Initial commit
This commit is contained in:
285
commands/hybrid-generate-databricks.md
Normal file
285
commands/hybrid-generate-databricks.md
Normal file
@@ -0,0 +1,285 @@
|
||||
---
|
||||
name: hybrid-generate-databricks
|
||||
description: Generate Databricks Delta Lake SQL from YAML configuration for ID unification
|
||||
---
|
||||
|
||||
# Generate Databricks SQL from YAML
|
||||
|
||||
## Overview
|
||||
|
||||
Generate production-ready Databricks SQL workflow from your `unify.yml` configuration file. This command creates Delta Lake optimized SQL files with ACID transactions, clustering, and platform-specific function conversions.
|
||||
|
||||
---
|
||||
|
||||
## What You Need
|
||||
|
||||
### Required Inputs
|
||||
1. **YAML Configuration File**: Path to your `unify.yml`
|
||||
2. **Target Catalog**: Databricks Unity Catalog name
|
||||
3. **Target Schema**: Schema name within the catalog
|
||||
|
||||
### Optional Inputs
|
||||
4. **Source Catalog**: Catalog containing source tables (defaults to target catalog)
|
||||
5. **Source Schema**: Schema containing source tables (defaults to target schema)
|
||||
6. **Output Directory**: Where to save generated SQL (defaults to `databricks_sql/`)
|
||||
|
||||
---
|
||||
|
||||
## What I'll Do
|
||||
|
||||
### Step 1: Validation
|
||||
- Verify `unify.yml` exists and is valid
|
||||
- Check YAML syntax and structure
|
||||
- Validate keys, tables, and configuration sections
|
||||
|
||||
### Step 2: SQL Generation
|
||||
I'll call the **databricks-sql-generator agent** to:
|
||||
- Execute `yaml_unification_to_databricks.py` Python script
|
||||
- Apply Databricks-specific SQL conversions:
|
||||
- `ARRAY_SIZE` → `SIZE`
|
||||
- `ARRAY_CONSTRUCT` → `ARRAY`
|
||||
- `OBJECT_CONSTRUCT` → `STRUCT`
|
||||
- `COLLECT_LIST` for aggregations
|
||||
- `FLATTEN` for array operations
|
||||
- `UNIX_TIMESTAMP()` for time functions
|
||||
- Generate Delta Lake table definitions with clustering
|
||||
- Create convergence detection logic
|
||||
- Build cryptographic hashing for canonical IDs
|
||||
|
||||
### Step 3: Output Organization
|
||||
Generate complete SQL workflow in this structure:
|
||||
```
|
||||
databricks_sql/unify/
|
||||
├── 01_create_graph.sql # Initialize graph with USING DELTA
|
||||
├── 02_extract_merge.sql # Extract identities with validation
|
||||
├── 03_source_key_stats.sql # Source statistics with GROUPING SETS
|
||||
├── 04_unify_loop_iteration_*.sql # Loop iterations (auto-calculated count)
|
||||
├── 05_canonicalize.sql # Canonical ID creation with key masks
|
||||
├── 06_result_key_stats.sql # Result statistics with histograms
|
||||
├── 10_enrich_*.sql # Enrich each source table
|
||||
├── 20_master_*.sql # Master tables with attribute aggregation
|
||||
├── 30_unification_metadata.sql # Metadata tables
|
||||
├── 31_filter_lookup.sql # Validation rules lookup
|
||||
└── 32_column_lookup.sql # Column mapping lookup
|
||||
```
|
||||
|
||||
### Step 4: Summary Report
|
||||
Provide:
|
||||
- Total SQL files generated
|
||||
- Estimated execution order
|
||||
- Delta Lake optimizations included
|
||||
- Key features enabled
|
||||
- Next steps for execution
|
||||
|
||||
---
|
||||
|
||||
## Command Usage
|
||||
|
||||
### Basic Usage
|
||||
