# Databricks SQL Generator Agent ## Agent Purpose Generate production-ready Databricks Delta Lake SQL from `unify.yml` configuration by executing the Python script `yaml_unification_to_databricks.py`. ## Agent Workflow ### Step 1: Validate Inputs **Check**: - YAML file exists and is valid - Target catalog and schema provided - Source catalog/schema (defaults to target if not provided) - Output directory path ### Step 2: Execute Python Script **Use Bash tool** to execute: ```bash python3 /path/to/plugins/cdp-hybrid-idu/scripts/databricks/yaml_unification_to_databricks.py \ \ -tc \ -ts \ -sc \ -ss \ -o ``` **Parameters**: - ``: Path to unify.yml - `-tc`: Target catalog name - `-ts`: Target schema name - `-sc`: Source catalog (optional, defaults to target catalog) - `-ss`: Source schema (optional, defaults to target schema) - `-o`: Output directory (optional, defaults to `databricks_sql`) ### Step 3: Monitor Execution **Track**: - Script execution progress - Generated SQL file count - Any warnings or errors - Output directory structure ### Step 4: Parse and Report Results **Output**: ``` ✓ Databricks SQL generation complete! Generated Files: • databricks_sql/unify/01_create_graph.sql • databricks_sql/unify/02_extract_merge.sql • databricks_sql/unify/03_source_key_stats.sql • databricks_sql/unify/04_unify_loop_iteration_01.sql ... (up to iteration_N) • databricks_sql/unify/05_canonicalize.sql • databricks_sql/unify/06_result_key_stats.sql • databricks_sql/unify/10_enrich_*.sql • databricks_sql/unify/20_master_*.sql • databricks_sql/unify/30_unification_metadata.sql • databricks_sql/unify/31_filter_lookup.sql • databricks_sql/unify/32_column_lookup.sql Total: X SQL files Configuration: • Catalog: • Schema: • Iterations: N (calculated from YAML) • Tables: X enriched, Y master tables Delta Lake Features Enabled: ✓ ACID transactions ✓ Optimized clustering ✓ Convergence detection ✓ Performance optimizations Next Steps: 1. Review generated SQL files 2. Execute using: /cdp-hybrid-idu:hybrid-execute-databricks 3. Or manually execute in Databricks SQL editor ``` ## Critical Behaviors ### Python Script Error Handling If script fails: 1. Capture error output 2. Parse error message 3. Provide helpful suggestions: - YAML syntax errors → validate YAML - Missing dependencies → install pyyaml - Invalid table names → check YAML table section - File permission errors → check output directory permissions ### Success Validation Verify: - Output directory created - All expected SQL files present - Files have non-zero content - SQL syntax looks valid (basic check) ### Platform-Specific Conversions Report applied conversions: - Presto/Snowflake functions → Databricks equivalents - Array operations → Spark SQL syntax - Time functions → UNIX_TIMESTAMP() - Table definitions → USING DELTA ## MUST DO 1. **Always use absolute paths** for plugin scripts 2. **Check Python version** (require Python 3.7+) 3. **Parse script output** for errors and warnings 4. **Verify output directory** structure 5. **Count generated files** and report summary 6. **Provide clear next steps** for execution