Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 09:07:22 +08:00
commit fab98d059b
179 changed files with 46209 additions and 0 deletions

View File

@@ -0,0 +1,356 @@
# Achieving Strong Baseline Metrics
**Purpose**: How to achieve V_meta(s₀) ≥ 0.40 for rapid convergence
**Impact**: Strong baseline reduces iterations by 2-3 (40-60% time savings)
---
## V_meta Baseline Formula
```
V_meta(s₀) = 0.4 × completeness +
0.3 × transferability +
0.3 × automation_effectiveness
Where (at iteration 0):
- completeness = initial_coverage / target_coverage
- transferability = existing_patterns_reusable / total_patterns_needed
- automation_effectiveness = identified_automation_ops / automation_opportunities
```
**Target**: V_meta(s₀) ≥ 0.40
---
## Component 1: Completeness (40% weight)
**Definition**: Initial taxonomy/pattern coverage
**Calculation**:
```
completeness = initial_categories / estimated_final_categories
```
**Achieve ≥0.50 by**:
1. Comprehensive data analysis (3-5 hours)
2. Create initial taxonomy (10-15 categories)
3. Classify ≥70% of observed cases
**Example (Bootstrap-003)**:
```
Iteration 0 taxonomy: 10 categories
Estimated final: 12-13 categories
Completeness: 10/12.5 = 0.80
Contribution: 0.4 × 0.80 = 0.32 ✅
```
---
## Component 2: Transferability (30% weight)
**Definition**: Reusability of existing patterns/knowledge
**Calculation**:
```
transferability = (borrowed_patterns + existing_knowledge) / total_patterns_needed
```
**Achieve ≥0.30 by**:
1. Research prior art (1-2 hours)
2. Identify similar methodologies
3. Document reusable patterns
**Example (Bootstrap-003)**:
```
Borrowed from industry: 5 error patterns
Existing knowledge: Error taxonomy basics
Total patterns needed: ~10
Transferability: 5/10 = 0.50
Contribution: 0.3 × 0.50 = 0.15 ✅
```
---
## Component 3: Automation Effectiveness (30% weight)
**Definition**: Early identification of automation opportunities
**Calculation**:
```
automation_effectiveness = identified_high_ROI_tools / expected_tool_count
```
**Achieve ≥0.30 by**:
1. Analyze high-frequency tasks (1-2 hours)
2. Identify top 3-5 automation candidates
3. Estimate ROI (>5x preferred)
**Example (Bootstrap-003)**:
```
Identified in iteration 0: 3 tools
- validate-path.sh: 65.2% prevention, 61x ROI
- check-file-size.sh: 100% prevention, 31.6x ROI
- check-read-before-write.sh: 100% prevention, 26.2x ROI
Expected final tool count: ~3
Automation effectiveness: 3/3 = 1.0
Contribution: 0.3 × 1.0 = 0.30 ✅
```
---
## Worked Example: Bootstrap-003
### Iteration 0 Investment: 120 min
**Data Analysis** (60 min):
- Queried session history: 1,336 errors
- Calculated error rate: 5.78%
- Identified frequency distribution
**Taxonomy Creation** (40 min):
- Created 10 initial categories
- Classified 1,056/1,336 errors (79.1%)
- Estimated 2-3 more categories needed
**Pattern Research** (15 min):
- Reviewed industry error taxonomies
- Identified 5 reusable patterns
- Documented error handling best practices
**Automation Identification** (5 min):
- Top 3 opportunities obvious from data:
1. File-not-found: 250 errors (18.7%)
2. File-size-exceeded: 84 errors (6.3%)
3. Write-before-read: 70 errors (5.2%)
### V_meta(s₀) Calculation
```
Completeness: 10/12.5 = 0.80
Transferability: 5/10 = 0.50
Automation: 3/3 = 1.0
V_meta(s₀) = 0.4 × 0.80 +
0.3 × 0.50 +
0.3 × 1.0
= 0.32 + 0.15 + 0.30
= 0.77 ✅✅ (far exceeds 0.40 target)
```
**Result**: 3 iterations total (rapid convergence)
---
## Contrast: Bootstrap-002 (Weak Baseline)
### Iteration 0 Investment: 60 min
**Coverage Measurement** (30 min):
- Ran coverage analysis: 72.1%
- Counted tests: 590
- No systematic approach documented
**Pattern Identification** (20 min):
- Wrote 3 ad-hoc tests
- Noted duplication issues
- No pattern library yet
**No Prior Research** (0 min):
- Started from scratch
- No borrowed patterns
**No Automation Planning** (10 min):
- Vague ideas about coverage tools
- No concrete automation identified
### V_meta(s₀) Calculation
```
Completeness: 0/8 patterns = 0.00 (none documented)
Transferability: 0/8 = 0.00 (no research)
Automation: 0/3 tools = 0.00 (none identified)
V_meta(s₀) = 0.4 × 0.00 +
0.3 × 0.00 +
0.3 × 0.00
= 0.00 ❌ (far below 0.40 target)
```
**Result**: 6 iterations total (standard convergence)
---
## Achieving V_meta(s₀) ≥ 0.40: Checklist
### Completeness Target: ≥0.50
**Tasks**:
- [ ] Analyze ALL available data (3-5 hours)
- [ ] Create initial taxonomy/pattern library (10-15 items)
- [ ] Classify ≥70% of observed cases
- [ ] Estimate final taxonomy size
- [ ] Calculate: initial_count / estimated_final ≥ 0.50?
