{ "$schema": "internal://schemas/plugin.lock.v1.json", "pluginId": "gh:tachyon-beep/skillpacks:plugins/yzmir-training-optimization", "normalized": { "repo": null, "ref": "refs/tags/v20251128.0", "commit": "1a6b6c440fc2093056207eab655a4e9dd2ec4c4a", "treeHash": "9d0b9b47ce83e27e7b927eb0c701097a264827013ffe91f0f3bc10b7e63a5904", "generatedAt": "2025-11-28T10:28:35.048054Z", "toolVersion": "publish_plugins.py@0.2.0" }, "origin": { "remote": "git@github.com:zhongweili/42plugin-data.git", "branch": "master", "commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390", "repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data" }, "manifest": { "name": "yzmir-training-optimization", "description": "Training stability - optimizers, learning rates, convergence, debugging - 11 skills", "version": "1.0.1" }, "content": { "files": [ { "path": "README.md", "sha256": "62fadbf1552b3992391990d6217a2bdaacb0ae8ef43496cfe45b6ef294d445f7" }, { "path": ".claude-plugin/plugin.json", "sha256": "ab9e676b0f5af41d7375a19ab91f6b20b485c83a63871b346d74ff9b34105bc9" }, { "path": "skills/using-training-optimization/gradient-management.md", "sha256": "067d4b2e5a007fc0b9d002e8c7b250a910bdd0044872bf5e0894cc301ed52147" }, { "path": "skills/using-training-optimization/hyperparameter-tuning.md", "sha256": "bc6e5972545fb3f60f64732f3e326c8f4e28e490d46f3258fbf8aa09dca04e5c" }, { "path": "skills/using-training-optimization/optimization-algorithms.md", "sha256": "4fd6a5c71e5b5d429c47ae3e40fa212aff4dffb8fa4fffa6811030feba186ba3" }, { "path": "skills/using-training-optimization/overfitting-prevention.md", "sha256": "eaebe6e390799bdbd1023a73ba60df98a421cb3cd909e3047b3dcfde6b5643db" }, { "path": "skills/using-training-optimization/learning-rate-scheduling.md", "sha256": "dc940fcd9516036cab41bac67731ae220e3741055d7684702987bf1b23e2db98" }, { "path": "skills/using-training-optimization/data-augmentation-strategies.md", "sha256": "b585581efe16abdaa359d8136c4e546d3283635857b8b031fa863e58ad079b6e" }, { "path": "skills/using-training-optimization/batch-size-and-memory-tradeoffs.md", "sha256": "feeb5b24feb77c4c816ab6442ce69e35fe0352ab6f209bda9fd82c278765f5f2" }, { "path": "skills/using-training-optimization/loss-functions-and-objectives.md", "sha256": "6e953263309eed649fbf8e4aad5cbcc5161507158e20f8d67532b576837deb7b" }, { "path": "skills/using-training-optimization/SKILL.md", "sha256": "e171600f2a1c9c126b1c4677118ef566e17a3181227993fac4ee901996f72964" }, { "path": "skills/using-training-optimization/training-loop-architecture.md", "sha256": "ea96698c4a8f21d77dc559728b669a78a1d9a04fd73c5a73ad7fa4ad97259f62" }, { "path": "skills/using-training-optimization/experiment-tracking.md", "sha256": "90c1626f4fff358148da196d1a0d7da5c915de5e79b795611b9b19906358a049" } ], "dirSha256": "9d0b9b47ce83e27e7b927eb0c701097a264827013ffe91f0f3bc10b7e63a5904" }, "security": { "scannedAt": null, "scannerVersion": null, "flags": [] } }