--- name: Rapid Convergence description: Achieve 3-4 iteration methodology convergence (vs standard 5-7) when clear baseline metrics exist, domain scope is focused, and direct validation is possible. Use when you have V_meta baseline ≄0.40, quantifiable success criteria, retrospective validation data, and generic agents are sufficient. Enables 40-60% time reduction (10-15 hours vs 20-30 hours) without sacrificing quality. Prediction model helps estimate iteration count during experiment planning. Validated in error recovery (3 iterations, 10 hours, V_instance=0.83, V_meta=0.85). allowed-tools: Read, Grep, Glob --- # Rapid Convergence **Achieve methodology convergence in 3-4 iterations through structural optimization, not rushing.** > Rapid convergence is not about moving fast - it's about recognizing when structural factors naturally enable faster progress without sacrificing quality. --- ## When to Use This Skill Use this skill when: - šŸŽÆ **Planning new experiment**: Want to estimate iteration count and timeline - šŸ“Š **Clear baseline exists**: Can quantify current state with V_meta(sā‚€) ≄ 0.40 - šŸ” **Focused domain**: Can describe scope in <3 sentences without ambiguity - āœ… **Direct validation**: Can validate with historical data or single context - ⚔ **Time constraints**: Need methodology in 10-15 hours vs 20-30 hours - 🧩 **Generic agents sufficient**: No complex specialization needed **Don't use when**: - āŒ Exploratory research (no established metrics) - āŒ Multi-context validation required (cross-language, cross-domain testing) - āŒ Complex specialization needed (>10x speedup from specialists) - āŒ Incremental pattern discovery (patterns emerge gradually, not upfront) --- ## Quick Start (5 minutes) ### Rapid Convergence Self-Assessment Answer these 5 questions: 1. **Baseline metrics exist**: Can you quantify current state objectively? (YES/NO) 2. **Domain is focused**: Can you describe scope in <3 sentences? (YES/NO) 3. **Validation is direct**: Can you validate without multi-context deployment? (YES/NO) 4. **Prior art exists**: Are there established practices to reference? (YES/NO) 5. **Success criteria clear**: Do you know what "done" looks like? (YES/NO) **Scoring**: - **4-5 YES**: ⚔ Rapid convergence (3-4 iterations) likely - **2-3 YES**: šŸ“Š Standard convergence (5-7 iterations) expected - **0-1 YES**: šŸ”¬ Exploratory (6-10 iterations), establish baseline first --- ## Five Rapid Convergence Criteria ### Criterion 1: Clear Baseline Metrics (CRITICAL) **Indicator**: V_meta(sā‚€) ≄ 0.40 **What it means**: - Domain has established metrics (error rate, test coverage, build time) - Baseline can be measured objectively in iteration 0 - Success criteria can be quantified before starting **Example (Bootstrap-003)**: ``` āœ… Clear baseline: - 1,336 errors quantified via MCP queries - 5.78% error rate calculated - Clear MTTD/MTTR targets - Result: V_meta(sā‚€) = 0.48 Outcome: 3 iterations, 10 hours ``` **Counter-example (Bootstrap-002)**: ``` āŒ No baseline: - No existing test coverage data - Had to establish metrics first - Fuzzy success criteria initially - Result: V_meta(sā‚€) = 0.04 Outcome: 6 iterations, 25.5 hours ``` **Impact**: High V_meta baseline means: - Fewer iterations to reach 0.80 threshold (+0.40 vs +0.76) - Clearer iteration objectives (gaps are obvious) - Faster validation (metrics already exist) See [reference/baseline-metrics.md](reference/baseline-metrics.md) for achieving V_meta ≄ 0.40. ### Criterion 2: Focused Domain Scope (IMPORTANT) **Indicator**: Domain described in <3 sentences without ambiguity **What it means**: - Single cross-cutting concern - Clear boundaries (what's in vs out of scope) - Well-established practices (prior art) **Examples**: ``` āœ… Focused (Bootstrap-003): "Reduce error rate through detection, diagnosis, recovery, prevention" āŒ Broad (Bootstrap-002): "Develop test strategy" (requires scoping: what tests? which patterns? how much coverage?) ``` **Impact**: Focused scope means: - Less exploration needed - Clearer convergence criteria - Lower risk of scope creep ### Criterion 3: Direct Validation (IMPORTANT) **Indicator**: Can validate without