**Time**: 3-5 hours
**Contribution**: 0.4 × 0.50 = 0.20
---
### Transferability Target: ≥0.30
**Tasks**:
- [ ] Research prior art (1-2 hours)
- [ ] Identify similar methodologies
- [ ] Document borrowed patterns (≥30% reusable)
- [ ] List existing knowledge applicable
- [ ] Calculate: borrowed / total_needed ≥ 0.30?
**Time**: 1-2 hours
**Contribution**: 0.3 × 0.30 = 0.09
---
### Automation Target: ≥0.30
**Tasks**:
- [ ] Analyze task frequency (1 hour)
- [ ] Identify top 3-5 automation candidates
- [ ] Estimate ROI for each (>5x preferred)
- [ ] Document automation plan
- [ ] Calculate: identified / expected ≥ 0.30?
**Time**: 1-2 hours
**Contribution**: 0.3 × 0.30 = 0.09
---
### Total Baseline Investment
**Minimum**: 5-9 hours for V_meta(s₀) = 0.38-0.40
**Recommended**: 6-10 hours for V_meta(s₀) = 0.45-0.55
**Aggressive**: 8-12 hours for V_meta(s₀) = 0.60-0.80
**ROI**: 5-9 hours investment → Save 10-15 hours overall (2-3x)
---
## Quick Assessment: Can You Achieve 0.40?
**Question 1**: Do you have quantitative data to analyze?
- YES: Proceed with completeness analysis
- NO: Gather data first (delays rapid convergence)
**Question 2**: Does prior art exist in this domain?
- YES: Research and document (1-2 hours)
- NO: Lower transferability expected (<0.20)
**Question 3**: Are high-frequency patterns obvious?
- YES: Identify automation opportunities (1 hour)
- NO: Requires deeper analysis (adds time)
**Scoring**:
- **3 YES**: V_meta(s₀) ≥ 0.40 achievable (5-9 hours)
- **2 YES**: V_meta(s₀) = 0.30-0.40 (7-12 hours)
- **0-1 YES**: V_meta(s₀) < 0.30 (not rapid convergence candidate)
---
## Common Pitfalls
### ❌ Insufficient Data Analysis
**Symptom**: Analyzing <50% of available data
**Impact**: Low completeness (<0.40)
**Fix**: Comprehensive analysis (3-5 hours)
**Example**:
```
❌ Analyzed 200/1,336 errors → 5 categories → completeness = 0.38
✅ Analyzed 1,336/1,336 errors → 10 categories → completeness = 0.80
```
---
### ❌ Skipping Prior Art Research
**Symptom**: Starting from scratch
**Impact**: Zero transferability
**Fix**: 1-2 hours research
**Example**:
```
❌ No research → 0 borrowed patterns → transferability = 0.00
✅ Research industry taxonomies → 5 patterns → transferability = 0.50
```
---
### ❌ Vague Automation Ideas
**Symptom**: "Maybe we could automate X"
**Impact**: Low automation score
**Fix**: Concrete identification + ROI estimate
**Example**:
```
❌ "Could automate coverage" → automation = 0.10
✅ "Coverage gap analyzer, 30x speedup, 6x ROI" → automation = 0.33
```
---
## Measurement Tools
**Completeness**:
```bash
# Count initial categories
initial=$(grep "^##" taxonomy.md | wc -l)
# Estimate final (from analysis)
estimated=12
# Calculate
echo "scale=2; $initial / $estimated" | bc
# Target: ≥0.50
```
**Transferability**:
```bash
# Count borrowed patterns
borrowed=$(grep "Source:" patterns.md | grep -v "Original" | wc -l)
# Estimate total needed
total=10
# Calculate
echo "scale=2; $borrowed / $total" | bc
# Target: ≥0.30
```
**Automation**:
```bash
# Count identified tools
identified=$(ls scripts/ | wc -l)
# Estimate final count
expected=3
# Calculate
echo "scale=2; $identified / $expected" | bc
# Target: ≥0.30
```
---
**Source**: BAIME Rapid Convergence Framework
**Target**: V_meta(s₀) ≥ 0.40 for 3-4 iteration convergence
**Investment**: 5-10 hours in iteration 0
**ROI**: 2-3x (saves 10-15 hours overall)

View File

@@ -0,0 +1,378 @@
# Rapid Convergence Criteria - Detailed
**Purpose**: In-depth explanation of 5 rapid convergence criteria
**Impact**: Understanding when 3-4 iterations are achievable
---
## Criterion 1: Clear Baseline Metrics ⭐ CRITICAL
### Definition
V_meta(s₀) ≥ 0.40 indicates strong foundational work enables rapid progress.
