Initial commit
This commit is contained in:
@@ -0,0 +1,334 @@
|
||||
# Convergence Criteria
|
||||
|
||||
**How to know when your methodology development is complete.**
|
||||
|
||||
## Standard Dual Convergence
|
||||
|
||||
The most common pattern (used in 6/8 experiments):
|
||||
|
||||
### Criteria
|
||||
|
||||
```
|
||||
Converged when ALL of:
|
||||
1. M_n == M_{n-1} (Meta-Agent stable)
|
||||
2. A_n == A_{n-1} (Agent set stable)
|
||||
3. V_instance(s_n) ≥ 0.80
|
||||
4. V_meta(s_n) ≥ 0.80
|
||||
5. Objectives complete
|
||||
6. ΔV < 0.02 for 2+ iterations (diminishing returns)
|
||||
```
|
||||
|
||||
### Example: Bootstrap-009 (Observability)
|
||||
|
||||
```
|
||||
Iteration 6:
|
||||
V_instance(s₆) = 0.87 (target: 0.80) ✅
|
||||
V_meta(s₆) = 0.83 (target: 0.80) ✅
|
||||
M₆ == M₅ ✅
|
||||
A₆ == A₅ ✅
|
||||
Objectives: All 3 pillars implemented ✅
|
||||
ΔV: 0.01 (< 0.02) ✅
|
||||
|
||||
→ CONVERGED (Standard Dual Convergence)
|
||||
```
|
||||
|
||||
**Use when**: Both task and methodology are equally important.
|
||||
|
||||
---
|
||||
|
||||
## Meta-Focused Convergence
|
||||
|
||||
Alternative pattern when methodology is primary goal (used in 1/8 experiments):
|
||||
|
||||
### Criteria
|
||||
|
||||
```
|
||||
Converged when ALL of:
|
||||
1. M_n == M_{n-1} (Meta-Agent stable)
|
||||
2. A_n == A_{n-1} (Agent set stable)
|
||||
3. V_meta(s_n) ≥ 0.80 (Methodology excellent)
|
||||
4. V_instance(s_n) ≥ 0.55 (Instance practically sufficient)
|
||||
5. Instance gap is infrastructure, NOT methodology
|
||||
6. System stable for 2+ iterations
|
||||
```
|
||||
|
||||
### Example: Bootstrap-011 (Knowledge Transfer)
|
||||
|
||||
```
|
||||
Iteration 3:
|
||||
V_instance(s₃) = 0.585 (practically sufficient)
|
||||
V_meta(s₃) = 0.877 (excellent, +9.6% above target) ✅
|
||||
M₃ == M₂ == M₁ ✅
|
||||
A₃ == A₂ == A₁ ✅
|
||||
|
||||
Instance gap analysis:
|
||||
- Missing: Knowledge graph, semantic search (infrastructure)
|
||||
- Present: ALL 3 learning paths complete (methodology)
|
||||
- Value: 3-8x onboarding speedup already achieved
|
||||
|
||||
Meta convergence:
|
||||
- Completeness: 0.80 (all templates complete)
|
||||
- Effectiveness: 0.95 (3-8x validated)
|
||||
- Reusability: 0.88 (95%+ transferable)
|
||||
|
||||
→ CONVERGED (Meta-Focused Convergence)
|
||||
```
|
||||
|
||||
**Use when**:
|
||||
- Experiment explicitly prioritizes meta-objective
|
||||
- Instance gap is tooling/infrastructure, not methodology
|
||||
- Methodology has reached complete transferability (≥90%)
|
||||
- Further instance work would not improve methodology quality
|
||||
|
||||
**Validation checklist**:
|
||||
- [ ] Primary objective is methodology (stated in README)
|
||||
- [ ] Instance gap is infrastructure (not methodology gaps)
|
||||
- [ ] V_meta_reusability ≥ 0.90
|
||||
- [ ] Practical value delivered (speedup demonstrated)
|
||||
|
||||
---
|
||||
|
||||
## Practical Convergence
|
||||
|
||||
Alternative pattern when quality exceeds metrics (used in 1/8 experiments):
|
||||
|
||||
### Criteria
|
||||
|
||||
```
|
||||
Converged when ALL of:
|
||||
1. M_n == M_{n-1} (Meta-Agent stable)
|
||||
2. A_n == A_{n-1} (Agent set stable)
|
||||
3. V_instance + V_meta ≥ 1.60 (combined threshold)
|
||||
4. Quality evidence exceeds raw metric scores
|
||||
5. Justified partial criteria
|
||||
6. ΔV < 0.02 for 2+ iterations
|
||||
```
|
||||