```
|
||||
/cdp-hybrid-idu:hybrid-generate-databricks
|
||||
|
||||
I'll prompt you for:
|
||||
- YAML file path
|
||||
- Target catalog
|
||||
- Target schema
|
||||
```
|
||||
|
||||
### Advanced Usage
|
||||
Provide all parameters upfront:
|
||||
```
|
||||
YAML file: /path/to/unify.yml
|
||||
Target catalog: my_catalog
|
||||
Target schema: my_schema
|
||||
Source catalog: source_catalog (optional)
|
||||
Source schema: source_schema (optional)
|
||||
Output directory: custom_output/ (optional)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Generated SQL Features
|
||||
|
||||
### Delta Lake Optimizations
|
||||
- **ACID Transactions**: `USING DELTA` for all tables
|
||||
- **Clustering**: `CLUSTER BY (follower_id)` on graph tables
|
||||
- **Table Properties**: Optimized for large-scale joins
|
||||
|
||||
### Advanced Capabilities
|
||||
1. **Dynamic Iteration Count**: Auto-calculates based on:
|
||||
- Number of merge keys
|
||||
- Number of tables
|
||||
- Data complexity (configurable via YAML)
|
||||
|
||||
2. **Key-Specific Hashing**: Each key uses unique cryptographic mask:
|
||||
```
|
||||
Key Type 1 (email): 0ffdbcf0c666ce190d
|
||||
Key Type 2 (customer_id): 61a821f2b646a4e890
|
||||
Key Type 3 (phone): acd2206c3f88b3ee27
|
||||
```
|
||||
|
||||
3. **Validation Rules**:
|
||||
- `valid_regexp`: Regex pattern filtering
|
||||
- `invalid_texts`: NOT IN clause with NULL handling
|
||||
- Combined AND logic for strict validation
|
||||
|
||||
4. **Master Table Attributes**:
|
||||
- Single value: `MAX_BY(attr, order)` with COALESCE
|
||||
- Array values: `SLICE(CONCAT(arrays), 1, N)`
|
||||
- Priority-based selection
|
||||
|
||||
### Platform-Specific Conversions
|
||||
The generator automatically converts:
|
||||
- Presto functions → Databricks equivalents
|
||||
- Snowflake functions → Databricks equivalents
|
||||
- Array operations → Spark SQL syntax
|
||||
- Window functions → optimized versions
|
||||
- Time functions → UNIX_TIMESTAMP()
|
||||
|
||||
---
|
||||
|
||||
## Example Workflow
|
||||
|
||||
### Input YAML (`unify.yml`)
|
||||
```yaml
|
||||
name: customer_unification
|
||||
|
||||
keys:
|
||||
- name: email
|
||||
valid_regexp: ".*@.*"
|
||||
invalid_texts: ['', 'N/A', 'null']
|
||||
- name: customer_id
|
||||
invalid_texts: ['', 'N/A']
|
||||
|
||||
tables:
|
||||
- table: customer_profiles
|
||||
key_columns:
|
||||
- {column: email_std, key: email}
|
||||
- {column: customer_id, key: customer_id}
|
||||
|
||||
canonical_ids:
|
||||
- name: unified_id
|
||||
merge_by_keys: [email, customer_id]
|
||||
merge_iterations: 15
|
||||
|
||||
master_tables:
|
||||
- name: customer_master
|
||||
canonical_id: unified_id
|
||||
attributes:
|
||||
- name: best_email
|
||||
source_columns:
|
||||
- {table: customer_profiles, column: email_std, priority: 1}
|
||||
```
|
||||
|
||||
### Generated Output
|
||||
```
|
||||
databricks_sql/unify/
|
||||
├── 01_create_graph.sql # Creates unified_id_graph_unify_loop_0
|
||||
├── 02_extract_merge.sql # Merges customer_profiles keys
|
||||
├── 03_source_key_stats.sql # Stats by table
|
||||
├── 04_unify_loop_iteration_01.sql # First iteration
|
||||
├── 04_unify_loop_iteration_02.sql # Second iteration
|
||||
├── ... # Up to iteration_05
|
||||