### Mathematical Basis
```
ΔV_meta needed = 0.80 - V_meta(s₀)
If V_meta(s₀) = 0.40: Need +0.40 → 3-4 iterations achievable
If V_meta(s₀) = 0.10: Need +0.70 → 5-7 iterations required
```
**Assumption**: Average ΔV_meta per iteration ≈ 0.15-0.20
### What Strong Baseline Looks Like
**Quantitative metrics exist**:
- Error rate, test coverage, build time
- Measurable via tools (not subjective)
- Baseline established in <2 hours
**Success criteria are clear**:
- Target values defined (e.g., <3% error rate)
- Thresholds for convergence known
- No ambiguity about "done"
**Initial taxonomy comprehensive**:
- 70-80% coverage in iteration 0
- 10-15 categories/patterns documented
- Most edge cases identified
### Examples
**✅ Bootstrap-003 (V_meta(s₀) = 0.48)**:
```
- 1,336 errors quantified via MCP query
- Error rate: 5.78% calculated automatically
- 10 error categories (79.1% coverage)
- Clear targets: <3% error rate, <2 min MTTR
- Result: 3 iterations
```
**❌ Bootstrap-002 (V_meta(s₀) = 0.04)**:
```
- Coverage: 72.1% (but no patterns documented)
- No clear test patterns identified
- Ambiguous "done" criteria
- Had to establish metrics first
- Result: 6 iterations
```
### Impact Analysis
| V_meta(s₀) | Iterations Needed | Hours | Reason |
|------------|-------------------|-------|--------|
| 0.60-0.80 | 2-3 | 6-10h | Minimal gap to 0.80 |
| 0.40-0.59 | 3-4 | 10-15h | Moderate gap |
| 0.20-0.39 | 4-6 | 15-25h | Large gap |
| 0.00-0.19 | 6-10 | 25-40h | Exploratory |
---
## Criterion 2: Focused Domain Scope ⭐ IMPORTANT
### Definition
Domain described in <3 sentences without ambiguity.
### Why This Matters
**Focused scope** → Less exploration → Faster convergence
**Broad scope** → More patterns needed → Slower convergence
### Quantifying Focus
**Metric**: Boundary clarity ratio
```
BCR = clear_boundaries / total_boundaries
Where boundaries = {in-scope, out-of-scope, edge cases}
```
**Target**: BCR ≥ 0.80 (80% of boundaries unambiguous)
### Examples
**✅ Focused (Bootstrap-003)**:
```
Domain: "Error detection, diagnosis, recovery, prevention for meta-cc"
Boundaries:
✅ In-scope: All meta-cc errors
✅ Out-of-scope: Infrastructure failures, user errors
✅ Edge cases: Cascading errors (handle as single category)
BCR = 3/3 = 1.0 (perfectly focused)
```
**❌ Broad (Bootstrap-002)**:
```
Domain: "Develop test strategy"
Boundaries:
⚠️ In-scope: Which tests? Unit? Integration? E2E?
⚠️ Out-of-scope: What about test infrastructure?
⚠️ Edge cases: Multi-language support? CI integration?
BCR = 0/3 = 0.00 (needs scoping work)
```
### Scoping Technique
**Step 1**: Write 1-sentence domain definition
**Step 2**: List 3-5 explicit in-scope items
**Step 3**: List 3-5 explicit out-of-scope items
**Step 4**: Define edge case handling
**Example**:
```markdown
## Domain: Error Recovery for Meta-CC
**In-Scope**:
- Error detection and classification
- Root cause diagnosis
- Recovery procedures
- Prevention automation
- MTTR reduction
**Out-of-Scope**:
- Infrastructure failures (Docker, network)
- User mistakes (misuse of CLI)
- Feature requests
- Performance optimization (unless error-related)
**Edge Cases**:
- Cascading errors: Treat as single error with multiple symptoms
- Intermittent errors: Require 3+ occurrences for pattern
- Error prevention: In-scope if automatable
```
---
## Criterion 3: Direct Validation ⭐ IMPORTANT
### Definition
Can validate methodology without multi-context deployment.
### Validation Complexity Spectrum
**Level 1: Retrospective** (Fastest)
- Use historical data
- No deployment needed
- Example: 1,336 historical errors
**Level 2: Single-Context** (Fast)
- Test in one environment
- Minimal deployment
- Example: Validate on current project
**Level 3: Multi-Context** (Slow)
- Test across multiple projects/languages
- Significant deployment overhead
- Example: 3 project archetypes
**Level 4: Production** (Slowest)
- Real-world validation required
- Months of data collection
- Example: Monitor for 3-6 months
### Time Impact
| Validation Level | Overhead | Example Iterations Added |
|------------------|----------|--------------------------|
| Retrospective | 0h | +0 (Bootstrap-003) |
| Single-Context | 2-4h | +0 to +1 |
| Multi-Context | 6-12h | +2 to +3 (Bootstrap-002) |
| Production | Months | N/A (not rapid) |
### When Retrospective Validation Works
**Requirements**:
1. Historical data exists (session logs, error logs)
2. Data is representative of current/future work
3. Metrics can be calculated from historical data
4. Methodology can be applied retrospectively
**Example** (Bootstrap-003):
```
✅ 1,336 historical errors in session logs
✅ Representative of typical development work
✅ Can classify errors retrospectively
✅ Can measure prevention rate via replay
Result: Direct validation, 0 overhead
```
---
## Criterion 4: Generic Agent Sufficiency 🟡 MODERATE
### Definition
Generic agents (data-analyst, doc-writer, coder) sufficient for execution.
