# PDF Tool Comparison ## Summary Table | Tool | Type | Speed | Quality Issues | Garbled | Structure | License | |------|------|-------|----------------|---------|-----------|---------| | **Docling** | ML | 0.43s/page | 50 | 0 | ✓ Yes | Apache 2.0 | | **PyMuPDF** | Traditional | 0.01s/page | 1 | 0 | ✗ No | AGPL | | **pdfplumber** | Traditional | 0.44s/page | 0 | 0 | ✗ No | MIT | | **pdftotext** | Traditional | 0.007s/page | 90 | 0 | ✗ No | GPL | | **pdfminer.six** | Traditional | 0.15s/page | 45 | 0 | ✗ No | MIT | | **pypdf** | Traditional | 0.25s/page | 120 | 5 | ✗ No | BSD | *Test environment: 90-page academic PDF, 1.9 MB* ## Detailed Comparison ### Docling (Recommended for Academic PDFs) **Advantages:** - Only tool that preserves structure (headers, tables, lists) - AI-powered layout understanding via RT-DETR + TableFormer - Markdown output perfect for LLMs - 97.9% table accuracy in enterprise benchmarks - On-device processing (no API calls) **Disadvantages:** - Slower than PyMuPDF (40x) - Requires 500MB-1GB model download - Some ligature encoding issues **Use when:** - Document structure is essential - Processing academic papers with tables - Preparing content for RAG systems - LLM consumption is primary goal ### PyMuPDF (Recommended for Speed) **Advantages:** - Fastest tool (60x faster than pdfplumber) - Excellent quality (only 1 issue in test) - Clean output with minimal artifacts - C-based, highly optimized **Disadvantages:** - No structure preservation - AGPL license (restrictive for commercial use) - Flat text output **Use when:** - Speed is critical - Simple text extraction sufficient - Batch processing large datasets - Structure preservation not needed ### pdfplumber (Recommended for Quality) **Advantages:** - Perfect quality (0 issues) - Character-level spatial analysis - Geometric table detection - MIT license **Disadvantages:** - Very slow (60x slower than PyMuPDF) - No markdown structure output - CPU-intensive **Use when:** - Maximum fidelity required - Quality more important than speed - Processing critical documents - Slow processing acceptable ## Traditional vs ML-Based ### Traditional Tools **How they work:** - Parse PDF internal structure - Extract embedded text objects - Follow PDF specification rules **Advantages:** - Fast (no ML inference) - Small footprint (no model files) - Deterministic output **Disadvantages:** - No layout understanding - Cannot handle borderless tables - Lose document hierarchy ### ML-Based Tools (Docling) **How they work:** - Computer vision to "see" document layout - RT-DETR detects layout regions - TableFormer understands table structure - Hybrid: ML for layout + PDF parsing for text **Advantages:** - Understands visual layout - Handles complex multi-column layouts - Preserves semantic structure - Works with borderless tables **Disadvantages:** - Slower (ML inference time) - Larger footprint (model files) - Non-deterministic output ## Architecture Details ### Docling Pipeline 1. **PDF Backend** - Extracts raw content and positions 2. **AI Models** - Analyze layout and structure - RT-DETR: Layout analysis (44-633ms/page) - TableFormer: Table structure (400ms-1.74s/table) 3. **Assembly** - Combines understanding with text ### pdfplumber Architecture 1. **Built on pdfminer.six** - Character-level extraction 2. **Spatial clustering** - Groups chars into words/lines 3. **Geometric detection** - Finds tables from lines/rectangles 4. **Character objects** - Full metadata (position, font, size, color) ## Enterprise Benchmarks (2025 Procycons) | Tool | Table Accuracy | Text Fidelity | Speed (s/page) | |------|----------------|---------------|----------------| | Docling | 97.9% | 100% | 6.28 | | Marker | 89.2% | 98.5% | 8.45 | | MinerU | 92.1% | 99.2% | 12.33 | | Unstructured.io | 75.0% | 95.8% | 51.02 | | LlamaParse | 88.5% | 97.3% | 6.00 | *Source: Procycons Enterprise PDF Processing Benchmark 2025*