|
||||
### Example: Bootstrap-002 (Testing)
|
||||
|
||||
```
|
||||
Iteration 5:
|
||||
V_instance(s₅) = 0.848 (target: 0.80, +6% margin) ✅
|
||||
V_meta(s₅) ≈ 0.85 (estimated)
|
||||
Combined: 1.698 (> 1.60) ✅
|
||||
|
||||
Quality evidence:
|
||||
- Coverage: 75% overall BUT 86-94% in core packages
|
||||
- Sub-package excellence > aggregate metric
|
||||
- Quality gates: 8/10 met consistently
|
||||
- Test quality: Fixtures, mocks, zero flaky tests
|
||||
- 15x speedup validated
|
||||
- 89% methodology reusability
|
||||
|
||||
M₅ == M₄ ✅
|
||||
A₅ == A₄ ✅
|
||||
ΔV: 0.01 (< 0.02) ✅
|
||||
|
||||
→ CONVERGED (Practical Convergence)
|
||||
```
|
||||
|
||||
**Use when**:
|
||||
- Some components don't reach target but overall quality is excellent
|
||||
- Sub-system excellence compensates for aggregate metrics
|
||||
- Diminishing returns demonstrated
|
||||
- Honest assessment shows methodology complete
|
||||
|
||||
**Validation checklist**:
|
||||
- [ ] Combined V_instance + V_meta ≥ 1.60
|
||||
- [ ] Quality evidence documented (not just metrics)
|
||||
- [ ] Honest gap analysis (no inflation)
|
||||
- [ ] Diminishing returns proven (ΔV trend)
|
||||
|
||||
---
|
||||
|
||||
## System Stability
|
||||
|
||||
All convergence patterns require system stability:
|
||||
|
||||
### Agent Set Stability (A_n == A_{n-1})
|
||||
|
||||
**Stable when**:
|
||||
- Same agents used in iteration n and n-1
|
||||
- No new specialized agents created
|
||||
- No agent capabilities expanded
|
||||
|
||||
**Example**:
|
||||
```
|
||||
Iteration 5: {coder, doc-writer, data-analyst, log-analyzer}
|
||||
Iteration 6: {coder, doc-writer, data-analyst, log-analyzer}
|
||||
→ A₆ == A₅ ✅ STABLE
|
||||
```
|
||||
|
||||
### Meta-Agent Stability (M_n == M_{n-1})
|
||||
|
||||
**Stable when**:
|
||||
- Same 5 capabilities in iteration n and n-1
|
||||
- No new coordination patterns
|
||||
- No Meta-Agent prompt evolution
|
||||
|
||||
**Standard M₀ capabilities**:
|
||||
1. observe - Pattern observation
|
||||
2. plan - Iteration planning
|
||||
3. execute - Agent orchestration
|
||||
4. reflect - Value assessment
|
||||
5. evolve - System evolution
|
||||
|
||||
**Finding**: M₀ was sufficient in ALL 8 experiments (no evolution needed)
|
||||
|
||||
---
|
||||
|
||||
## Diminishing Returns
|
||||
|
||||
**Definition**: ΔV < epsilon for k consecutive iterations
|
||||
|
||||
**Standard threshold**: epsilon = 0.02, k = 2
|
||||
|
||||
**Calculation**:
|
||||
```
|
||||
ΔV_n = |V_total(s_n) - V_total(s_{n-1})|
|
||||
|
||||
If ΔV_n < 0.02 AND ΔV_{n-1} < 0.02:
|
||||
→ Diminishing returns detected
|
||||
```
|
||||
|
||||
**Example**:
|
||||
```
|
||||
Iteration 4: V_total = 0.82, ΔV = 0.05 (significant)
|
||||
Iteration 5: V_total = 0.84, ΔV = 0.02 (small)
|
||||
Iteration 6: V_total = 0.85, ΔV = 0.01 (small)
|
||||
→ Diminishing returns since Iteration 5
|
||||
```
|
||||
|
||||
**Interpretation**:
|
||||
- Large ΔV (>0.05): Significant progress, continue
|
||||
- Medium ΔV (0.02-0.05): Steady progress, continue
|
||||
- Small ΔV (<0.02): Diminishing returns, consider converging
|
||||
|
||||
---
|
||||
|
||||
## Decision Tree
|
||||
|
||||
```
|
||||
Start with iteration n:
|
||||
|
||||
1. Calculate V_instance(s_n) and V_meta(s_n)
|
||||
|
||||
2. Check system stability:
|
||||
M_n == M_{n-1}? → YES/NO
|
||||
A_n == A_{n-1}? → YES/NO
|
||||
|
||||