├── 05_canonicalize.sql # Creates unified_id_lookup
|
||||
├── 06_result_key_stats.sql # Final statistics
|
||||
├── 10_enrich_customer_profiles.sql # Adds unified_id column
|
||||
├── 20_master_customer_master.sql # Creates customer_master table
|
||||
├── 30_unification_metadata.sql # Metadata
|
||||
├── 31_filter_lookup.sql # Validation rules
|
||||
└── 32_column_lookup.sql # Column mappings
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Next Steps After Generation
|
||||
|
||||
### Option 1: Execute Immediately
|
||||
Use the execution command:
|
||||
```
|
||||
/cdp-hybrid-idu:hybrid-execute-databricks
|
||||
```
|
||||
|
||||
### Option 2: Review First
|
||||
1. Examine generated SQL files
|
||||
2. Verify table names and transformations
|
||||
3. Test with sample data
|
||||
4. Execute manually or via execution command
|
||||
|
||||
### Option 3: Customize
|
||||
1. Modify generated SQL as needed
|
||||
2. Add custom logic or transformations
|
||||
3. Execute using Databricks SQL editor or execution command
|
||||
|
||||
---
|
||||
|
||||
## Technical Details
|
||||
|
||||
### Python Script Execution
|
||||
The agent executes:
|
||||
```bash
|
||||
python3 scripts/databricks/yaml_unification_to_databricks.py \
|
||||
unify.yml \
|
||||
-tc my_catalog \
|
||||
-ts my_schema \
|
||||
-sc source_catalog \
|
||||
-ss source_schema \
|
||||
-o databricks_sql
|
||||
```
|
||||
|
||||
### SQL File Naming Convention
|
||||
- `01-09`: Setup and initialization
|
||||
- `10-19`: Source table enrichment
|
||||
- `20-29`: Master table creation
|
||||
- `30-39`: Metadata and lookup tables
|
||||
- `04_*_NN`: Loop iterations (auto-numbered)
|
||||
|
||||
### Convergence Detection
|
||||
Each loop iteration includes:
|
||||
```sql
|
||||
-- Check if graph changed
|
||||
SELECT COUNT(*) FROM (
|
||||
SELECT leader_ns, leader_id, follower_ns, follower_id
|
||||
FROM iteration_N
|
||||
EXCEPT
|
||||
SELECT leader_ns, leader_id, follower_ns, follower_id
|
||||
FROM iteration_N_minus_1
|
||||
) diff
|
||||
```
|
||||
Stops when count = 0
|
||||
|
||||
---
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
**Issue**: YAML validation error
|
||||
**Solution**: Check YAML syntax, ensure proper indentation, verify all required fields
|
||||
|
||||
**Issue**: Table not found error
|
||||
**Solution**: Verify source catalog/schema, check table names in YAML
|
||||
|
||||
**Issue**: Python script error
|
||||
**Solution**: Ensure Python 3.7+ installed, check pyyaml dependency
|
||||
|
||||
**Issue**: Too many/few iterations
|
||||
**Solution**: Adjust `merge_iterations` in canonical_ids section of YAML
|
||||
|
||||
---
|
||||
|
||||
## Success Criteria
|
||||
|
||||
Generated SQL will:
|
||||
- ✅ Be valid Databricks Spark SQL
|
||||
- ✅ Use Delta Lake for ACID transactions
|
||||
- ✅ Include proper clustering for performance
|
||||
- ✅ Have convergence detection built-in
|
||||
- ✅ Support incremental processing
|
||||
- ✅ Generate comprehensive statistics
|
||||
- ✅ Work without modification on Databricks
|
||||
|
||||
---
|
||||
|
||||
**Ready to generate Databricks SQL from your YAML configuration?**
|
||||
|
||||
Provide your YAML file path and target catalog/schema to begin!
|
||||
Reference in New Issue
Block a user