Initial commit
This commit is contained in:
206
hooks/tool_cost_tracker.py
Executable file
206
hooks/tool_cost_tracker.py
Executable file
@@ -0,0 +1,206 @@
|
||||
#!/usr/bin/env -S uv run --script
|
||||
# /// script
|
||||
# requires-python = ">=3.10"
|
||||
# dependencies = []
|
||||
# ///
|
||||
|
||||
"""
|
||||
PostToolUse hook to track actual costs vs. estimates.
|
||||
|
||||
Compares routing decisions with actual token usage to:
|
||||
1. Validate routing decisions
|
||||
2. Track cumulative costs
|
||||
3. Calculate actual Haiku vs Sonnet savings
|
||||
4. Feed data to weekly review
|
||||
"""
|
||||
|
||||
import json
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
# Add parent directory to path for imports
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
from lib.observability_db import ObservabilityDB
|
||||
|
||||
|
||||
class CostTracker:
|
||||
"""
|
||||
Track actual tool costs and compare with routing estimates.
|
||||
|
||||
Cost model (per 1K tokens):
|
||||
- Sonnet input: $0.003
|
||||
- Sonnet output: $0.015
|
||||
- Haiku input: $0.00025
|
||||
- Haiku output: $0.00125
|
||||
"""
|
||||
|
||||
SONNET_INPUT_COST = 0.003
|
||||
SONNET_OUTPUT_COST = 0.015
|
||||
HAIKU_INPUT_COST = 0.00025
|
||||
HAIKU_OUTPUT_COST = 0.00125
|
||||
|
||||
def __init__(self):
|
||||
self.db = ObservabilityDB()
|
||||
|
||||
def track_tool_usage(
|
||||
self,
|
||||
tool_name: str,
|
||||
tool_params: dict[str, Any],
|
||||
result: Any,
|
||||
model_used: str = "sonnet", # "sonnet" or "haiku"
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Track actual tool usage and calculate costs.
|
||||
|
||||
Args:
|
||||
tool_name: Name of tool used
|
||||
tool_params: Tool parameters
|
||||
result: Tool result/output
|
||||
model_used: Which model executed the tool
|
||||
|
||||
Returns:
|
||||
Cost analysis dictionary
|
||||
"""
|
||||
|
||||
# Estimate tokens from result
|
||||
estimated_tokens = self._estimate_tokens(tool_name, result)
|
||||
|
||||
# Calculate actual cost
|
||||
if model_used == "sonnet":
|
||||
input_cost = (estimated_tokens / 1000) * self.SONNET_INPUT_COST
|
||||
output_cost = (estimated_tokens / 1000) * self.SONNET_OUTPUT_COST
|
||||
total_cost = input_cost + output_cost
|
||||
else: # haiku
|
||||
input_cost = (estimated_tokens / 1000) * self.HAIKU_INPUT_COST
|
||||
output_cost = (estimated_tokens / 1000) * self.HAIKU_OUTPUT_COST
|
||||
total_cost = input_cost + output_cost
|
||||
|
||||
# Calculate potential savings if wrong model used
|
||||
if model_used == "sonnet":
|
||||
haiku_cost = (estimated_tokens / 1000) * (
|
||||
self.HAIKU_INPUT_COST + self.HAIKU_OUTPUT_COST
|
||||
)
|
||||
potential_savings = total_cost - haiku_cost
|
||||
else:
|
||||
potential_savings = 0.0 # Already using cheapest model
|
||||
|
||||
cost_analysis = {
|
||||
"tool": tool_name,
|
||||
"model": model_used,
|
||||
"estimated_tokens": estimated_tokens,
|
||||
"actual_cost": total_cost,
|
||||
"potential_savings": potential_savings,
|
||||
"efficiency": "optimal" if potential_savings <= 0 else "suboptimal",
|
||||
}
|
||||
|
||||
return cost_analysis
|
||||
|
||||
def _estimate_tokens(self, tool_name: str, result: Any) -> int:
|
||||
"""
|
||||
Estimate tokens from tool result.