### Specialization Overhead
**Generic agents**: 0 overhead (use as-is)
**Specialized agents**: +1 to +2 iterations for design + testing
### When Specialization Adds Value
**10x+ speedup opportunity**:
- Example: coverage-analyzer (15 min → 30 sec = 30x)
- Example: test-generator (10 min → 1 min = 10x)
- Worth 1-2 iteration investment
**<5x speedup**:
- Use generic agents + simple scripts
- Not worth specialization overhead
### Examples
**✅ Generic Sufficient (Bootstrap-003)**:
```
Tasks:
- Analyze errors (generic data-analyst)
- Document taxonomy (generic doc-writer)
- Create validation scripts (generic coder)
Speedup from specialization: 2-3x (not worth it)
Result: 0 specialization overhead
```
**⚠️ Specialization Needed (Bootstrap-002)**:
```
Tasks:
- Coverage analysis (15 min → 30 sec = 30x with coverage-analyzer)
- Test generation (10 min → 1 min = 10x with test-generator)
Speedup: >10x for both
Investment: 1 iteration to design and test agents
Result: +1 iteration, but ROI positive overall
```
---
## Criterion 5: Early High-Impact Automation 🟡 MODERATE
### Definition
Top 3 automation opportunities identified by iteration 1.
### Pareto Principle Application
**80/20 rule**: 20% of automations provide 80% of value
**Implication**: Identify top 3 early → rapid V_instance improvement
### Identification Signals
**High-frequency patterns**:
- Appears in >10% of cases
- Example: File-not-found (18.7% of errors)
**High-impact prevention**:
- Prevents >50% of pattern occurrences
- Example: validate-path.sh prevents 65.2%
**High ROI**:
- Time saved / time invested > 5x
- Example: validate-path.sh = 61x ROI
### Early Identification Techniques
**Frequency Analysis**:
```bash
# Count error types
cat errors.jsonl | jq -r '.error_type' | sort | uniq -c | sort -rn
# Top 3 = high-frequency candidates
```
**Impact Estimation**:
```
If tool prevents X% of pattern Y:
- Pattern Y occurs N times
- Prevention: X% × N
- Impact: (X% × N) / total_errors
```
**ROI Calculation**:
```
Manual time: M min per occurrence
Tool investment: T hours
Expected uses: N
ROI = (M × N) / (T × 60)
```
### Example (Bootstrap-003)
**Iteration 0 Analysis**:
```
Top 3 by frequency:
1. File-not-found: 250/1,336 = 18.7%
2. MCP errors: 228/1,336 = 17.1%
3. Build errors: 200/1,336 = 15.0%
Automation feasibility:
1. File-not-found: ✅ Path validation (high prevention %)
2. MCP errors: ❌ Infrastructure (low automation value)
3. Build errors: ⚠️ Language-specific (moderate value)
Selected:
1. validate-path.sh: 250 errors, 65.2% prevention, 61x ROI
2. check-file-size.sh: 84 errors, 100% prevention, 31.6x ROI
3. check-read-before-write.sh: 70 errors, 100% prevention, 26.2x ROI
Total impact: 317/1,336 = 23.7% error prevention
```
**Result**: Clear automation path from iteration 0
---
## Criteria Interaction Matrix
| Criterion 1 | Criterion 2 | Criterion 3 | Likely Iterations |
|-------------|-------------|-------------|-------------------|
| ✅ (≥0.40) | ✅ Focused | ✅ Direct | 3-4 ⚡ |
| ✅ (≥0.40) | ✅ Focused | ❌ Multi | 4-5 |
| ✅ (≥0.40) | ❌ Broad | ✅ Direct | 4-5 |
| ❌ (<0.40) | ✅ Focused | ✅ Direct | 5-6 |
| ❌ (<0.40) | ❌ Broad | ❌ Multi | 7-10 |
**Key Insight**: Criteria 1-3 are multiplicative. Missing any = slower convergence.
---
## Decision Tree
```
Start
├─ Can you achieve V_meta(s₀) ≥ 0.40?
│ YES → Continue
│ NO → Standard convergence (5-7 iterations)
├─ Is domain scope <3 sentences?
│ YES → Continue
│ NO → Refine scope first
├─ Can you validate without multi-context?
│ YES → Rapid convergence likely (3-4 iterations)
│ NO → Add +2 iterations for validation
└─ Generic agents sufficient?
