Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 09:03:52 +08:00
commit 0b586b3216
42 changed files with 5241 additions and 0 deletions

View File

@@ -0,0 +1,190 @@
---
name: gemini-imagegen
description: Generate and edit images using the Gemini API (Nano Banana). Use this skill when creating images from text prompts, editing existing images, applying style transfers, generating logos with text, creating stickers, product mockups, or any image generation/manipulation task. Supports text-to-image, image editing, multi-turn refinement, and composition from multiple reference images.
---
# Gemini Image Generation (Nano Banana)
Generate and edit images using Google's Gemini API. The environment variable `GEMINI_API_KEY` must be set.
## Available Models
| Model | Alias | Resolution | Best For |
|-------|-------|------------|----------|
| `gemini-2.5-flash-image` | Nano Banana | 1024px | Speed, high-volume tasks |
| `gemini-3-pro-image-preview` | Nano Banana Pro | Up to 4K | Professional assets, complex instructions, text rendering |
## Quick Start Scripts
### Text-to-Image
```bash
python scripts/generate_image.py "A cat wearing a wizard hat" output.png
```
### Edit Existing Image
```bash
python scripts/edit_image.py input.png "Add a rainbow in the background" output.png
```
### Multi-Turn Chat (Iterative Refinement)
```bash
python scripts/multi_turn_chat.py
```
## Core API Pattern
All image generation uses the `generateContent` endpoint with `responseModalities: ["TEXT", "IMAGE"]`:
```python
import os
import base64
from google import genai
client = genai.Client(api_key=os.environ["GEMINI_API_KEY"])
response = client.models.generate_content(
model="gemini-2.5-flash-image",
contents=["Your prompt here"],
)
for part in response.parts:
if part.text:
print(part.text)
elif part.inline_data:
image = part.as_image()
image.save("output.png")
```
## Image Configuration Options
Control output with `image_config`:
```python
from google.genai import types
response = client.models.generate_content(
model="gemini-3-pro-image-preview",
contents=[prompt],
config=types.GenerateContentConfig(
response_modalities=['TEXT', 'IMAGE'],
image_config=types.ImageConfig(
aspect_ratio="16:9", # 1:1, 2:3, 3:2, 3:4, 4:3, 4:5, 5:4, 9:16, 16:9, 21:9
image_size="2K" # 1K, 2K, 4K (Pro only for 4K)
),
)
)
```
## Editing Images
Pass existing images with text prompts:
```python
from PIL import Image
img = Image.open("input.png")
response = client.models.generate_content(
model="gemini-2.5-flash-image",
contents=["Add a sunset to this scene", img],
)
```
## Multi-Turn Refinement
Use chat for iterative editing:
```python
from google.genai import types
chat = client.chats.create(
model="gemini-2.5-flash-image",
config=types.GenerateContentConfig(response_modalities=['TEXT', 'IMAGE'])
)
response = chat.send_message("Create a logo for 'Acme Corp'")
# Save first image...
response = chat.send_message("Make the text bolder and add a blue gradient")
# Save refined image...
```
## Prompting Best Practices
### Photorealistic Scenes
Include camera details: lens type, lighting, angle, mood.
> "A photorealistic close-up portrait, 85mm lens, soft golden hour light, shallow depth of field"
### Stylized Art
Specify style explicitly:
> "A kawaii-style sticker of a happy red panda, bold outlines, cel-shading, white background"
### Text in Images
Be explicit about font style and placement. Use `gemini-3-pro-image-preview` for best results:
> "Create a logo with text 'Daily Grind' in clean sans-serif, black and white, coffee bean motif"
### Product Mockups
Describe lighting setup and surface:
> "Studio-lit product photo on polished concrete, three-point softbox setup, 45-degree angle"
### Landing Pages
Specify layout structure, color scheme, and target audience:
> "Modern landing page hero section, gradient background from deep purple to blue, centered headline with CTA button, clean minimalist design, SaaS product"
> "Landing page for fitness app, energetic layout with workout photos, bright orange and black color scheme, mobile-first design, prominent download buttons"
### Website Design Ideas
Describe overall aesthetic, navigation style, and content hierarchy:
> "E-commerce homepage wireframe, grid layout for products, sticky navigation bar, warm earth tones, plenty of whitespace, professional photography style"
> "Portfolio website for photographer, full-screen image galleries, dark mode interface, elegant serif typography, minimal UI elements to highlight work"
> "Tech startup homepage, glassmorphism design trend, floating cards, neon accent colors on dark background, modern illustrations, hero section with product demo"
## Advanced Features (Pro Model Only)
### Google Search Grounding
Generate images based on real-time data:
```python
response = client.models.generate_content(
model="gemini-3-pro-image-preview",
contents=["Visualize today's weather in Tokyo as an infographic"],
config=types.GenerateContentConfig(
response_modalities=['TEXT', 'IMAGE'],
tools=[{"google_search": {}}]
)
)
```
### Multiple Reference Images (Up to 14)
Combine elements from multiple sources:
```python
response = client.models.generate_content(
model="gemini-3-pro-image-preview",
contents=[
"Create a group photo of these people in an office",
Image.open("person1.png"),
Image.open("person2.png"),
Image.open("person3.png"),
],
)
```
## REST API (curl)
```bash
curl -s -X POST \
"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"contents": [{"parts": [{"text": "A serene mountain landscape"}]}]
}' | jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' | base64 --decode > output.png
```
## Notes
- All generated images include SynthID watermarks
- Image-only mode (`responseModalities: ["IMAGE"]`) won't work with Google Search grounding
- For editing, describe changes conversationally—the model understands semantic masking