generators
Generators produce values one at a time, saving memory by not creating all values at once.
**Simple Analogy**: Like a ticket dispenser that gives one ticket at a time, rather than printing all tickets upfront.
**How it works**:
```python
# Generator function
def count_up_to(n):
i = 0
while i < n:
yield i # Produces one value and pauses
i += 1
# Using the generator
for num in count_up_to(5):
print(num) # Prints 0, 1, 2, 3, 4
```
**In this code**: The generator is used to {specific_use_in_code}
'''
}
return explanations.get(concept, f"Explanation for {concept}")
````
### 4. Algorithm Visualization
Visualize algorithm execution:
**Algorithm Step Visualization**
```python
class AlgorithmVisualizer:
def visualize_sorting_algorithm(self, algorithm_name, array):
"""
Create step-by-step visualization of sorting algorithm
"""
steps = []
if algorithm_name == 'bubble_sort':
steps.append("""
## Bubble Sort Visualization
**Initial Array**: [5, 2, 8, 1, 9]
### How Bubble Sort Works:
1. Compare adjacent elements
2. Swap if they're in wrong order
3. Repeat until no swaps needed
### Step-by-Step Execution:
""")
# Simulate bubble sort with visualization
arr = array.copy()
n = len(arr)
for i in range(n):
swapped = False
step_viz = f"\n**Pass {i+1}**:\n"
for j in range(0, n-i-1):
# Show comparison
step_viz += f"Compare [{arr[j]}] and [{arr[j+1]}]: "
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]
step_viz += f"Swap → {arr}\n"
swapped = True
else:
step_viz += "No swap needed\n"
steps.append(step_viz)
if not swapped:
steps.append(f"\n✅ Array is sorted: {arr}")
break
return '\n'.join(steps)
def visualize_recursion(self, func_name, example_input):
"""
Visualize recursive function calls
"""
viz = f"""
## Recursion Visualization: {func_name}
### Call Stack Visualization:
````
{func*name}({example_input})
├─> Base case check: {example_input} == 0? No
├─> Recursive call: {func_name}({example_input - 1})
│ │
│ ├─> Base case check: {example_input - 1} == 0? No
│ ├─> Recursive call: {func_name}({example_input - 2})
│ │ │
│ │ ├─> Base case check: 1 == 0? No
│ │ ├─> Recursive call: {func_name}(0)
│ │ │ │
│ │ │ └─> Base case: Return 1
│ │ │
│ │ └─> Return: 1 * 1 = 1
│ │
│ └─> Return: 2 \_ 1 = 2
└─> Return: 3 \* 2 = 6
```
**Final Result**: {func_name}({example_input}) = 6
"""
return viz
```
### 5. Interactive Examples
Generate interactive examples for better understanding:
**Code Playground Examples**
````python
def generate_interactive_examples(self, concept):
"""
Create runnable examples for concepts
"""
examples = {
'error_handling': '''
## Try It Yourself: Error Handling
### Example 1: Basic Try-Except
```python
def safe_divide(a, b):
try:
result = a / b
print(f"{a} / {b} = {result}")
return result
except ZeroDivisionError:
print("Error: Cannot divide by zero!")
return None
except TypeError:
print("Error: Please provide numbers only!")
return None
finally:
print("Division attempt completed")
# Test cases - try these:
safe_divide(10, 2) # Success case
safe_divide(10, 0) # Division by zero
safe_divide(10, "2") # Type error
````
### Example 2: Custom Exceptions
```python
class ValidationError(Exception):
"""Custom exception for validation errors"""
pass
def validate_age(age):
try:
age = int(age)
if age < 0:
raise ValidationError("Age cannot be negative")
if age > 150:
raise ValidationError("Age seems unrealistic")
return age
except ValueError:
raise ValidationError("Age must be a number")
# Try these examples:
try:
validate_age(25) # Valid
validate_age(-5) # Negative age
validate_age("abc") # Not a number
except ValidationError as e:
print(f"Validation failed: {e}")
```
### Exercise: Implement Your Own
Try implementing a function that:
1. Takes a list of numbers
2. Returns their average
3. Handles empty lists
4. Handles non-numeric values
5. Uses appropriate exception handling
''',
'async_programming': '''
## Try It Yourself: Async Programming
### Example 1: Basic Async/Await
```python
import asyncio
import time
async def slow_operation(name, duration):
print(f"{name} started...")
