7.1 KiB
AI Development Best Practices on SAP BTP
Comprehensive guide for implementing AI solutions on SAP Business Technology Platform using SAP AI Core and related services.
Source Repository: SAP-samples/sap-btp-ai-best-practices
Documentation Portal: https://btp-ai-bp.docs.sap/
Project Catalog: AI4U Project Catalog
Overview
SAP BTP provides AI capabilities through SAP AI Core, enabling both Generative AI (LLMs, chatbots, RAG) and Narrow AI (classical ML, predictions) implementations.
Requirements:
- SAP Business Technology Platform account
- Access to SAP AI Core service
- Code examples available in: TypeScript, Python, Java, CAP
Generative AI Best Practices
1. Secure Access to AI Models
Access generative AI models through SAP AI Core with proper authentication:
# Python example - Secure model access
from gen_ai_hub.proxy.native.openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Hello, how can you help?"}]
)
// TypeScript example
import { OpenAI } from '@sap-ai-sdk/gen-ai-hub';
const client = new OpenAI();
const response = await client.chat.completions.create({
model: 'gpt-4',
messages: [{ role: 'user', content: 'Hello, how can you help?' }]
});
Key Considerations:
- Use SAP AI Core service keys for authentication
- Configure environment variables from
.envfiles - Never hardcode credentials in application code
2. Prompt Template Patterns
Create effective, reusable prompts:
# Prompt template pattern
SYSTEM_PROMPT = """You are a helpful assistant for {domain}.
Your task is to {task_description}.
Always respond in {language}."""
USER_PROMPT = """
Context: {context}
Question: {user_question}
"""
Best Practices:
- Separate system and user prompts
- Use placeholders for dynamic content
- Include clear task descriptions
- Specify output format expectations
3. Retrieval-Augmented Generation (RAG)
Implement RAG systems for grounding LLM responses with enterprise data:
Architecture:
Documents → Chunking → Embeddings → Vector Store
↓
User Query → Embedding → Similarity Search → Context
↓
LLM ← Context + Query → Response
Key Components:
- Document chunking strategies
- Vector embeddings (SAP AI Core embedding models)
- Vector database (SAP HANA Cloud Vector Engine)
- Context window management
4. Content Filtering
Implement content safety for AI-generated outputs:
- Configure content filtering policies in SAP AI Core
- Implement input validation before sending to models
- Add output filtering for inappropriate content
- Log and monitor filtered content for analysis
5. PII Data Masking
Protect personally identifiable information:
# Data masking pattern
def mask_pii(text: str) -> str:
"""Mask PII before sending to LLM"""
# Replace emails, phone numbers, SSNs
masked = re.sub(r'\b[\w.-]+@[\w.-]+\.\w+\b', '[EMAIL]', text)
masked = re.sub(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', '[PHONE]', masked)
return masked
Best Practices:
- Mask PII before sending to external models
- Use SAP Data Privacy Integration where available
- Implement reversible masking for response reconstruction
- Audit PII handling in AI workflows
Narrow AI Best Practices
Regression Models
Classical ML for predictions (sales forecasting, demand planning):
- Use SAP AI Core for model training and deployment
- Implement proper feature engineering
- Validate models with held-out test data
- Monitor model drift in production
Anomaly Detection
Detect outliers in business data:
Use Cases:
- Financial transaction monitoring
- Quality control in manufacturing
- Log analysis for system health
- Document outlier detection
Approaches:
- Statistical methods (z-score, IQR)
- Machine learning (Isolation Forest, Autoencoders)
- Time-series anomaly detection
AI Services Best Practices
SAP Document AI
Extract information from documents:
- Invoice processing
- Purchase order extraction
- Contract analysis
- Form recognition
SAP Translation Hub
Multilingual content translation:
- Configure language pairs
- Handle domain-specific terminology
- Implement async translation for large documents
Use Cases Catalog
The repository includes 20+ end-to-end implementations:
| Category | Use Case | Description |
|---|---|---|
| Chatbots & Agents | agentic-chatbot | Multi-tool AI agent implementation |
| email-agent | Automated email processing and response | |
| post-sales-chatbot | Customer support automation | |
| Document Processing | ai-pdf-information-extraction | Extract data from PDF documents |
| diagram-to-bpmn | Convert diagrams to BPMN format | |
| sales-order-extractor | Extract sales order information | |
| rfqx-doc-analysis-utilities | RFQ document analysis | |
| Procurement | intelligent-procurement-assistant | AI-powered procurement workflows |
| intelligent-negotiation-assistant | Negotiation support with AI | |
| vendor-selection-optimization | Optimize vendor selection | |
| Analytics | anomaly-detection | Detect anomalies in business data |
| ai-log-analyzer | Analyze system logs with AI | |
| customer-credit-check | AI-assisted credit evaluation | |
| document-outlier-detection | Find outlier documents | |
| Business Process | ai-powered-email-cockpit | Email classification and routing |
| utilities-tariff-mapping-cockpit | Tariff mapping automation | |
| touchless-transactions-ai-agent | Automated GR/Invoice workflows | |
| product-catalog-search | AI-enhanced product search | |
| ai-capability-matcher | Match capabilities with AI |
Quick Start
# Clone the repository
git clone [https://github.com/SAP-samples/sap-btp-ai-best-practices.git](https://github.com/SAP-samples/sap-btp-ai-best-practices.git)
cd sap-btp-ai-best-practices
# Navigate to a specific best practice
cd best-practices/generative-ai/access-to-ai-models/python
pip install -r requirements.txt
cp .env.example .env
# Edit .env with your SAP AI Core service key
python main.py
Resources
| Resource | Link |
|---|---|
| Documentation Portal | https://btp-ai-bp.docs.sap/ |
| GitHub Repository | https://github.com/SAP-samples/sap-btp-ai-best-practices |
| Project Catalog | https://ai4u-website.cfapps.eu10-004.hana.ondemand.com/project-catalog |
| SAP AI Core Documentation | https://help.sap.com/docs/sap-ai-core |
License: Apache-2.0
Last Updated: 2025-11-22
Repository: https://github.com/secondsky/sap-skills