If NO to either → Continue iteration n+1
|
||||
|
||||
3. Check convergence pattern:
|
||||
|
||||
Pattern A: Standard Dual Convergence
|
||||
├─ V_instance ≥ 0.80? → YES
|
||||
├─ V_meta ≥ 0.80? → YES
|
||||
├─ Objectives complete? → YES
|
||||
├─ ΔV < 0.02 for 2 iterations? → YES
|
||||
└─→ CONVERGED ✅
|
||||
|
||||
Pattern B: Meta-Focused Convergence
|
||||
├─ V_meta ≥ 0.80? → YES
|
||||
├─ V_instance ≥ 0.55? → YES
|
||||
├─ Primary objective is methodology? → YES
|
||||
├─ Instance gap is infrastructure? → YES
|
||||
├─ V_meta_reusability ≥ 0.90? → YES
|
||||
└─→ CONVERGED ✅
|
||||
|
||||
Pattern C: Practical Convergence
|
||||
├─ V_instance + V_meta ≥ 1.60? → YES
|
||||
├─ Quality evidence strong? → YES
|
||||
├─ Justified partial criteria? → YES
|
||||
├─ ΔV < 0.02 for 2 iterations? → YES
|
||||
└─→ CONVERGED ✅
|
||||
|
||||
4. If no pattern matches → Continue iteration n+1
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Common Mistakes
|
||||
|
||||
### Mistake 1: Premature Convergence
|
||||
|
||||
**Symptom**: Declaring convergence before system stable
|
||||
|
||||
**Example**:
|
||||
```
|
||||
Iteration 3:
|
||||
V_instance = 0.82 ✅
|
||||
V_meta = 0.81 ✅
|
||||
BUT M₃ ≠ M₂ (new Meta-Agent capability added)
|
||||
|
||||
→ NOT CONVERGED (system unstable)
|
||||
```
|
||||
|
||||
**Fix**: Wait until M_n == M_{n-1} and A_n == A_{n-1}
|
||||
|
||||
### Mistake 2: Inflated Values
|
||||
|
||||
**Symptom**: V scores mysteriously jump to exactly 0.80
|
||||
|
||||
**Example**:
|
||||
```
|
||||
Iteration 4: V_instance = 0.77
|
||||
Iteration 5: V_instance = 0.80 (claimed)
|
||||
BUT no substantial work done!
|
||||
```
|
||||
|
||||
**Fix**: Honest assessment, gap enumeration, evidence-based scoring
|
||||
|
||||
### Mistake 3: Moving Goalposts
|
||||
|
||||
**Symptom**: Changing criteria mid-experiment
|
||||
|
||||
**Example**:
|
||||
```
|
||||
Initial plan: V_instance ≥ 0.80
|
||||
Final state: V_instance = 0.65
|
||||
Conclusion: "Actually, 0.65 is sufficient" ❌ WRONG
|
||||
```
|
||||
|
||||
**Fix**: Either reach 0.80 OR use Meta-Focused/Practical with explicit justification
|
||||
|
||||
### Mistake 4: Ignoring System Instability
|
||||
|
||||
**Symptom**: Declaring convergence while agents still evolving
|
||||
|
||||
**Example**:
|
||||
```
|
||||
Iteration 5:
|
||||
Both V scores ≥ 0.80 ✅
|
||||
BUT new specialized agent created in Iteration 5
|
||||
A₅ ≠ A₄
|
||||
|
||||
→ NOT CONVERGED (agent set unstable)
|
||||
```
|
||||
|
||||
**Fix**: Run Iteration 6 to confirm A₆ == A₅
|
||||
|
||||
---
|
||||
|
||||
## Convergence Prediction
|
||||
|
||||
Based on 8 experiments, you can predict iteration count:
|
||||
|
||||
**Base estimate**: 5 iterations
|
||||
|
||||
**Adjustments**:
|
||||
- Well-defined domain: -2 iterations
|
||||
- Existing tools available: -1 iteration
|
||||
- High interdependency: +2 iterations
|
||||
- Novel patterns needed: +1 iteration
|
||||
- Large codebase scope: +1 iteration
|
||||
- Multiple competing goals: +1 iteration
|
||||
|
||||
**Examples**:
|
||||
- Dependency Health: 5 - 2 - 1 = 2 → actual 3 ✓
|
||||
- Observability: 5 + 0 + 1 = 6 → actual 6 ✓
|
||||
- Cross-Cutting: 5 + 2 + 1 = 8 → actual 8 ✓
|
||||
|
||||
---
|
||||
|
||||
**Next**: Read [dual-value-functions.md](dual-value-functions.md) for V_instance and V_meta calculation.
|
||||
Reference in New Issue
Block a user