8.7 KiB
Rapid Convergence Strategy Guide
Purpose: Iteration-by-iteration tactics for 3-4 iteration convergence Time: 10-15 hours total (vs 20-30 standard)
Pre-Iteration 0: Planning (1-2 hours)
Objectives
- Confirm rapid convergence feasible
- Establish measurement infrastructure
- Define scope boundaries
- Plan validation approach
Tasks
1. Baseline Assessment (30 min):
# Query existing data
meta-cc query-tools --status=error
meta-cc query-user-messages --pattern="test|coverage"
# Calculate baseline metrics
# Estimate V_meta(s₀)
2. Scope Definition (20 min):
## Domain: [1-sentence definition]
**In-Scope**: [3-5 items]
**Out-of-Scope**: [3-5 items]
**Edge Cases**: [Handling approach]
3. Success Criteria (20 min):
## Convergence Targets
**V_instance ≥ 0.80**:
- Metric 1: [Target]
- Metric 2: [Target]
**V_meta ≥ 0.80**:
- Patterns: [8-10 documented]
- Tools: [3-5 created]
- Transferability: [≥80%]
4. Prediction (10 min):
Use prediction model:
Base(4) + penalties = [X] iterations expected
Deliverable: README.md with scope, targets, prediction
Iteration 0: Comprehensive Baseline (3-5 hours)
Objectives
- Achieve V_meta(s₀) ≥ 0.40
- Initial taxonomy: 70-80% coverage
- Identify top 3 automations
Time Allocation
- Data analysis: 60-90 min (40%)
- Taxonomy creation: 45-75 min (30%)
- Pattern research: 30-45 min (20%)
- Automation planning: 15-30 min (10%)
Tasks
1. Comprehensive Data Analysis (60-90 min):
# Extract ALL available data
meta-cc query-tools --scope=project > tools.jsonl
meta-cc query-user-messages --pattern=".*" > messages.jsonl
# Analyze patterns
cat tools.jsonl | jq -r '.error' | sort | uniq -c | sort -rn | head -20
# Calculate frequencies
total=$(cat tools.jsonl | wc -l)
# For each pattern: count / total
2. Initial Taxonomy (45-75 min):
## Taxonomy v0
### Category 1: [Name] ([frequency]%, [count])
**Pattern**: [Description]
**Examples**: [3-5 examples]
**Root Cause**: [Analysis]
### Category 2: ...
[Repeat for 10-15 categories]
**Coverage**: [X]% ([classified]/[total])
3. Pattern Research (30-45 min):
## Prior Art
**Source 1**: [Industry taxonomy/framework]
- Borrowed: [Pattern A, Pattern B, ...]
- Transferability: [X]%
**Source 2**: [Similar project]
- Borrowed: [Pattern C, Pattern D, ...]
- Adaptations needed: [List]
**Total Borrowable**: [X]/[Y] patterns = [Z]%
4. Automation Planning (15-30 min):
## Top Automation Candidates
**1. [Tool Name]**
- Frequency: [X]% of cases
- Prevention: [Y]% of pattern
- ROI estimate: [Z]x
- Feasibility: [High/Medium/Low]
**2. [Tool Name]**
[Same structure]
**3. [Tool Name]**
[Same structure]
Metrics
Calculate V_meta(s₀):
Completeness: [initial_categories] / [estimated_final] = [X]
Transferability: [borrowed] / [total_needed] = [Y]
Automation: [identified] / [expected] = [Z]
V_meta(s₀) = 0.4×[X] + 0.3×[Y] + 0.3×[Z] = [RESULT]
Target: ≥ 0.40 ✅/❌
Deliverables:
taxonomy-v0.md(10-15 categories, ≥70% coverage)baseline-metrics.md(V_meta(s₀), frequencies)automation-plan.md(top 3 tools, ROI estimates)
Iteration 1: High-Impact Automation (3-4 hours)
Objectives
- V_instance ≥ 0.60 (significant improvement)
- Implement top 2-3 tools
- Expand taxonomy to 90%+ coverage
Time Allocation
- Tool implementation: 90-120 min (50%)
- Taxonomy expansion: 45-60 min (25%)
- Testing & validation: 45-60 min (25%)
Tasks
1. Build Automation Tools (90-120 min):
# Tool 1: validate-path.sh (30-40 min)
#!/bin/bash
# Fuzzy path matching, typo correction
# Target: 150-200 LOC
# Tool 2: check-file-size.sh (20-30 min)
#!/bin/bash
# File size check, auto-pagination
# Target: 100-150 LOC
# Tool 3: check-read-before-write.sh (40-50 min)
#!/bin/bash
# Workflow validation
# Target: 150-200 LOC
2. Expand Taxonomy (45-60 min):
## Taxonomy v1
### [New Category 11]: [Name]
[Analysis of remaining 10-20% of cases]
### [New Category 12]: [Name]
[Continue until ≥90% coverage]
**Coverage**: [X]% ([classified]/[total])
**Gap Analysis**: [Remaining uncategorized patterns]
3. Test & Measure (45-60 min):
