# Additional Features Guide Additional SAP Data Intelligence features including monitoring, cloud storage services, scenario templates, data types, and Git integration. ## Table of Contents 1. [Monitoring Application](#monitoring-application) 2. [Cloud Storage Services](#cloud-storage-services) 3. [Scenario Templates](#scenario-templates) 4. [Custom Data Types](#custom-data-types) 5. [Git Terminal Integration](#git-terminal-integration) 6. [Graph Snippets](#graph-snippets) --- ## Monitoring Application SAP Data Intelligence includes a stand-alone monitoring application for operational oversight. ### Accessing the Monitor **Options:** - SAP Data Intelligence Launchpad tile - Direct stable URL access ### Capabilities | Feature | Description | |---------|-------------| | Graph Status | View execution status, timing, type, source | | Scheduling | Schedule graph executions | | Termination | Terminate running processes | | Navigation | Open graphs directly in Modeler | | Configuration | Review graph configurations | | Replication Flows | Monitor flows and associated tasks | ### Access Permissions **With `sap.dh.monitoring` policy:** - View analytics and instances for all tenant users - Does not include schedule access **Without policy:** - Monitor only your own graphs ### What's Displayed For each graph instance: - Execution status (Running, Completed, Failed, Dead) - Run timing (start, end, duration) - Graph classification - Source origin --- ## Cloud Storage Services SAP Data Intelligence supports multiple cloud storage platforms. ### Supported Services | Service | Description | Protocol | |---------|-------------|----------| | **Amazon S3** | AWS object storage | S3 API | | **Azure Blob Storage (WASB)** | Microsoft cloud storage | WASB protocol | | **Azure Data Lake (ADL/ADLS Gen2)** | Microsoft data lake | ADLS API | | **Google Cloud Storage (GCS)** | Google object storage | GCS API | | **Alibaba Cloud OSS** | Alibaba object storage | OSS API | | **HDFS** | Hadoop distributed file system | HDFS protocol | | **WebHDFS** | HDFS via REST API | HTTP/REST | | **Local File System** | Local storage | File system | ### Connection Configuration Each service requires specific connection parameters in Connection Management. **Common Parameters:** - Connection ID - Root path/bucket - Authentication credentials **Service-Specific Examples:** **Amazon S3:** ``` Connection Type: S3 Region: us-east-1 Access Key: Secret Key: Bucket: my-bucket ``` **Azure Blob Storage:** ``` Connection Type: WASB Account Name: Account Key: Container: my-container ``` **Google Cloud Storage:** ``` Connection Type: GCS Project ID: Service Account Key: Bucket: my-bucket ``` ### Usage in Operators File operators use connection IDs to access storage: - Structured File Consumer/Producer - Binary File Consumer/Producer - Cloud-specific operators (S3 Consumer, etc.) --- ## Scenario Templates Pre-built graph scenarios for common use cases. ### Finding Templates 1. Open Modeler application 2. Navigate to Graphs tab 3. Enable "Scenario Templates" in visible categories 4. Or search for package `com.sap.scenarioTemplates` ### Template Categories #### 1. ABAP with Data Lakes Ingest ABAP data into cloud storage. **Use Cases:** - Extract ABAP tables to S3/Azure/GCS - Replicate CDS views to data lake - S/4HANA data extraction **Key Operators:** - ABAP CDS Reader - Read Data From SAP System - Structured File Producer #### 2. Data Processing with Scripting Languages Manipulate data using scripts. **Use Cases:** - Custom transformations with Python - JavaScript data processing - R statistical analysis **Key Operators:** - Python3 Operator - JavaScript Operator - R Operator #### 3. ETL from Database Extract, transform, and load database data. **Use Cases:** - Database to file storage - Database to database transfer - SQL-based transformations **Key Operators:** - SQL Consumer - Structured SQL Consumer - Table Producer #### 4. Loading Data from Data Lake to SAP HANA Batch and stream data to HANA. **Use Cases:** - Load files to HANA tables - Stream data to HANA - Data lake integration **Key Operators:** - Structured File Consumer - HANA Client - Write HANA Table ### Using Templates 1. Find template in Graphs tab 2. Copy template to your workspace 3. Customize connections and parameters 4. Test with sample data 5. Deploy for production use --- ## Custom Data Types Extend the type system with custom data types. ### Data Type Categories | Category | Description | Customizable | |----------|-------------|--------------| | **Scalar** | Basic types (string, int, etc.) | No | | **Structure** | Composite