Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 09:07:22 +08:00
commit fab98d059b
179 changed files with 46209 additions and 0 deletions

View File

@@ -0,0 +1,290 @@
---
name: Retrospective Validation
description: Validate methodology effectiveness using historical data without live deployment. Use when rich historical data exists (100+ instances), methodology targets observable patterns (error prevention, test strategy, performance optimization), pattern matching is feasible with clear detection rules, and live deployment has high friction (CI/CD integration effort, user study time, deployment risk). Enables 40-60% time reduction vs prospective validation, 60-80% cost reduction. Confidence calculation model provides statistical rigor. Validated in error recovery (1,336 errors, 23.7% prevention, 0.79 confidence).
allowed-tools: Read, Grep, Glob, Bash
---
# Retrospective Validation
**Validate methodologies with historical data, not live deployment.**
> When you have 1,000 past errors, you don't need to wait for 1,000 future errors to prove your methodology works.
---
## When to Use This Skill
Use this skill when:
- 📊 **Rich historical data**: 100+ instances (errors, test failures, performance issues)
- 🎯 **Observable patterns**: Methodology targets detectable issues
- 🔍 **Pattern matching feasible**: Clear detection heuristics, measurable false positive rate
-**High deployment friction**: CI/CD integration costly, user studies time-consuming
- 📈 **Statistical rigor needed**: Want confidence intervals, not just hunches
-**Time constrained**: Need validation in hours, not weeks
**Don't use when**:
- ❌ Insufficient data (<50 instances)
- ❌ Emergent effects (human behavior change, UX improvements)
- ❌ Pattern matching unreliable (>20% false positive rate)
- ❌ Low deployment friction (1-2 hour CI/CD integration)
---
## Quick Start (30 minutes)
### Step 1: Check Historical Data (5 min)
```bash
# Example: Error data for meta-cc
meta-cc query-tools --status error | jq '. | length'
# Output: 1336 errors ✅ (>100 threshold)
# Example: Test failures from CI logs
grep "FAILED" ci-logs/*.txt | wc -l
# Output: 427 failures ✅
```
**Threshold**: ≥100 instances for statistical confidence
### Step 2: Define Detection Rule (10 min)
```yaml
Tool: validate-path.sh
Prevents: "File not found" errors
Detection:
- Error message matches: "no such file or directory"
- OR "cannot read file"
- OR "file does not exist"
Confidence: High (90%+) - deterministic check
```
### Step 3: Apply Rule to Historical Data (10 min)
```bash
# Count matches
grep -E "(no such file|cannot read|does not exist)" errors.log | wc -l
# Output: 163 errors (12.2% of total)
# Sample manual validation (30 errors)
# True positives: 28/30 (93.3%)
# Adjusted: 163 * 0.933 = 152 preventable ✅
```
### Step 4: Calculate Confidence (5 min)
```
Confidence = Data Quality × Accuracy × Logical Correctness
= 0.85 × 0.933 × 1.0
= 0.79 (High confidence)
```
**Result**: Tool would have prevented 152 errors with 79% confidence.
---
## Four-Phase Process
### Phase 1: Data Collection
**1. Identify Data Sources**
For Claude Code / meta-cc:
```bash
# Error history
meta-cc query-tools --status error
# User pain points
meta-cc query-user-messages --pattern "error|fail|broken"
# Error context
meta-cc query-context --error-signature "..."
```
For other projects:
- Git history (commits, diffs, blame)
- CI/CD logs (test failures, build errors)
- Application logs (runtime errors)
- Issue trackers (bug reports)
**2. Quantify Baseline**
Metrics needed:
- **Volume**: Total instances (e.g., 1,336 errors)
- **Rate**: Frequency (e.g., 5.78% error rate)
- **Distribution**: Category breakdown (e.g., file-not-found: 12.2%)
- **Impact**: Cost (e.g., MTTD: 15 min, MTTR: 30 min)
### Phase 2: Pattern Definition
**1. Create Detection Rules**
For each tool/methodology:
```yaml
what_it_prevents: Error type or failure mode
detection_rule: Pattern matching heuristic
confidence: Estimated accuracy (high/medium/low)
```
**2. Define Success Criteria**
```yaml
prevention: Message matches AND tool would catch it
speedup: Tool faster than manual debugging
reliability: No false positives/negatives in sample
```
### Phase 3: Validation Execution
**1. Apply Rules to Historical Data**
```bash
# Pseudo-code
for instance in historical_data:
category = classify(instance)
tool = find_applicable_tool(category)
if would_have_prevented(tool, instance):
count_prevented++
prevention_rate = count_prevented / total * 100
```
**2. Sample Manual Validation**
```
Sample size: 30 instances (95% confidence)
For each: "Would tool have prevented this?"