# Test tools on historical data
./scripts/validate-path.sh "path/to/file" # Expect suggestions
./scripts/check-file-size.sh "large-file.json" # Expect warning
# Calculate impact
prevented=$(estimate_prevention_rate)
time_saved=$(calculate_time_savings)
roi=$(calculate_roi)
# Update metrics
Metrics
V_instance calculation:
- Success rate: [X]%
- Quality: [Y]/5
- Efficiency: [Z] min/task
V_instance = 0.4×[success] + 0.3×[quality/5] + 0.2×[efficiency] + 0.1×[reliability]
= [RESULT]
Target: ≥ 0.60 (progress toward 0.80)
Deliverables:
scripts/tool1.sh,scripts/tool2.sh,scripts/tool3.shtaxonomy-v1.md(≥90% coverage)iteration-1-results.md(V_instance, V_meta, gaps)
Iteration 2: Validation & Refinement (3-4 hours)
Objectives
- V_instance ≥ 0.80 ✅
- V_meta ≥ 0.80 ✅
- Validate stability (2 consecutive iterations)
Time Allocation
- Retrospective validation: 60-90 min (40%)
- Taxonomy completion: 30-45 min (20%)
- Tool refinement: 45-60 min (25%)
- Documentation: 30-45 min (15%)
Tasks
1. Retrospective Validation (60-90 min):
# Apply methodology to historical data
meta-cc validate \
--methodology error-recovery \
--history .claude/sessions/*.jsonl
# Measure:
# - Coverage: [X]% of historical cases handled
# - Time savings: [Y] hours saved
# - Prevention: [Z]% errors prevented
# - Confidence: [Score]
2. Complete Taxonomy (30-45 min):
## Taxonomy v2 (Final)
[Review all categories]
[Add final 1-2 categories if needed]
[Refine existing categories]
**Final Coverage**: [X]% ≥ 95% ✅
**Uncategorized**: [Y]% (acceptable edge cases)
3. Refine Tools (45-60 min):
# Based on validation feedback
# - Fix bugs discovered
# - Improve accuracy
# - Add edge case handling
# - Optimize performance
# Re-test
# Re-measure ROI
4. Documentation (30-45 min):
## Complete Methodology
### Patterns: [8-10 documented]
### Tools: [3-5 with usage]
### Transferability: [≥80%]
### Validation: [Results]
Metrics
V_instance: [X] (≥0.80? ✅/❌)
V_meta: [Y] (≥0.80? ✅/❌)
Stability check:
- Iteration 1: V_instance = [A]
- Iteration 2: V_instance = [B]
- Change: [|B-A|] < 0.05? ✅/❌
Convergence: ✅/❌
Decision:
- ✅ Converged → Deploy
- ❌ Not converged → Iteration 3 (gap analysis)
Deliverables:
validation-report.md(confidence, coverage, ROI)methodology-complete.md(production-ready)transferability-guide.md(80%+ reuse documentation)
Iteration 3 (If Needed): Gap Closure (2-3 hours)
Objectives
- Close specific gaps preventing convergence
- Reach dual-layer convergence (V_instance ≥ 0.80, V_meta ≥ 0.80)
Gap Analysis
## Why Not Converged?
**V_instance gaps** ([X] < 0.80):
- Metric A: [current] vs [target] = gap [Z]
- Root cause: [Analysis]
- Fix: [Action]
**V_meta gaps** ([Y] < 0.80):
- Component: [completeness/transferability/automation]
- Current: [X]
- Target: [Y]
- Fix: [Action]
Focused Improvements
Time: 2-3 hours (targeted, not comprehensive)
Tasks:
- Address 1-2 major gaps only
- Refine existing work (no new patterns)
- Validate fixes
Re-measure:
V_instance: [X] ≥ 0.80? ✅/❌
V_meta: [Y] ≥ 0.80? ✅/❌
Stable for 2 iterations? ✅/❌
Timeline Summary
Rapid Convergence (3 iterations)
Pre-Iteration 0: 1-2h
Iteration 0: 3-5h (comprehensive baseline)
Iteration 1: 3-4h (automation + expansion)
Iteration 2: 3-4h (validation + convergence)
---
Total: 10-15h ✅
Standard (If Iteration 3 Needed)
Pre-Iteration 0: 1-2h
Iteration 0: 3-5h
Iteration 1: 3-4h
Iteration 2: 3-4h
Iteration 3: 2-3h (gap closure)
---
Total: 12-18h (still faster than standard 20-30h)
Anti-Patterns
❌ Rushing Iteration 0
Symptom: Spending 1-2 hours (vs 3-5) Impact: Low V_meta(s₀), requires more iterations Fix: Invest 3-5 hours for comprehensive baseline
❌ Over-Engineering Tools
Symptom: Spending 4+ hours per tool Impact: Delays convergence Fix: Simple tools (150-200 LOC, 30-60 min each)
❌ Premature Convergence
Symptom: Declaring done at V = 0.75 Impact: Quality issues in production Fix: Respect 0.80 threshold, ensure 2-iteration stability
Source: BAIME Rapid Convergence Strategy Validation: Bootstrap-003 (3 iterations, 10 hours) Success Rate: 85% (11/13 experiments)