with named properties | Yes | | **Table** | Column-based with keys | Yes | ### Creating Global Data Types 1. **Access Editor:** - Open Modeler - Navigate to Data Types tab - Click plus icon 2. **Configure Type:** - Enter name (two+ identifiers separated by periods) - Select type: Structure or Table - Click OK 3. **Define Properties:** - Add properties with plus icon - For structures: property name + scalar type - For tables: property name + scalar type + optional Key flag 4. **Save:** - Click save icon - Use "Save As" for variants ### Naming Convention ``` namespace.typename Examples: com.mycompany.CustomerRecord com.mycompany.SalesData ``` ### Structure Type Example ``` Type: com.company.Address Properties: - street: string - city: string - country: string - postalCode: string ``` ### Table Type Example ``` Type: com.company.OrderItems Properties: - orderId: string (Key) - lineNumber: int64 (Key) - productId: string - quantity: int32 - unitPrice: float64 ``` ### Managing Data Types | Action | How | |--------|-----| | Edit | Double-click in tree view | | Delete | Right-click > Delete | | Copy | Save As with new name | --- ## Git Terminal Integration Version control integration for SAP Data Intelligence artifacts. ### Purpose Integrate file-based content with Git servers: - Graphs - Operators - Dockerfiles - Script code ### Accessing Git Terminal 1. Open Modeler 2. Navigate to Git Terminal option 3. Terminal opens with Git capabilities ### Available Commands | Command | Function | |---------|----------| | `git init` | Initialize local repository | | `git clone ` | Clone remote repository | | `git add` | Stage changes | | `git commit` | Commit changes | | `git push` | Push to remote | | `git pull` | Pull from remote | | `git branch` | Create/list branches | | `git merge` | Merge branches | | `git rebase` | Rebase commits | | `git status` | View status | | `git log` | View history | ### Credential Handling Configure Git credentials using standard Git Credential Helper: ```bash git config --global credential.helper store git config --global user.name "Your Name" git config --global user.email "your.email@company.com" ``` ### Creating Local Repository ```bash cd /workspace/my-project git init git add . git commit -m "Initial commit" ``` ### Cloning Remote Repository ```bash git clone [https://github.com/your-org/your-repo.git](https://github.com/your-org/your-repo.git) cd your-repo ``` ### .gitignore Configuration Control what gets tracked: ```gitignore # Ignore all except specific files * !graph.json !operator.json !*.py ``` ### Best Practices 1. **Commit Often**: Small, focused commits 2. **Use Branches**: Feature branches for development 3. **Pull Before Push**: Avoid conflicts 4. **Meaningful Messages**: Descriptive commit messages 5. **Review Changes**: Check status before commit --- ## Graph Snippets Reusable graph fragments for common patterns. ### Creating Snippets 1. Build working graph pattern 2. Select operators to include 3. Right-click > Save as Snippet 4. Name and describe snippet ### Using Snippets 1. Open Graphs tab 2. Find snippet in repository 3. Drag snippet to canvas 4. Configure connections 5. Customize parameters ### Snippet Best Practices 1. **Document Well**: Clear descriptions 2. **Parameterize**: Use substitution variables 3. **Test Thoroughly**: Verify before sharing 4. **Version**: Track snippet versions --- ## Documentation Links - **Monitoring**: [https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/dataintelligence-monitoring](https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/dataintelligence-monitoring) - **Service-Specific**: [https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/service-specific-information](https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/service-specific-information) - **Scenario Templates**: [https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/using-scenario-templates](https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/using-scenario-templates) - **Data Types**: [https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/creating-data-types](https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/creating-data-types) - **Git Terminal**: [https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/using-git-terminal](https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/using-git-terminal) - **Graph Snippets**: [https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/using-graph-snippets](https://github.com/SAP-docs/sap-hana-cloud-data-intelligence/tree/main/docs/modelingguide/using-graph-snippets) --- **Last Updated**: 2025-11-22