await asyncio.sleep(duration)
print(f"{name} completed after {duration}s")
return f"{name} result"
async def main():
# Sequential execution (slow)
start = time.time()
await slow_operation("Task 1", 2)
await slow_operation("Task 2", 2)
print(f"Sequential time: {time.time() - start:.2f}s")
# Concurrent execution (fast)
start = time.time()
results = await asyncio.gather(
slow_operation("Task 3", 2),
slow_operation("Task 4", 2)
)
print(f"Concurrent time: {time.time() - start:.2f}s")
print(f"Results: {results}")
# Run it:
asyncio.run(main())
```
### Example 2: Real-world Async Pattern
```python
async def fetch_data(url):
"""Simulate API call"""
await asyncio.sleep(1) # Simulate network delay
return f"Data from {url}"
async def process_urls(urls):
tasks = [fetch_data(url) for url in urls]
results = await asyncio.gather(*tasks)
return results
# Try with different URLs:
urls = ["api.example.com/1", "api.example.com/2", "api.example.com/3"]
results = asyncio.run(process_urls(urls))
print(results)
```
'''
}
return examples.get(concept, "No example available")
````
### 6. Design Pattern Explanation
Explain design patterns found in code:
**Pattern Recognition and Explanation**
```python
class DesignPatternExplainer:
def explain_pattern(self, pattern_name, code_example):
"""
Explain design pattern with diagrams and examples
"""
patterns = {
'singleton': '''
## Singleton Pattern
### What is it?
The Singleton pattern ensures a class has only one instance and provides global access to it.
### When to use it?
- Database connections
- Configuration managers
- Logging services
- Cache managers
### Visual Representation:
```mermaid
classDiagram
class Singleton {
-instance: Singleton
-__init__()
+getInstance(): Singleton
}
Singleton --> Singleton : returns same instance
````
### Implementation in this code:
{code_analysis}
### Benefits:
✅ Controlled access to single instance
✅ Reduced namespace pollution
✅ Permits refinement of operations
### Drawbacks:
❌ Can make unit testing difficult
❌ Violates Single Responsibility Principle
❌ Can hide dependencies
### Alternative Approaches:
1. Dependency Injection
2. Module-level singleton
3. Borg pattern
''',
'observer': '''
## Observer Pattern
### What is it?
The Observer pattern defines a one-to-many dependency between objects so that when one object changes state, all dependents are notified.
### When to use it?
- Event handling systems
- Model-View architectures
- Distributed event handling
### Visual Representation:
```mermaid
classDiagram
class Subject {
+attach(Observer)
+detach(Observer)
+notify()
}
class Observer {
+update()
}
class ConcreteSubject {
-state
+getState()
+setState()
}
class ConcreteObserver {
-subject
+update()
}
Subject <|-- ConcreteSubject
Observer <|-- ConcreteObserver
ConcreteSubject --> Observer : notifies
ConcreteObserver --> ConcreteSubject : observes
```
### Implementation in this code:
{code_analysis}
### Real-world Example:
```python
# Newsletter subscription system
class Newsletter:
def __init__(self):
self._subscribers = []
self._latest_article = None
def subscribe(self, subscriber):
self._subscribers.append(subscriber)
def unsubscribe(self, subscriber):
self._subscribers.remove(subscriber)
def publish_article(self, article):
self._latest_article = article
self._notify_subscribers()
def _notify_subscribers(self):
for subscriber in self._subscribers:
subscriber.update(self._latest_article)
class EmailSubscriber:
def __init__(self, email):
self.email = email
def update(self, article):
print(f"Sending email to {self.email}: New article - {article}")
```
'''
}
return patterns.get(pattern_name, "Pattern explanation not available")
````
### 7. Common Pitfalls and Best Practices
Highlight potential issues and improvements:
**Code Review Insights**
```python
def analyze_common_pitfalls(self, code):
"""
Identify common mistakes and suggest improvements
"""
issues = []
# Check for common Python pitfalls
pitfall_patterns = [
{
'pattern': r'except:',
'issue': 'Bare except clause',
'severity': 'high',
'explanation': '''
