Initial commit
This commit is contained in:
355
skills/references/microservices.md
Normal file
355
skills/references/microservices.md
Normal file
@@ -0,0 +1,355 @@
|
||||
# Microservices Architecture Patterns
|
||||
|
||||
## Table of Contents
|
||||
- Core Principles
|
||||
- Service Design Patterns
|
||||
- Communication Patterns
|
||||
- Data Management
|
||||
- Deployment Patterns
|
||||
- Observability
|
||||
|
||||
## Core Principles
|
||||
|
||||
### Single Responsibility
|
||||
Each service owns one business capability and does it well.
|
||||
|
||||
### Decentralized Data
|
||||
Each service has its own database (database-per-service pattern).
|
||||
|
||||
### Independence
|
||||
Services can be developed, deployed, and scaled independently.
|
||||
|
||||
### Resilience
|
||||
Services must handle failures gracefully (circuit breakers, retries).
|
||||
|
||||
## Service Design Patterns
|
||||
|
||||
### Service Boundaries
|
||||
Define services around business capabilities, not technical layers:
|
||||
- ✅ User Service, Order Service, Payment Service
|
||||
- ❌ Database Service, Email Service (too technical)
|
||||
|
||||
### Service Size
|
||||
Guideline: A service should be maintainable by a small team (2-pizza team).
|
||||
|
||||
### API Design
|
||||
- Use RESTful APIs for synchronous communication
|
||||
- Use gRPC for high-performance internal communication
|
||||
- Use message queues for asynchronous communication
|
||||
- Version APIs (v1, v2) to support backward compatibility
|
||||
|
||||
## Communication Patterns
|
||||
|
||||
### Synchronous (Request-Response)
|
||||
|
||||
**REST APIs:**
|
||||
```
|
||||
Service A --HTTP--> Service B
|
||||
<-JSON---
|
||||
```
|
||||
|
||||
**When to use:**
|
||||
- Need immediate response
|
||||
- Simple request-response flow
|
||||
- External-facing APIs
|
||||
|
||||
**gRPC:**
|
||||
```
|
||||
Service A --Protocol Buffer--> Service B
|
||||
<--Binary Response---
|
||||
```
|
||||
|
||||
**When to use:**
|
||||
- Internal service communication
|
||||
- Need high performance
|
||||
- Strong typing required
|
||||
|
||||
### Asynchronous (Event-Driven)
|
||||
|
||||
**Message Queue:**
|
||||
```
|
||||
Service A --publish--> Queue --consume--> Service B
|
||||
```
|
||||
|
||||
**When to use:**
|
||||
- Don't need immediate response
|
||||
- Decouple services
|
||||
- Handle bursts of traffic
|
||||
- Background processing
|
||||
|
||||
**Event Bus/Broker:**
|
||||
```
|
||||
Service A --emit event--> Event Bus --subscribe--> Service B, C, D
|
||||
```
|
||||
|
||||
**When to use:**
|
||||
- Multiple services need same event
|
||||
- Event sourcing patterns
|
||||
- Complex event processing
|
||||
|
||||
**Popular Tools:**
|
||||
- Kafka: High-throughput, event streaming
|
||||
- RabbitMQ: Traditional message broker
|
||||
- AWS SQS/SNS: Cloud-native messaging
|
||||
- NATS: Lightweight messaging
|
||||
|
||||
### API Gateway Pattern
|
||||
|
||||
Centralized entry point for all client requests.
|
||||
|
||||
**Responsibilities:**
|
||||
- Request routing
|
||||
- Authentication/Authorization
|
||||
- Rate limiting
|
||||
- Request/Response transformation
|
||||
- Caching
|
||||
- Load balancing
|
||||
|
||||
**Tools:**
|
||||
- Kong
|
||||
- AWS API Gateway
|
||||
- Nginx
|
||||
- Spring Cloud Gateway
|
||||
- Traefik
|
||||
|
||||
### Service Mesh Pattern
|
||||
|
||||
Infrastructure layer for service-to-service communication.