YES → No overhead
NO → Add +1 iteration for specialization
```
---
**Source**: BAIME Rapid Convergence Criteria
**Validation**: 13 experiments, 85% prediction accuracy
**Critical Path**: Criteria 1-3 (must all be met for rapid convergence)

View File

@@ -0,0 +1,329 @@
# Convergence Speed Prediction Model
**Purpose**: Predict iteration count before starting experiment
**Accuracy**: 85% (±1 iteration) across 13 experiments
---
## Formula
```
Predicted_Iterations = Base(4) + Σ penalties
Penalties:
1. V_meta(s₀) < 0.40: +2
2. Domain scope fuzzy: +1
3. Multi-context validation: +2
4. Specialization needed: +1
5. Automation unclear: +1
```
**Range**: 4-11 iterations (min 4, max 4+2+1+2+1+1=11)
---
## Penalty Definitions
### Penalty 1: Low Baseline (+2 iterations)
**Condition**: V_meta(s₀) < 0.40
**Rationale**: More gap to close (0.40+ needed to reach 0.80)
**Check**:
```bash
# Calculate V_meta(s₀) from iteration 0
completeness=$(calculate_initial_coverage)
transferability=$(calculate_borrowed_patterns)
automation=$(calculate_identified_tools)
v_meta=$(echo "0.4*$completeness + 0.3*$transferability + 0.3*$automation" | bc)
if (( $(echo "$v_meta < 0.40" | bc -l) )); then
penalty=2
fi
```
---
### Penalty 2: Fuzzy Scope (+1 iteration)
**Condition**: Cannot describe domain in <3 clear sentences
**Rationale**: Requires scoping work, adds exploration
**Check**:
- Write domain definition
- Count sentences
- Ask: Are boundaries clear?
**Example**:
```
✅ Clear: "Error detection, diagnosis, recovery, prevention for meta-cc"
❌ Fuzzy: "Improve testing" (which tests? what aspects? how much?)
```
---
### Penalty 3: Multi-Context Validation (+2 iterations)
**Condition**: Requires testing across multiple projects/languages
**Rationale**: Deployment + validation overhead
**Check**:
- Is retrospective validation possible? (NO penalty)
- Single-context sufficient? (NO penalty)
- Need 2+ contexts? (+2 penalty)
---
### Penalty 4: Specialization Needed (+1 iteration)
**Condition**: Generic agents insufficient, need specialized agents
**Rationale**: Agent design + testing adds iteration
**Check**:
- Can generic agents handle all tasks? (NO penalty)
- Need >10x speedup from specialist? (+1 penalty)
---
### Penalty 5: Automation Unclear (+1 iteration)
**Condition**: Top 3 automations not obvious by iteration 0
**Rationale**: Requires discovery phase
**Check**:
- Frequency analysis reveals clear candidates? (NO penalty)
- Need exploration to find automations? (+1 penalty)
---
## Worked Examples
### Example 1: Bootstrap-003 (Error Recovery)
**Assessment**:
```
Base: 4
1. V_meta(s₀) = 0.48 ≥ 0.40? YES → +0 ✅
2. Domain scope clear? YES ("Error detection, diagnosis...") → +0 ✅
3. Retrospective validation? YES (1,336 historical errors) → +0 ✅
4. Generic agents sufficient? YES → +0 ✅
5. Automation clear? YES (top 3 from frequency analysis) → +0 ✅
Predicted: 4 + 0 = 4 iterations
Actual: 3 iterations ✅ (within ±1)
```
**Analysis**: All criteria met → minimal penalties → rapid convergence
---
### Example 2: Bootstrap-002 (Test Strategy)
**Assessment**:
```
Base: 4
1. V_meta(s₀) = 0.04 < 0.40? NO → +2 ❌
2. Domain scope clear? NO (testing is broad) → +1 ❌
3. Multi-context validation? YES (3 archetypes) → +2 ❌
4. Specialization needed? YES (coverage-analyzer, test-gen) → +1 ❌
5. Automation clear? YES (coverage tools obvious) → +0 ✅
Predicted: 4 + 2 + 1 + 2 + 1 + 0 = 10 iterations
Actual: 6 iterations ✅ (model conservative)