multi-context deployment **What it means**: - Retrospective validation possible (use historical data) - Single-context validation sufficient - Proxy metrics strongly correlate with value **Examples**: ``` āœ… Direct (Bootstrap-003): Retrospective validation via 1,336 historical errors No deployment needed Confidence: 0.79 āŒ Indirect (Bootstrap-002): Multi-context validation required (3 project archetypes) Deploy and test in each context Adds 2-3 iterations ``` **Impact**: Direct validation means: - Faster iteration cycles - Less complexity - Easier V_meta calculation See [../retrospective-validation](../retrospective-validation/SKILL.md) for retrospective validation technique. ### Criterion 4: Generic Agent Sufficiency (MODERATE) **Indicator**: Generic agents (data-analyst, doc-writer, coder) sufficient **What it means**: - No specialized domain knowledge required - Tasks are analysis + documentation + simple automation - Pattern extraction is straightforward **Examples**: ``` āœ… Generic sufficient (Bootstrap-003): Generic agents analyzed errors, documented taxonomy, created scripts No specialization overhead 3 iterations āš ļø Specialization needed (Bootstrap-002): coverage-analyzer (10x speedup) test-generator (200x speedup) 6 iterations (specialization added 1-2 iterations) ``` **Impact**: No specialization means: - No iteration delay for agent design - Simpler coordination - Faster execution ### Criterion 5: Early High-Impact Automation (MODERATE) **Indicator**: Top 3 automation opportunities identified by iteration 1 **What it means**: - Pareto principle applies (20% patterns → 80% impact) - High-frequency, high-impact patterns obvious - Automation feasibility clear (no R&D risk) **Examples**: ``` āœ… Early identification (Bootstrap-003): 3 tools preventing 23.7% of errors identified in iteration 0-1 Clear automation path Rapid V_instance improvement āš ļø Gradual discovery (Bootstrap-002): 8 test patterns emerged gradually over 6 iterations Pattern library built incrementally ``` **Impact**: Early automation means: - Faster V_instance improvement - Clearer path to convergence - Less trial-and-error --- ## Convergence Speed Prediction Model ### Formula ``` Predicted Iterations = Base(4) + Ī£ penalties Penalties: - V_meta(sā‚€) < 0.40: +2 iterations - Domain scope fuzzy: +1 iteration - Multi-context validation: +2 iterations - Specialization needed: +1 iteration - Automation unclear: +1 iteration ``` ### Worked Examples **Bootstrap-003 (Error Recovery)**: ``` Base: 4 V_meta(sā‚€) = 0.48 ≄ 0.40: +0 āœ“ Domain scope clear: +0 āœ“ Retrospective validation: +0 āœ“ Generic agents sufficient: +0 āœ“ Automation identified early: +0 āœ“ --- Predicted: 4 iterations Actual: 3 iterations āœ… ``` **Bootstrap-002 (Test Strategy)**: ``` Base: 4 V_meta(sā‚€) = 0.04 < 0.40: +2 āœ— Domain scope broad: +1 āœ— Multi-context validation: +2 āœ— Specialization needed: +1 āœ— Automation unclear: +0 āœ“ --- Predicted: 10 iterations Actual: 6 iterations āœ… (model conservative) ``` **Interpretation**: Model predicts upper bound. Actual often faster due to efficient execution. See [examples/prediction-examples.md](examples/prediction-examples.md) for more cases. --- ## Rapid Convergence Strategy If criteria indicate 3-4 iteration potential, optimize: ### Pre-Iteration 0: Planning (1-2 hours) **1. Establish Baseline Metrics** - Identify existing data sources - Define quantifiable success criteria - Ensure automatic measurement **Example**: `meta-cc query-tools --status error` → 1,336 errors immediately **2. Scope Domain Tightly** - Write 1-sentence definition - List explicit in/out boundaries - Identify prior art **Example**: "Error detection, diagnosis, recovery, prevention for meta-cc" **3. Plan Validation Approach** - Prefer retrospective (historical data) - Minimize multi-context overhead - Identify proxy metrics **Example**: Retrospective validation with 1,336 historical errors ### Iteration 0: Comprehensive Baseline (3-5 hours) **Target: V_meta(sā‚€) ≄ 0.40** **Tasks**: 1. Quantify current state thoroughly 2. Create initial taxonomy (≄70% coverage) 3. Document existing practices 4. Identify top 3 automations **Example (Bootstrap-003)**: - Analyzed all 1,336 errors - Created 10-category taxonomy (79.1% coverage) - Documented 5 workflows, 5 patterns, 8 guidelines - Identified 3 tools preventing 23.7% errors - Result: V_meta(sā‚€) = 0.48 āœ… **Time**: Spend 3-5 hours here (saves 6-10 hours overall) ### Iteration 1: High-Impact Automation (3-4 hours) **Tasks**: 1. Implement top 3 tools 2. Expand taxonomy (≄90% coverage) 3. Validate with data (if possible) 4. Target: Ī”V_instance = +0.20-0.30 **Example (Bootstrap-003)**: - Built 3 tools (515 LOC, ~150-180 lines each) - Expanded taxonomy: 10 → 12 categories (92.3%) - Result: V_instance = 0.55 (+0.27) āœ… ### Iteration 2: Validate and Converge (3-4 hours) **Tasks**: 1. Test automation (real/historical data) 2. Complete taxonomy (≄95% coverage) 3. Check convergence: - V_instance ≄ 0.80? - V_meta ≄ 0.80? - System stable? **Example (Bootstrap-003)**: - Validated 23.7% error prevention - Taxonomy: 95.4% coverage - Result: V_instance = 0.83, V_meta = 0.85 āœ… CONVERGED **Total time**: 10-13 hours (3 iterations) --- ## Anti-Patterns ### 1. Premature Convergence **Symptom**: Declare convergence at iteration 2 with V ā‰ˆ 0.75 **Problem**: Rushed without meeting 0.80 threshold **Solution**: Rapid convergence = 3-4 iterations (not 2). Respect quality threshold. ### 2. Scope Creep **Symptom**: Adding categories/patterns in iterations 3-4 **Problem**: Poorly scoped domain **Solution**: Tight scoping in README. If scope grows, re-plan or accept slower convergence. ### 3. Over-Engineering Automation **Symptom**: Spending 8+ hours on complex tools **Problem**: Complexity delays convergence **Solution**: Keep tools simple (1-2 hours, 150-200 lines). Complex tools are iteration 3-4 work. ### 4. Unnecessary Multi-Context Validation **Symptom**: Testing 3+ contexts despite obvious generalizability **Problem**: Validation overhead delays convergence **Solution**: Use judgment. Error recovery is universal. Test strategy may need multi-context. --- ## Comparison Table | Aspect | Standard | Rapid | |--------|----------|-------| | **Iterations** | 5-7 | 3-4 | | **Duration** | 20-30h | 10-15h | | **V_meta(sā‚€)** | 0.00-0.30 | 0.40-0.60 | | **Domain** | Broad/exploratory | Focused | | **Validation** | Multi-context often | Direct/retrospective | | **Specialization** | Likely (1-3 agents) | Often unnecessary | | **Discovery** | Incremental | Most patterns early | | **Risk** | Scope creep | Premature convergence | **Key**: Rapid convergence is about **recognizing structural factors**, not rushing. --- ## Success Criteria Rapid convergence pattern successfully applied when: 1. **Accurate prediction**: Actual iterations within ±1 of predicted 2. **Quality maintained**: V_instance ≄ 0.80, V_meta ≄ 0.80 3. **Time efficiency**: Duration ≤50% of standard convergence 4. **Artifact completeness**: Deliverables production-ready 5. **Reusability validated**: ≄80% transferability achieved **Bootstrap-003 Validation**: - āœ… Predicted: 3-4, Actual: 3 - āœ… Quality: V_instance=0.83, V_meta=0.85 - āœ… Efficiency: 10h (39% of Bootstrap-002's 25.5h) - āœ… Artifacts: 13 categories, 8 workflows, 3 tools - āœ… Reusability: 85-90% --- ## Related Skills **Parent framework**: - [methodology-bootstrapping](../methodology-bootstrapping/SKILL.md) - Core OCA cycle **Complementary acceleration**: - [retrospective-validation](../retrospective-validation/SKILL.md) - Fast validation - [baseline-quality-assessment](../baseline-quality-assessment/SKILL.md) - Strong iteration 0 **Supporting**: - [agent-prompt-evolution](../agent-prompt-evolution/SKILL.md) - Agent stability --- ## References **Core guide**: - [Rapid Convergence Criteria](reference/criteria.md) - Detailed criteria explanation - [Prediction Model](reference/prediction-model.md) - Formula and examples - [Strategy Guide](reference/strategy.md) - Iteration-by-iteration tactics **Examples**: - [Bootstrap-003 Case Study](examples/error-recovery-3-iterations.md) - Rapid convergence - [Bootstrap-002 Comparison](examples/test-strategy-6-iterations.md) - Standard convergence --- **Status**: āœ… Validated | Bootstrap-003 | 40-60% time reduction | No quality sacrifice