Calculate: True positive rate, False positive rate
Adjust: prevention_claim * true_positive_rate
```
**Example** (Bootstrap-003):
```
Sample: 30/317 claimed prevented
True positives: 28 (93.3%)
Adjusted: 317 * 0.933 = 296 errors
Confidence: High (93%+)
```
**3. Measure Performance**
```bash
# Tool time
time tool.sh < test_input
# Output: 0.05s
# Manual time (estimate from historical data)
# Average debug time: 15 min = 900s
# Speedup: 900 / 0.05 = 18,000x
```
### Phase 4: Confidence Assessment
**Confidence Formula**:
```
Confidence = D × A × L
Where:
D = Data Quality (0.5-1.0)
A = Accuracy (True Positive Rate, 0.5-1.0)
L = Logical Correctness (0.5-1.0)
```
**Data Quality** (D):
- 1.0: Complete, accurate, representative
- 0.8-0.9: Minor gaps or biases
- 0.6-0.7: Significant gaps
- <0.6: Unreliable data
**Accuracy** (A):
- 1.0: 100% true positive rate (verified)
- 0.8-0.95: High (sample validation 80-95%)
- 0.6-0.8: Medium (60-80%)
- <0.6: Low (unreliable pattern matching)
**Logical Correctness** (L):
- 1.0: Deterministic (tool directly addresses root cause)
- 0.8-0.9: High correlation (strong evidence)
- 0.6-0.7: Moderate correlation
- <0.6: Weak or speculative
**Example** (Bootstrap-003):
```
D = 0.85 (Complete error logs, minor gaps in context)
A = 0.933 (93.3% true positive rate from sample)
L = 1.0 (File validation is deterministic)
Confidence = 0.85 × 0.933 × 1.0 = 0.79 (High)
```
**Interpretation**:
- ≥0.75: High confidence (publishable)
- 0.60-0.74: Medium confidence (needs caveats)
- 0.45-0.59: Low confidence (suggestive, not conclusive)
- <0.45: Insufficient confidence (need prospective validation)
---
## Comparison: Retrospective vs Prospective
| Aspect | Retrospective | Prospective |
|--------|--------------|-------------|
| **Time** | Hours-days | Weeks-months |
| **Cost** | Low (queries) | High (deployment) |
| **Risk** | Zero | May introduce issues |
| **Confidence** | 0.60-0.95 | 0.90-1.0 |
| **Data** | Historical | New |
| **Scope** | Full history | Limited window |
| **Bias** | Hindsight | None |
**When to use each**:
- **Retrospective**: Fast validation, high data volume, observable patterns
- **Prospective**: Behavioral effects, UX, emergent properties
- **Hybrid**: Retrospective first, limited prospective for edge cases
---
## Success Criteria
Retrospective validation succeeded when:
1. **Sufficient data**: ≥100 instances analyzed
2. **High confidence**: ≥0.75 overall confidence score
3. **Sample validated**: ≥80% true positive rate
4. **Impact quantified**: Prevention % or speedup measured
5. **Time savings**: 40-60% faster than prospective validation
**Bootstrap-003 Validation**:
- ✅ Data: 1,336 errors analyzed
- ✅ Confidence: 0.79 (high)
- ✅ Sample: 93.3% true positive rate
- ✅ Impact: 23.7% error prevention
- ✅ Time: 3 hours vs 2+ weeks (prospective)
---
## Related Skills
**Parent framework**:
- [methodology-bootstrapping](../methodology-bootstrapping/SKILL.md) - Core OCA cycle
**Complementary acceleration**:
- [rapid-convergence](../rapid-convergence/SKILL.md) - Fast iteration (uses retrospective)
- [baseline-quality-assessment](../baseline-quality-assessment/SKILL.md) - Strong iteration 0
---
## References
**Core guide**:
- [Four-Phase Process](reference/process.md) - Detailed methodology
- [Confidence Calculation](reference/confidence.md) - Statistical rigor
- [Detection Rules](reference/detection-rules.md) - Pattern matching guide
**Examples**:
- [Error Recovery Validation](examples/error-recovery-1336-errors.md) - Bootstrap-003
---
**Status**: ✅ Validated | Bootstrap-003 | 0.79 confidence | 40-60% time reduction