```
**Analysis**: Model predicts upper bound. Efficient execution beat estimate.
---
### Example 3: Hypothetical CI/CD Optimization
**Assessment**:
```
Base: 4
1. V_meta(s₀) = ?
- Historical CI logs exist: YES
- Initial analysis: 5 pipeline patterns identified
- Estimated final: 7 patterns
- Completeness: 5/7 = 0.71
- Transferability: 0.40 (industry practices)
- Automation: 0.67 (2/3 tools identified)
- V_meta(s₀) = 0.4×0.71 + 0.3×0.40 + 0.3×0.67 = 0.49 ≥ 0.40 → +0 ✅
2. Domain scope: "Reduce CI/CD build time through caching, parallelization, optimization"
- Clear? YES → +0 ✅
3. Validation: Single CI pipeline (own project)
- Single-context? YES → +0 ✅
4. Specialization: Pipeline analysis can use generic bash/jq
- Sufficient? YES → +0 ✅
5. Automation: Top 3 = caching, parallelization, fast-fail
- Clear? YES → +0 ✅
Predicted: 4 + 0 = 4 iterations
Expected actual: 3-5 iterations (rapid convergence)
```
---
## Calibration Data
**13 Experiments, Actual vs Predicted**:
| Experiment | Predicted | Actual | Δ | Accurate? |
|------------|-----------|--------|---|-----------|
| Bootstrap-003 | 4 | 3 | -1 | ✅ |
| Bootstrap-007 | 4 | 5 | +1 | ✅ |
| Bootstrap-005 | 5 | 5 | 0 | ✅ |
| Bootstrap-002 | 10 | 6 | -4 | ⚠️ |
| Bootstrap-009 | 6 | 7 | +1 | ✅ |
| Bootstrap-011 | 7 | 6 | -1 | ✅ |
| ... | ... | ... | ... | ... |
**Accuracy**: 11/13 = 85% within ±1 iteration
**Model Bias**: Slightly conservative (over-predicts by avg 0.7 iterations)
---
## Usage Guide
### Step 1: Assess Domain (15 min)
**Tasks**:
1. Analyze available data
2. Research prior art
3. Identify automation candidates
4. Calculate V_meta(s₀)
**Output**: V_meta(s₀) value
---
### Step 2: Evaluate Penalties (10 min)
**Checklist**:
- [ ] V_meta(s₀) ≥ 0.40? (NO → +2)
- [ ] Domain <3 clear sentences? (NO → +1)
- [ ] Direct/retrospective validation? (NO → +2)
- [ ] Generic agents sufficient? (NO → +1)
- [ ] Top 3 automations clear? (NO → +1)
**Output**: Total penalty sum
---
### Step 3: Calculate Prediction
```
Predicted = 4 + penalty_sum
Examples:
- 0 penalties → 4 iterations (rapid)
- 2-3 penalties → 6-7 iterations (standard)
- 5+ penalties → 9-11 iterations (exploratory)
```
---
### Step 4: Plan Experiment
**Rapid (4-5 iterations predicted)**:
- Strong iteration 0: 3-5 hours
- Aggressive iteration 1: Fix all P1 issues
- Target: 10-15 hours total
**Standard (6-8 iterations predicted)**:
- Normal iteration 0: 1-2 hours
- Incremental improvements
- Target: 20-30 hours total
**Exploratory (9+ iterations predicted)**:
- Minimal iteration 0: <1 hour
- Discovery-driven
- Target: 30-50 hours total
---
## Prediction Confidence
**High Confidence** (0-2 penalties):
- Predicted ±1 iteration
- 90% accuracy
**Medium Confidence** (3-4 penalties):
- Predicted ±2 iterations
- 75% accuracy
**Low Confidence** (5+ penalties):
- Predicted ±3 iterations
- 60% accuracy
**Reason**: More penalties = more unknowns = higher variance
---
## Model Limitations
### 1. Assumes Competent Execution
**Model assumes**:
- Comprehensive iteration 0 (if V_meta(s₀) ≥ 0.40)
- Efficient iteration execution
- No major blockers
**Reality**: Execution quality varies
---
### 2. Conservative Bias
**Model tends to over-predict** (actual < predicted)
**Reason**: Penalties are additive, but some synergies exist
**Example**: Bootstrap-002 predicted 10, actual 6 (efficient work offset penalties)
---
### 3. Domain-Specific Factors
**Not captured**:
- Developer experience
- Tool ecosystem maturity
- Team collaboration
- Unforeseen blockers
**Recommendation**: Use as guideline, not guarantee
---
## Decision Support
### Use Prediction to Decide:
**4-5 iterations predicted**:
→ Invest in strong iteration 0 (rapid convergence worth it)
**6-8 iterations predicted**:
→ Standard approach (diminishing returns from heavy baseline)
**9+ iterations predicted**:
→ Exploratory mode (discovery-first, optimize later)
---
**Source**: BAIME Rapid Convergence Prediction Model
**Validation**: 13 experiments, 85% accuracy (±1 iteration)
**Usage**: Planning tool for experiment design

View File

@@ -0,0 +1,426 @@
# Rapid Convergence Strategy Guide
**Purpose**: Iteration-by-iteration tactics for 3-4 iteration convergence
**Time**: 10-15 hours total (vs 20-30 standard)
---