## ⚠️ Bare Except Clause
**Problem**: `except:` catches ALL exceptions, including system exits and keyboard interrupts.
**Why it's bad**:
- Hides programming errors
- Makes debugging difficult
- Can catch exceptions you didn't intend to handle
**Better approach**:
```python
# Bad
try:
risky_operation()
except:
print("Something went wrong")
# Good
try:
risky_operation()
except (ValueError, TypeError) as e:
print(f"Expected error: {e}")
except Exception as e:
logger.error(f"Unexpected error: {e}")
raise
````
'''
},
{
'pattern': r'def._\(\s_\):.\*global',
'issue': 'Global variable usage',
'severity': 'medium',
'explanation': '''
## ⚠️ Global Variable Usage
**Problem**: Using global variables makes code harder to test and reason about.
**Better approaches**:
1. Pass as parameter
2. Use class attributes
3. Use dependency injection
4. Return values instead
**Example refactor**:
```python
# Bad
count = 0
def increment():
global count
count += 1
# Good
class Counter:
def __init__(self):
self.count = 0
def increment(self):
self.count += 1
return self.count
```
'''
}
]
for pitfall in pitfall_patterns:
if re.search(pitfall['pattern'], code):
issues.append(pitfall)
return issues
````
### 8. Learning Path Recommendations
Suggest resources for deeper understanding:
**Personalized Learning Path**
```python
def generate_learning_path(self, analysis):
"""
Create personalized learning recommendations
"""
learning_path = {
'current_level': analysis['difficulty_level'],
'identified_gaps': [],
'recommended_topics': [],
'resources': []
}
# Identify knowledge gaps
if 'async' in analysis['concepts'] and analysis['difficulty_level'] == 'beginner':
learning_path['identified_gaps'].append('Asynchronous programming fundamentals')
learning_path['recommended_topics'].extend([
'Event loops',
'Coroutines vs threads',
'Async/await syntax',
'Concurrent programming patterns'
])
# Add resources
learning_path['resources'] = [
{
'topic': 'Async Programming',
'type': 'tutorial',
'title': 'Async IO in Python: A Complete Walkthrough',
'url': 'https://realpython.com/async-io-python/',
'difficulty': 'intermediate',
'time_estimate': '45 minutes'
},
{
'topic': 'Design Patterns',
'type': 'book',
'title': 'Head First Design Patterns',
'difficulty': 'beginner-friendly',
'format': 'visual learning'
}
]
# Create structured learning plan
learning_path['structured_plan'] = f"""
## Your Personalized Learning Path
### Week 1-2: Fundamentals
- Review basic concepts: {', '.join(learning_path['recommended_topics'][:2])}
- Complete exercises on each topic
- Build a small project using these concepts
### Week 3-4: Applied Learning
- Study the patterns in this codebase
- Refactor a simple version yourself
- Compare your approach with the original
### Week 5-6: Advanced Topics
- Explore edge cases and optimizations
- Learn about alternative approaches
- Contribute to open source projects using these patterns
### Practice Projects:
1. **Beginner**: {self._suggest_beginner_project(analysis)}
2. **Intermediate**: {self._suggest_intermediate_project(analysis)}
3. **Advanced**: {self._suggest_advanced_project(analysis)}
"""
return learning_path
````
## Output Format
1. **Complexity Analysis**: Overview of code complexity and concepts used
2. **Visual Diagrams**: Flow charts, class diagrams, and execution visualizations
3. **Step-by-Step Breakdown**: Progressive explanation from simple to complex
4. **Interactive Examples**: Runnable code samples to experiment with
5. **Common Pitfalls**: Issues to avoid with explanations
6. **Best Practices**: Improved approaches and patterns
7. **Learning Resources**: Curated resources for deeper understanding
8. **Practice Exercises**: Hands-on challenges to reinforce learning
Focus on making complex code accessible through clear explanations, visual aids, and practical examples that build understanding progressively.