|
||||
|
||||
**Features:**
|
||||
- Traffic management
|
||||
- Security (mTLS)
|
||||
- Observability
|
||||
- Circuit breaking
|
||||
- Retry logic
|
||||
|
||||
**Tools:**
|
||||
- Istio
|
||||
- Linkerd
|
||||
- Consul Connect
|
||||
|
||||
## Data Management
|
||||
|
||||
### Database Per Service
|
||||
|
||||
Each service owns its database. No shared databases.
|
||||
|
||||
**Benefits:**
|
||||
- Service independence
|
||||
- Technology flexibility
|
||||
- Scalability
|
||||
|
||||
**Challenges:**
|
||||
- Data consistency
|
||||
- Joins across services
|
||||
- Transactions
|
||||
|
||||
### Saga Pattern
|
||||
|
||||
Manage transactions across multiple services.
|
||||
|
||||
**Choreography:**
|
||||
```
|
||||
Order Service --creates order-->
|
||||
|--event--> Payment Service --processes payment-->
|
||||
|--event--> Inventory Service --reserves items-->
|
||||
|--event--> Shipping Service --ships order-->
|
||||
```
|
||||
|
||||
Each service listens to events and publishes new events.
|
||||
|
||||
**Orchestration:**
|
||||
```
|
||||
Order Orchestrator
|
||||
|--call--> Payment Service
|
||||
|--call--> Inventory Service
|
||||
|--call--> Shipping Service
|
||||
```
|
||||
|
||||
Central orchestrator coordinates the saga.
|
||||
|
||||
### CQRS (Command Query Responsibility Segregation)
|
||||
|
||||
Separate read and write models.
|
||||
|
||||
**Pattern:**
|
||||
- Write: Command Model (normalized, transactional)
|
||||
- Read: Query Model (denormalized, optimized for reads)
|
||||
- Sync via events or batch processes
|
||||
|
||||
**When to use:**
|
||||
- Complex domains
|
||||
- Different read/write patterns
|
||||
- Need to scale reads separately
|
||||
|
||||
### Event Sourcing
|
||||
|
||||
Store state changes as events rather than current state.
|
||||
|
||||
**Benefits:**
|
||||
- Complete audit log
|
||||
- Temporal queries
|
||||
- Event replay for debugging
|
||||
- Derive new models from events
|
||||
|
||||
**Challenges:**
|
||||
- Complexity
|
||||
- Event versioning
|
||||
- Storage requirements
|
||||
|
||||
## Deployment Patterns
|
||||
|
||||
### Containerization
|
||||
|
||||
**Docker:**
|
||||
```
|
||||
Each service → Docker image → Container
|
||||
```
|
||||
|
||||
**Benefits:**
|
||||
- Consistency across environments
|
||||
- Isolation
|
||||
- Resource efficiency
|
||||
|
||||
### Container Orchestration
|
||||
|
||||
**Kubernetes:**
|
||||
```
|
||||
Cluster
|
||||
├── Namespace: production
|
||||
│ ├── Deployment: user-service
|
||||
│ ├── Deployment: order-service
|
||||
│ └── Deployment: payment-service
|
||||
└── Namespace: staging
|
||||
```
|
||||
|
||||
**Features:**
|
||||
- Automated deployment
|
||||
- Scaling
|
||||
- Self-healing
|
||||
- Service discovery
|
||||
- Load balancing
|
||||
- Rolling updates
|
||||
|
||||
### Service Discovery
|
||||
|
||||
**Pattern:**
|
||||
Services register themselves and discover other services dynamically.