## Pre-Iteration 0: Planning (1-2 hours)
### Objectives
1. Confirm rapid convergence feasible
2. Establish measurement infrastructure
3. Define scope boundaries
4. Plan validation approach
### Tasks
**1. Baseline Assessment** (30 min):
```bash
# Query existing data
meta-cc query-tools --status=error
meta-cc query-user-messages --pattern="test|coverage"
# Calculate baseline metrics
# Estimate V_meta(s₀)
```
**2. Scope Definition** (20 min):
```markdown
## Domain: [1-sentence definition]
**In-Scope**: [3-5 items]
**Out-of-Scope**: [3-5 items]
**Edge Cases**: [Handling approach]
```
**3. Success Criteria** (20 min):
```markdown
## Convergence Targets
**V_instance ≥ 0.80**:
- Metric 1: [Target]
- Metric 2: [Target]
**V_meta ≥ 0.80**:
- Patterns: [8-10 documented]
- Tools: [3-5 created]
- Transferability: [≥80%]
```
**4. Prediction** (10 min):
```
Use prediction model:
Base(4) + penalties = [X] iterations expected
```
**Deliverable**: `README.md` with scope, targets, prediction
---
## Iteration 0: Comprehensive Baseline (3-5 hours)
### Objectives
- Achieve V_meta(s₀) ≥ 0.40
- Initial taxonomy: 70-80% coverage
- Identify top 3 automations
### Time Allocation
- Data analysis: 60-90 min (40%)
- Taxonomy creation: 45-75 min (30%)
- Pattern research: 30-45 min (20%)
- Automation planning: 15-30 min (10%)
### Tasks
**1. Comprehensive Data Analysis** (60-90 min):
```bash
# Extract ALL available data
meta-cc query-tools --scope=project > tools.jsonl
meta-cc query-user-messages --pattern=".*" > messages.jsonl
# Analyze patterns
cat tools.jsonl | jq -r '.error' | sort | uniq -c | sort -rn | head -20
# Calculate frequencies
total=$(cat tools.jsonl | wc -l)
# For each pattern: count / total
```
**2. Initial Taxonomy** (45-75 min):
```markdown
## Taxonomy v0
### Category 1: [Name] ([frequency]%, [count])
**Pattern**: [Description]
**Examples**: [3-5 examples]
**Root Cause**: [Analysis]
### Category 2: ...
[Repeat for 10-15 categories]
**Coverage**: [X]% ([classified]/[total])
```
**3. Pattern Research** (30-45 min):
```markdown
## Prior Art
**Source 1**: [Industry taxonomy/framework]
- Borrowed: [Pattern A, Pattern B, ...]
- Transferability: [X]%
**Source 2**: [Similar project]
- Borrowed: [Pattern C, Pattern D, ...]
- Adaptations needed: [List]
**Total Borrowable**: [X]/[Y] patterns = [Z]%
```
**4. Automation Planning** (15-30 min):
```markdown
## Top Automation Candidates
**1. [Tool Name]**
- Frequency: [X]% of cases
- Prevention: [Y]% of pattern
- ROI estimate: [Z]x
- Feasibility: [High/Medium/Low]
**2. [Tool Name]**
[Same structure]
**3. [Tool Name]**
[Same structure]
```
### Metrics
Calculate V_meta(s₀):
```
Completeness: [initial_categories] / [estimated_final] = [X]
Transferability: [borrowed] / [total_needed] = [Y]
Automation: [identified] / [expected] = [Z]
V_meta(s₀) = 0.4×[X] + 0.3×[Y] + 0.3×[Z] = [RESULT]
Target: ≥ 0.40 ✅/❌
```
**Deliverables**:
- `taxonomy-v0.md` (10-15 categories, ≥70% coverage)
- `baseline-metrics.md` (V_meta(s₀), frequencies)
- `automation-plan.md` (top 3 tools, ROI estimates)
---
## Iteration 1: High-Impact Automation (3-4 hours)
### Objectives
- V_instance ≥ 0.60 (significant improvement)
- Implement top 2-3 tools
- Expand taxonomy to 90%+ coverage
### Time Allocation
- Tool implementation: 90-120 min (50%)
- Taxonomy expansion: 45-60 min (25%)
- Testing & validation: 45-60 min (25%)
### Tasks
**1. Build Automation Tools** (90-120 min):
```bash
# Tool 1: validate-path.sh (30-40 min)
#!/bin/bash
# Fuzzy path matching, typo correction
# Target: 150-200 LOC
# Tool 2: check-file-size.sh (20-30 min)
#!/bin/bash
# File size check, auto-pagination
# Target: 100-150 LOC
# Tool 3: check-read-before-write.sh (40-50 min)
#!/bin/bash
# Workflow validation
# Target: 150-200 LOC
```
**2. Expand Taxonomy** (45-60 min):
```markdown
## Taxonomy v1
### [New Category 11]: [Name]
[Analysis of remaining 10-20% of cases]
### [New Category 12]: [Name]
[Continue until ≥90% coverage]
**Coverage**: [X]% ([classified]/[total])
**Gap Analysis**: [Remaining uncategorized patterns]
```
**3. Test & Measure** (45-60 min):
```bash
# Test tools on historical data
./scripts/validate-path.sh "path/to/file" # Expect suggestions
./scripts/check-file-size.sh "large-file.json" # Expect warning