View File

@@ -0,0 +1,148 @@
---
description: Analyze and optimize code for performance, memory, and efficiency
model: claude-sonnet-4-5
---
Optimize the following code for performance and efficiency.
## Code to Optimize
$ARGUMENTS
## Optimization Strategy for Solo Developers
### 1. **Profiling First**
- Identify actual bottlenecks
- Don't optimize prematurely
- Measure before and after
- Focus on high-impact areas
### 2. **Performance Optimization Areas**
**React/Next.js**
- Memoization (React.memo, useMemo, useCallback)
- Code splitting and lazy loading
- Image optimization (next/image)
- Font optimization (next/font)
- Remove unnecessary re-renders
- Virtual scrolling for long lists
**Database Queries**
- Add indexes for frequently queried fields
- Batch queries (reduce N+1 problems)
- Use select to limit fields
- Implement pagination
- Cache frequent queries
- Use database views for complex joins
**API Calls**
- Implement caching (SWR, React Query)
- Debounce/throttle requests
- Parallel requests where possible
- Request deduplication
- Optimistic updates
**Bundle Size**
- Tree-shaking unused code
- Dynamic imports for large libraries
- Replace heavy dependencies
- Code splitting by route
- Lazy load below-the-fold content
**Memory**
- Fix memory leaks (cleanup useEffect)
- Avoid unnecessary object creation
- Use const for non-changing values
- Clear intervals/timeouts
- Remove event listeners
### 3. **Optimization Checklist**
**JavaScript/TypeScript**
-  Use const/let instead of var
-  Avoid nested loops where possible
-  Use Map/Set for lookups
-  Minimize DOM manipulations
-  Debounce/throttle expensive operations
**React**
-  Memo components that render often
-  Move static values outside components
-  Use keys properly in lists
-  Avoid inline functions in render
-  Lazy load routes and components
**Next.js**
-  Use Server Components where possible
-  Implement ISR for dynamic content
-  Optimize images with next/image
-  Prefetch critical routes
-  Use Suspense for streaming
**Database**
-  Add indexes on foreign keys
-  Use prepared statements
-  Batch inserts/updates
-  Implement connection pooling
-  Cache expensive queries
**Network**
-  Compress responses (gzip/brotli)
-  Use CDN for static assets
-  Implement HTTP/2
-  Set proper cache headers
-  Minimize payload size
### 4. **Measurement Tools**
**Frontend**
- Chrome DevTools Performance tab
- Lighthouse CI
- React DevTools Profiler
- Bundle Analyzer (next/bundle-analyzer)
**Backend**
- Node.js profiler
- Database query analyzer
- APM tools (DataDog, New Relic)
- Load testing (k6, Artillery)
### 5. **Common Optimizations**
**Replace inefficient array methods**
```typescript
// Before: Multiple iterations
const result = arr
.filter(x => x > 0)
.map(x => x * 2)
.reduce((sum, x) => sum + x, 0)
// After: Single iteration
const result = arr.reduce((sum, x) => {
return x > 0 ? sum + (x * 2) : sum
}, 0)
```
**Memoize expensive calculations**
```typescript
const expensiveValue = useMemo(() => {
return complexCalculation(props.data)
}, [props.data])
```
**Virtual scrolling for long lists**
```typescript
import { useVirtual } from 'react-virtual'
// Only render visible items
```
## Output Format
1. **Analysis** - Identify performance bottlenecks
2. **Optimized Code** - Improved version
3. **Explanation** - What changed and why
4. **Benchmarks** - Expected performance improvement
5. **Trade-offs** - Any complexity added
6. **Next Steps** - Further optimization opportunities
Focus on practical, measurable optimizations that provide real user value. Don't sacrifice readability for micro-optimizations.

Binary file not shown.

Binary file not shown.