|
||||
|
||||
Rough heuristics:
|
||||
- Read: ~2 tokens per line
|
||||
- Bash: ~0.5 tokens per char
|
||||
- Grep: ~1 token per match
|
||||
- Other: ~100 tokens baseline
|
||||
"""
|
||||
|
||||
if isinstance(result, dict):
|
||||
result_str = json.dumps(result)
|
||||
else:
|
||||
result_str = str(result)
|
||||
|
||||
# Tool-specific heuristics
|
||||
if tool_name == "Read":
|
||||
line_count = result_str.count("\n")
|
||||
return line_count * 2
|
||||
elif tool_name == "Bash":
|
||||
return len(result_str) // 2
|
||||
elif tool_name == "Grep":
|
||||
match_count = result_str.count("\n")
|
||||
return match_count * 1
|
||||
else:
|
||||
# Generic: ~4 chars per token
|
||||
return len(result_str) // 4
|
||||
|
||||
def log_cost_metrics(self, cost_analysis: dict[str, Any]):
|
||||
"""Log cost metrics to observability database."""
|
||||
|
||||
self.db.log_performance_metric(
|
||||
component="cost_tracker",
|
||||
operation="tool_cost",
|
||||
latency_ms=0.0,
|
||||
metadata={
|
||||
"tool": cost_analysis["tool"],
|
||||
"model": cost_analysis["model"],
|
||||
"tokens": cost_analysis["estimated_tokens"],
|
||||
"cost": cost_analysis["actual_cost"],
|
||||
"savings": cost_analysis["potential_savings"],
|
||||
"efficiency": cost_analysis["efficiency"],
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point for PostToolUse hook."""
|
||||
try:
|
||||
# Read hook input from stdin
|
||||
hook_data: dict[str, Any] = json.load(sys.stdin)
|
||||
|
||||
tool: dict[str, Any] = hook_data.get("tool", {})
|
||||
tool_name: str = tool.get("name", "")
|
||||
tool_params: dict[str, Any] = tool.get("parameters", {})
|
||||
result: Any = hook_data.get("result", {})
|
||||
|
||||
# Detect which model was used
|
||||
# Heuristic: If result is very large but fast, likely Haiku
|
||||
# For now, assume Sonnet (can be enhanced with actual detection)
|
||||
model_used = "sonnet"
|
||||
|
||||
# Track cost
|
||||
tracker = CostTracker()
|
||||
cost_analysis = tracker.track_tool_usage(
|
||||
tool_name, tool_params, result, model_used
|
||||
)
|
||||
|
||||
# Log to database
|
||||
tracker.log_cost_metrics(cost_analysis)
|
||||
|
||||
# Generate feedback if significant savings possible
|
||||
if cost_analysis["potential_savings"] > 0.01: # $0.01 threshold
|
||||
feedback = f"""
|
||||
💰 **Cost Optimization Opportunity**
|
||||
|
||||
Tool: `{tool_name}`
|
||||
Current cost: ${cost_analysis["actual_cost"]:.4f}
|
||||
Potential savings: ${cost_analysis["potential_savings"]:.4f}
|
||||
|
||||
This operation could be delegated to Haiku for cost efficiency.
|
||||
""".strip()
|
||||
|
||||
output = {"continue": True, "additionalContext": feedback}
|
||||
else:
|
||||
output = {"continue": True}
|
||||
|
||||
print(json.dumps(output))
|
||||
|
||||
except Exception as e:
|
||||
# Log error but don't block
|
||||
try:
|
||||
db = ObservabilityDB()
|
||||
db.log_error(
|
||||
component="cost_tracker",
|
||||
message=str(e),
|
||||
error_type=type(e).__name__,
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Always continue
|
||||
print(json.dumps({"continue": True}))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user