Files
gh-tachyon-beep-skillpacks-…/plugin.lock.json
2025-11-30 08:59:57 +08:00

85 lines
3.2 KiB
JSON

{
"$schema": "internal://schemas/plugin.lock.v1.json",
"pluginId": "gh:tachyon-beep/skillpacks:plugins/yzmir-ml-production",
"normalized": {
"repo": null,
"ref": "refs/tags/v20251128.0",
"commit": "2b410bec7eaeb0c8a9bb0944e59216593615f9d4",
"treeHash": "eff4907ab2e6683eaed3c80098f70e214f76e7d0b01c6ab1173d990104a2483f",
"generatedAt": "2025-11-28T10:28:34.035004Z",
"toolVersion": "publish_plugins.py@0.2.0"
},
"origin": {
"remote": "git@github.com:zhongweili/42plugin-data.git",
"branch": "master",
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
},
"manifest": {
"name": "yzmir-ml-production",
"description": "Production ML - quantization, serving, MLOps, monitoring, debugging - 11 skills",
"version": "1.0.1"
},
"content": {
"files": [
{
"path": "README.md",
"sha256": "e662853b40fdc3d0674eaf0d5ab055bbda78021646fa507cacac3a638eaf6726"
},
{
"path": ".claude-plugin/plugin.json",
"sha256": "f508684440605ce9616c6203557e05fde2093ff6dcfb786ed6ee5f1886a92470"
},
{
"path": "skills/using-ml-production/hardware-optimization-strategies.md",
"sha256": "b7c04b2be4799b096b9f4990ecc0ef9fe0c4fb9d82acb2420a9c66b894336164"
},
{
"path": "skills/using-ml-production/production-debugging-techniques.md",
"sha256": "0008cbd074283fb34620636b12ad9f1374eb213b82ceba5ad6f20c3902d2827b"
},
{
"path": "skills/using-ml-production/model-compression-techniques.md",
"sha256": "5ee236c2a752571e7f3e700981440059815c89833b621f510d529c6d07952664"
},
{
"path": "skills/using-ml-production/model-serving-patterns.md",
"sha256": "b5490e4022c1f818d19217dc35694e49a32d3af235a909e5b17b75fc412ec5e3"
},
{
"path": "skills/using-ml-production/deployment-strategies.md",
"sha256": "0c8b29536a152f61998f48e07bd53b628fa0bc5267f65179018645b6e269df4f"
},
{
"path": "skills/using-ml-production/scaling-and-load-balancing.md",
"sha256": "dd3a9db87eab63298086799b35e316f6026eb2434873007bd30bd96dc156674b"
},
{
"path": "skills/using-ml-production/production-monitoring-and-alerting.md",
"sha256": "1c3771cb0de01570a4cd2fd72259f05018756975e9f6d83740a9604c343d1576"
},
{
"path": "skills/using-ml-production/quantization-for-inference.md",
"sha256": "bfa1fadf2a1686a7c6157cc38fe5b71abd5969b7c26fadaef10789feba166ba9"
},
{
"path": "skills/using-ml-production/SKILL.md",
"sha256": "8f9352b2c826bcfbf78b21d1e398c519c77b950b3403faeb6e365646f9b5b518"
},
{
"path": "skills/using-ml-production/mlops-pipeline-automation.md",
"sha256": "e8474c4ff586cc6710b853c8bec89cbcac44957a320764367fac1227c09efc41"
},
{
"path": "skills/using-ml-production/experiment-tracking-and-versioning.md",
"sha256": "410c9c2d9c93783496d8df021d7c6a503661fe03d75d7b76432329589a317c0d"
}
],
"dirSha256": "eff4907ab2e6683eaed3c80098f70e214f76e7d0b01c6ab1173d990104a2483f"
},
"security": {
"scannedAt": null,
"scannerVersion": null,
"flags": []
}
}