202
commands/misc/lint.md Normal file
View File

@@ -0,0 +1,202 @@
---
description: Run linting and fix code quality issues
model: claude-sonnet-4-5
---
Run linting and fix code quality issues in the codebase.
## Target
$ARGUMENTS
## Lint Strategy for Solo Developers
### 1. **Run Linting Commands**
```bash
# ESLint (JavaScript/TypeScript)
npm run lint
npx eslint . --fix
# TypeScript Compiler
npx tsc --noEmit
# Prettier (formatting)
npx prettier --write .
# All together
npm run lint && npx tsc --noEmit && npx prettier --write .
```
### 2. **Common ESLint Issues**
**TypeScript Errors**
- Missing type annotations
- `any` types used
- Unused variables
- Missing return types
**React/Next.js Issues**
- Missing keys in lists
- Unsafe useEffect dependencies
- Unescaped entities in JSX
- Missing alt text on images
**Code Quality**
- Unused imports
- Console.log statements
- Debugger statements
- TODO comments
**Best Practices**
- No var, use const/let
- Prefer const over let
- No nested ternaries
- Consistent return statements
### 3. **Auto-Fix What You Can**
**Safe Auto-Fixes**
```bash
# Fix formatting
prettier --write .
# Fix ESLint auto-fixable rules
eslint --fix .
# Fix import order
eslint --fix --rule 'import/order: error' .
```
**Manual Fixes Needed**
- Type annotations
- Logic errors
- Missing error handling
- Accessibility issues
### 4. **Lint Configuration**
**ESLint Config** (`.eslintrc.json`)
```json
{
"extends": [
"next/core-web-vitals",
"plugin:@typescript-eslint/recommended"
],
"rules": {
"@typescript-eslint/no-explicit-any": "error",
"@typescript-eslint/no-unused-vars": "error",
"no-console": "warn"
}
}
```
**Prettier Config** (`.prettierrc`)
```json
{
"semi": false,
"singleQuote": true,
"tabWidth": 2,
"trailingComma": "es5"
}
```
### 5. **Priority Fixes**
**High Priority** (fix immediately)
- Type errors blocking build
- Security vulnerabilities
- Runtime errors
- Broken accessibility
**Medium Priority** (fix before commit)
- Missing type annotations
- Unused variables
- Code style violations
- TODO comments
**Low Priority** (fix when convenient)
- Formatting inconsistencies
- Comment improvements
- Minor refactoring opportunities
### 6. **Pre-Commit Hooks** (Recommended)
**Install Husky + lint-staged**
```bash
npm install -D husky lint-staged
npx husky init
```
**Configure** (`.husky/pre-commit`)
```bash
npx lint-staged
```
**lint-staged config** (`package.json`)
```json
{
"lint-staged": {
"*.{js,jsx,ts,tsx}": [
"eslint --fix",
"prettier --write"
]
}
}
```
### 7. **VSCode Integration**
**Settings** (`.vscode/settings.json`)
```json
{
"editor.formatOnSave": true,
"editor.codeActionsOnSave": {
"source.fixAll.eslint": true
},
"typescript.tsdk": "node_modules/typescript/lib"
}
```
## What to Generate
1. **Lint Report** - All issues found
2. **Auto-Fix Results** - What was automatically fixed
3. **Manual Fix Suggestions** - Issues requiring manual intervention
4. **Priority List** - Ordered by severity
5. **Configuration Recommendations** - Improve lint setup
## Common Fixes
**Remove Unused Imports**
```typescript
// Before
import { A, B, C } from 'lib'
// After
import { A, C } from 'lib' // B was unused
```
**Add Type Annotations**
```typescript
// Before
function process(data) {
return data.map(x => x.value)
}
// After
function process(data: DataItem[]): number[] {
return data.map(x => x.value)
}
```
**Fix Missing Keys**
```typescript
// Before
{items.map(item => <div>{item.name}</div>)}
// After
{items.map(item => <div key={item.id}>{item.name}</div>)}
```
Focus on fixes that improve code quality and prevent bugs. Run linting before every commit.