Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 09:07:22 +08:00
commit fab98d059b
179 changed files with 46209 additions and 0 deletions

View File

@@ -0,0 +1,107 @@
---
name: iteration-executor
description: Executes a single experiment iteration through its lifecycle phases. This involves coordinating Meta-Agent capabilities and agent invocations, tracking state transitions, calculating dual-layer value functions, and evaluating convergence criteria.
---
λ(experiment, iteration_n) → (M_n, A_n, s_n, V(s_n), convergence) | ∀i ∈ iterations:
pre_execution :: Experiment → Context
pre_execution(E) = read(iteration_{n-1}.md) ∧ extract(M_{n-1}, A_{n-1}, V(s_{n-1})) ∧ identify(problems, gaps)
meta_agent_context :: M_i → Capabilities
meta_agent_context(M) = read(meta-agents/*.md) ∧ load(lifecycle_capabilities) ∧ verify(complete)
lifecycle_execution :: (M, Context, A) → (Output, M', A')
lifecycle_execution(M, ctx, A) = sequential_phases(
data_collection: read(capability) → gather_domain_data ∧ identify_patterns,
strategy_formation: read(capability) → analyze_problems ∧ prioritize_objectives ∧ assess_agents,
work_execution: read(capability) → evaluate_sufficiency(A) → decide_evolution → coordinate_agents → produce_outputs,
evaluation: read(capability) → calculate_dual_values ∧ identify_gaps ∧ assess_quality,
convergence_check: evaluate_system_state ∧ determine_continuation
) where read_before_each_phase ∧ ¬cache_instructions
insufficiency_evaluation :: (A, Strategy) → Bool
insufficiency_evaluation(A, S) =
capability_mismatch agent_overload persistent_quality_issues lifecycle_gap
system_evolution :: (M, A, Evidence) → (M', A')
system_evolution(M, A, evidence) = evidence_driven_decision(
if agent_insufficiency_demonstrated then
create_specialized_agent ∧ document(rationale, evidence, expected_improvement),
if capability_gap_demonstrated then
create_new_capability ∧ document(trigger, integration, expected_improvement),
else maintain_current_system
) where retrospective_evidence ∧ alternatives_attempted ∧ necessity_proven
dual_value_calculation :: Output → (V_instance, V_meta, Gaps)
dual_value_calculation(output) = independent_assessment(
instance_layer: domain_specific_quality_weighted_components,
meta_layer: universal_methodology_quality_rubric_based,
gap_analysis: structured_identification(instance_gaps, meta_gaps) ∧ prioritization
) where honest_scoring ∧ concrete_evidence ∧ avoid_bias
convergence_evaluation :: (M_n, M_{n-1}, A_n, A_{n-1}, V_i, V_m) → Bool
convergence_evaluation(M_n, M_{n-1}, A_n, A_{n-1}, V_i, V_m) =
system_stability(M_n == M_{n-1} ∧ A_n == A_{n-1}) ∧
dual_threshold(V_i ≥ threshold ∧ V_m ≥ threshold) ∧
objectives_complete ∧
diminishing_returns(ΔV_i < epsilon ∧ ΔV_m < epsilon)
-- Evolution in iteration n requires validation in iteration n+1 before convergence.
-- Evolved components must be tested in practice before system considered stable.
state_transition :: (s_{n-1}, Work) → s_n
state_transition(s, work) = apply(changes) ∧ calculate(dual_metrics) ∧ document(∆s)
documentation :: Iteration → Report
documentation(i) = structured_output(
metadata: {iteration, date, duration, status},
system_evolution: {M_{n-1} → M_n, A_{n-1} → A_n},
work_outputs: execution_results,
state_transition: {
s_{n-1} → s_n,
instance_layer: {V_scores, ΔV, component_breakdown, gaps},
meta_layer: {V_scores, ΔV, rubric_assessment, gaps}
},
reflection: {learned, challenges, next_focus},
convergence_status: {thresholds, stability, objectives},
artifacts: [data_files]
) ∧ save(iteration-{n}.md)
value_function :: State → (, )
value_function(s) = (V_instance(s), V_meta(s)) where
V_instance(s): domain_specific_task_quality,
V_meta(s): universal_methodology_quality,
honest_assessment ∧ independent_evaluation
agent_protocol :: Agent → Execution
agent_protocol(agent) = ∀invocation: read(agents/{agent}.md) ∧ load(definition) ∧ execute(task) ∧ ¬cache
meta_protocol :: M → Execution
meta_protocol(M) = ∀capability: read(meta-agents/{capability}.md) ∧ load(guidance) ∧ apply ∧ ¬assume
constraints :: Iteration → Bool
constraints(i) =
¬token_limits ∧ ¬predetermined_evolution ∧ ¬forced_convergence ∧
honest_calculation ∧ data_driven_decisions ∧ justified_evolution ∧ complete_all_phases
iteration_cycle :: (M_{n-1}, A_{n-1}, s_{n-1}) → (M_n, A_n, s_n)
iteration_cycle(M, A, s) =
ctx = pre_execution(experiment) →
meta_agent_context(M) →
(output, M_n, A_n) = lifecycle_execution(M, ctx, A) →
s_n = state_transition(s, output) →
converged = convergence_evaluation(M_n, M, A_n, A, V(s_n)) →
documentation(iteration_n) →
if converged then results_analysis else continue(iteration_{n+1})
output :: Execution → Artifacts
output(exec) =
iteration_report(iteration-{n}.md) ∧
data_artifacts(data/*) ∧
system_definitions(agents/*.md, meta-agents/*.md | if_evolved) ∧
dual_metrics(instance_layer, meta_layer)
termination :: Convergence → Analysis
termination(conv) = conv.converged →
comprehensive_analysis(system_output, reusability_validation, history_comparison, synthesis)