# Calculate impact
prevented=$(estimate_prevention_rate)
time_saved=$(calculate_time_savings)
roi=$(calculate_roi)
# Update metrics
```
### Metrics
```
V_instance calculation:
- Success rate: [X]%
- Quality: [Y]/5
- Efficiency: [Z] min/task
V_instance = 0.4×[success] + 0.3×[quality/5] + 0.2×[efficiency] + 0.1×[reliability]
= [RESULT]
Target: ≥ 0.60 (progress toward 0.80)
```
**Deliverables**:
- `scripts/tool1.sh`, `scripts/tool2.sh`, `scripts/tool3.sh`
- `taxonomy-v1.md` (≥90% coverage)
- `iteration-1-results.md` (V_instance, V_meta, gaps)
---
## Iteration 2: Validation & Refinement (3-4 hours)
### Objectives
- V_instance ≥ 0.80 ✅
- V_meta ≥ 0.80 ✅
- Validate stability (2 consecutive iterations)
### Time Allocation
- Retrospective validation: 60-90 min (40%)
- Taxonomy completion: 30-45 min (20%)
- Tool refinement: 45-60 min (25%)
- Documentation: 30-45 min (15%)
### Tasks
**1. Retrospective Validation** (60-90 min):
```bash
# Apply methodology to historical data
meta-cc validate \
--methodology error-recovery \
--history .claude/sessions/*.jsonl
# Measure:
# - Coverage: [X]% of historical cases handled
# - Time savings: [Y] hours saved
# - Prevention: [Z]% errors prevented
# - Confidence: [Score]
```
**2. Complete Taxonomy** (30-45 min):
```markdown
## Taxonomy v2 (Final)
[Review all categories]
[Add final 1-2 categories if needed]
[Refine existing categories]
**Final Coverage**: [X]% ≥ 95% ✅
**Uncategorized**: [Y]% (acceptable edge cases)
```
**3. Refine Tools** (45-60 min):
```bash
# Based on validation feedback
# - Fix bugs discovered
# - Improve accuracy
# - Add edge case handling
# - Optimize performance
# Re-test
# Re-measure ROI
```
**4. Documentation** (30-45 min):
```markdown
## Complete Methodology
### Patterns: [8-10 documented]
### Tools: [3-5 with usage]
### Transferability: [≥80%]
### Validation: [Results]
```
### Metrics
```
V_instance: [X] (≥0.80? ✅/❌)
V_meta: [Y] (≥0.80? ✅/❌)
Stability check:
- Iteration 1: V_instance = [A]
- Iteration 2: V_instance = [B]
- Change: [|B-A|] < 0.05? ✅/❌
Convergence: ✅/❌
```
**Decision**:
- ✅ Converged → Deploy
- ❌ Not converged → Iteration 3 (gap analysis)
**Deliverables**:
- `validation-report.md` (confidence, coverage, ROI)
- `methodology-complete.md` (production-ready)
- `transferability-guide.md` (80%+ reuse documentation)
---
## Iteration 3 (If Needed): Gap Closure (2-3 hours)
### Objectives
- Close specific gaps preventing convergence
- Reach dual-layer convergence (V_instance ≥ 0.80, V_meta ≥ 0.80)
### Gap Analysis
```markdown
## Why Not Converged?
**V_instance gaps** ([X] < 0.80):
- Metric A: [current] vs [target] = gap [Z]
- Root cause: [Analysis]
- Fix: [Action]
**V_meta gaps** ([Y] < 0.80):
- Component: [completeness/transferability/automation]
- Current: [X]
- Target: [Y]
- Fix: [Action]
```
### Focused Improvements
**Time**: 2-3 hours (targeted, not comprehensive)
**Tasks**:
- Address 1-2 major gaps only
- Refine existing work (no new patterns)
- Validate fixes
**Re-measure**:
```
V_instance: [X] ≥ 0.80? ✅/❌
V_meta: [Y] ≥ 0.80? ✅/❌
Stable for 2 iterations? ✅/❌
```
---
## Timeline Summary
### Rapid Convergence (3 iterations)
```
Pre-Iteration 0: 1-2h
Iteration 0: 3-5h (comprehensive baseline)
Iteration 1: 3-4h (automation + expansion)
Iteration 2: 3-4h (validation + convergence)
---
Total: 10-15h ✅
```
### Standard (If Iteration 3 Needed)
```
Pre-Iteration 0: 1-2h
Iteration 0: 3-5h
Iteration 1: 3-4h
Iteration 2: 3-4h
Iteration 3: 2-3h (gap closure)
---
Total: 12-18h (still faster than standard 20-30h)
```
---
## Anti-Patterns
### ❌ Rushing Iteration 0
**Symptom**: Spending 1-2 hours (vs 3-5)
**Impact**: Low V_meta(s₀), requires more iterations
**Fix**: Invest 3-5 hours for comprehensive baseline
### ❌ Over-Engineering Tools
**Symptom**: Spending 4+ hours per tool
**Impact**: Delays convergence
**Fix**: Simple tools (150-200 LOC, 30-60 min each)
### ❌ Premature Convergence
**Symptom**: Declaring done at V = 0.75
**Impact**: Quality issues in production
**Fix**: Respect 0.80 threshold, ensure 2-iteration stability
---
**Source**: BAIME Rapid Convergence Strategy
**Validation**: Bootstrap-003 (3 iterations, 10 hours)
**Success Rate**: 85% (11/13 experiments)