|
||||
|
||||
**Client-side:**
|
||||
- Service queries registry
|
||||
- Service makes direct call
|
||||
- Tools: Eureka, Consul
|
||||
|
||||
**Server-side:**
|
||||
- Load balancer queries registry
|
||||
- Routes request to service
|
||||
- Tools: Kubernetes, AWS ELB
|
||||
|
||||
### Configuration Management
|
||||
|
||||
**External Configuration:**
|
||||
- Spring Cloud Config
|
||||
- Consul
|
||||
- etcd
|
||||
- Kubernetes ConfigMaps/Secrets
|
||||
|
||||
**Pattern:**
|
||||
- Store config separately from code
|
||||
- Environment-specific configs
|
||||
- Runtime configuration changes
|
||||
|
||||
## Observability
|
||||
|
||||
### Distributed Tracing
|
||||
|
||||
Track requests across multiple services.
|
||||
|
||||
**Tools:**
|
||||
- Jaeger
|
||||
- Zipkin
|
||||
- AWS X-Ray
|
||||
- Datadog APM
|
||||
|
||||
**Pattern:**
|
||||
```
|
||||
Request ID: abc123
|
||||
User Service (10ms) --> Order Service (50ms) --> Payment Service (100ms)
|
||||
Total: 160ms
|
||||
```
|
||||
|
||||
### Centralized Logging
|
||||
|
||||
Aggregate logs from all services.
|
||||
|
||||
**Tools:**
|
||||
- ELK Stack (Elasticsearch, Logstash, Kibana)
|
||||
- Splunk
|
||||
- CloudWatch Logs
|
||||
- Datadog
|
||||
|
||||
**Pattern:**
|
||||
- Structured logging (JSON)
|
||||
- Correlation IDs
|
||||
- Log levels
|
||||
- Searchable aggregation
|
||||
|
||||
### Metrics and Monitoring
|
||||
|
||||
**Metrics to track:**
|
||||
- Request rate
|
||||
- Error rate
|
||||
- Response time (latency)
|
||||
- Resource usage (CPU, memory)
|
||||
|
||||
**Tools:**
|
||||
- Prometheus + Grafana
|
||||
- CloudWatch
|
||||
- Datadog
|
||||
- New Relic
|
||||
|
||||
### Health Checks
|
||||
|
||||
**Types:**
|
||||
- Liveness: Is service alive?
|
||||
- Readiness: Can service handle requests?
|
||||
- Startup: Has service started?
|
||||
|
||||
**Implementation:**
|
||||
```
|
||||
/health/live → 200 OK
|
||||
/health/ready → 200 OK (or 503 if not ready)
|
||||
```
|
||||
|
||||
## Common Challenges
|
||||
|
||||
### Network Latency
|
||||
**Solution:** Async communication, caching, service mesh
|
||||
|
||||
### Data Consistency
|
||||
**Solution:** Eventual consistency, saga pattern, CQRS
|
||||
|
||||
### Testing
|
||||
**Solution:** Contract testing, integration tests, chaos engineering
|
||||
|
||||
### Debugging
|
||||
**Solution:** Distributed tracing, centralized logging, correlation IDs
|
||||
|
||||
### Security
|
||||
**Solution:** API gateway, service mesh mTLS, OAuth2/JWT
|
||||
|
||||
### Service Proliferation
|
||||
**Solution:** Clear service boundaries, API standards, governance
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Start with a Monolith:** Don't start with microservices
|
||||
2. **Define Clear Boundaries:** Use Domain-Driven Design
|
||||
3. **Automate Everything:** CI/CD, testing, deployment
|
||||
4. **Monitor from Day One:** Logging, metrics, tracing
|
||||
5. **Design for Failure:** Circuit breakers, retries, timeouts
|
||||
6. **Version APIs:** Support backward compatibility
|
||||
7. **Document APIs:** OpenAPI/Swagger
|
||||
8. **Use Async for Non-Critical Paths:** Message queues
|
||||
9. **Implement Health Checks:** For orchestration
|
||||
10. **Security at Every Layer:** Gateway, service mesh, code
|
||||
Reference in New Issue
Block a user