Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 09:05:19 +08:00
commit 09fec2555b
96 changed files with 24269 additions and 0 deletions

View File

@@ -0,0 +1,146 @@
#!/usr/bin/env python3
"""
Analyze PDF extraction quality across different tools.
Usage:
python quality_analysis.py <extraction_directory>
Example:
python quality_analysis.py ./pdf_extraction_results
Expects files named: PDFname_tool.txt (e.g., paper_docling.txt, paper_pymupdf.txt)
Copyright 2025 Warren Zhu
Licensed under the Apache License, Version 2.0
"""
import re
import sys
from pathlib import Path
from collections import defaultdict
def analyze_quality(text):
"""Analyze text quality metrics."""
return {
'chars': len(text),
'words': len(text.split()),
'consecutive_spaces': len(re.findall(r' +', text)),
'excessive_newlines': len(re.findall(r'\n{4,}', text)),
'control_chars': len(re.findall(r'[\x00-\x08\x0b\x0c\x0e-\x1f]', text)),
'garbled_chars': len(re.findall(r'[<5B>\ufffd]', text)),
'hyphen_breaks': len(re.findall(r'\w+-\n\w+', text))
}
def compare_tools(results_dir):
"""Compare extraction quality across tools."""
results_dir = Path(results_dir)
if not results_dir.exists():
print(f"Error: {results_dir} not found")
return
# Group files by PDF
pdf_files = defaultdict(dict)
for txt_file in sorted(results_dir.glob('*.txt')):
# Parse: PDFname_tool.txt
parts = txt_file.stem.rsplit('_', 1)
if len(parts) == 2:
pdf_name, tool = parts
text = txt_file.read_text(encoding='utf-8', errors='ignore')
pdf_files[pdf_name][tool] = text
if not pdf_files:
print(f"No extraction files found in {results_dir}")
print("Expected format: PDFname_tool.txt")
return
# Analyze each PDF
for pdf_name, tools in sorted(pdf_files.items()):
print("=" * 80)
print(f"PDF: {pdf_name}")
print("=" * 80)
print()
# Quality metrics
results = {tool: analyze_quality(text) for tool, text in tools.items()}
print("QUALITY METRICS")
print("-" * 80)
print(f"{'Tool':<20} {'Chars':>12} {'Words':>10} {'Issues':>10} {'Garbled':>10}")
print("-" * 80)
for tool in ['docling', 'pymupdf', 'pdfplumber', 'pdftotext', 'pdfminer', 'pypdf']:
if tool in results:
r = results[tool]
issues = (r['consecutive_spaces'] + r['excessive_newlines'] +
r['control_chars'] + r['garbled_chars'])
print(f"{tool:<20} {r['chars']:>12,} {r['words']:>10,} "
f"{issues:>10} {r['garbled_chars']:>10}")
print()
# Find best
best_quality = min(results.items(),
key=lambda x: x[1]['consecutive_spaces'] + x[1]['garbled_chars'])
most_content = max(results.items(), key=lambda x: x[1]['chars'])
print(f"Best quality: {best_quality[0]}")
print(f"Most content: {most_content[0]}")
print()
# Overall ranking
print("=" * 80)
print("OVERALL RANKING")
print("=" * 80)
print()
tool_scores = defaultdict(lambda: {'total_issues': 0, 'total_garbled': 0, 'files': 0})
for tools in pdf_files.values():
for tool, text in tools.items():
r = analyze_quality(text)
issues = (r['consecutive_spaces'] + r['excessive_newlines'] +
r['control_chars'] + r['garbled_chars'])
tool_scores[tool]['total_issues'] += issues
tool_scores[tool]['total_garbled'] += r['garbled_chars']
tool_scores[tool]['files'] += 1
# Calculate average quality
ranked = []
for tool, scores in tool_scores.items():
avg_issues = scores['total_issues'] / scores['files']
avg_garbled = scores['total_garbled'] / scores['files']
quality_score = avg_garbled * 10 + avg_issues
ranked.append({
'tool': tool,
'score': quality_score,
'avg_issues': avg_issues,
'avg_garbled': avg_garbled
})
ranked.sort(key=lambda x: x['score'])
print(f"{'Rank':<6} {'Tool':<20} {'Avg Issues':>12} {'Avg Garbled':>12} {'Score':>10}")
print("-" * 80)
for i, r in enumerate(ranked, 1):
medal = "🥇" if i == 1 else "🥈" if i == 2 else "🥉" if i == 3 else " "
print(f"{medal} {i:<3} {r['tool']:<20} {r['avg_issues']:>12.1f} "
f"{r['avg_garbled']:>12.1f} {r['score']:>10.1f}")
print()
print("Quality score: garbled_chars * 10 + total_issues (lower is better)")
print()
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python quality_analysis.py <extraction_directory>")
sys.exit(1)
compare_tools(sys.argv[1])