Files
gh-secondsky-sap-skills-ski…/references/ai-development-best-practices.md
2025-11-30 08:54:47 +08:00

7.1 KiB

AI Development Best Practices on SAP BTP

Comprehensive guide for implementing AI solutions on SAP Business Technology Platform using SAP AI Core and related services.

Source Repository: SAP-samples/sap-btp-ai-best-practices
Documentation Portal: https://btp-ai-bp.docs.sap/
Project Catalog: AI4U Project Catalog


Overview

SAP BTP provides AI capabilities through SAP AI Core, enabling both Generative AI (LLMs, chatbots, RAG) and Narrow AI (classical ML, predictions) implementations.

Requirements:

  • SAP Business Technology Platform account
  • Access to SAP AI Core service
  • Code examples available in: TypeScript, Python, Java, CAP

Generative AI Best Practices

1. Secure Access to AI Models

Access generative AI models through SAP AI Core with proper authentication:

# Python example - Secure model access
from gen_ai_hub.proxy.native.openai import OpenAI

client = OpenAI()
response = client.chat.completions.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "Hello, how can you help?"}]
)
// TypeScript example
import { OpenAI } from '@sap-ai-sdk/gen-ai-hub';

const client = new OpenAI();
const response = await client.chat.completions.create({
    model: 'gpt-4',
    messages: [{ role: 'user', content: 'Hello, how can you help?' }]
});

Key Considerations:

  • Use SAP AI Core service keys for authentication
  • Configure environment variables from .env files
  • Never hardcode credentials in application code

2. Prompt Template Patterns

Create effective, reusable prompts:

# Prompt template pattern
SYSTEM_PROMPT = """You are a helpful assistant for {domain}.
Your task is to {task_description}.
Always respond in {language}."""

USER_PROMPT = """
Context: {context}
Question: {user_question}
"""

Best Practices:

  • Separate system and user prompts
  • Use placeholders for dynamic content
  • Include clear task descriptions
  • Specify output format expectations

3. Retrieval-Augmented Generation (RAG)

Implement RAG systems for grounding LLM responses with enterprise data:

Architecture:

Documents → Chunking → Embeddings → Vector Store
                                         ↓
User Query → Embedding → Similarity Search → Context
                                                ↓
                         LLM ← Context + Query → Response

Key Components:

  • Document chunking strategies
  • Vector embeddings (SAP AI Core embedding models)
  • Vector database (SAP HANA Cloud Vector Engine)
  • Context window management

4. Content Filtering

Implement content safety for AI-generated outputs:

  • Configure content filtering policies in SAP AI Core
  • Implement input validation before sending to models
  • Add output filtering for inappropriate content
  • Log and monitor filtered content for analysis

5. PII Data Masking

Protect personally identifiable information:

# Data masking pattern
def mask_pii(text: str) -> str:
    """Mask PII before sending to LLM"""
    # Replace emails, phone numbers, SSNs
    masked = re.sub(r'\b[\w.-]+@[\w.-]+\.\w+\b', '[EMAIL]', text)
    masked = re.sub(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', '[PHONE]', masked)
    return masked

Best Practices:

  • Mask PII before sending to external models
  • Use SAP Data Privacy Integration where available
  • Implement reversible masking for response reconstruction
  • Audit PII handling in AI workflows

Narrow AI Best Practices

Regression Models

Classical ML for predictions (sales forecasting, demand planning):

  • Use SAP AI Core for model training and deployment
  • Implement proper feature engineering
  • Validate models with held-out test data
  • Monitor model drift in production

Anomaly Detection

Detect outliers in business data:

Use Cases:

  • Financial transaction monitoring
  • Quality control in manufacturing
  • Log analysis for system health
  • Document outlier detection

Approaches:

  • Statistical methods (z-score, IQR)
  • Machine learning (Isolation Forest, Autoencoders)
  • Time-series anomaly detection

AI Services Best Practices

SAP Document AI

Extract information from documents:

  • Invoice processing
  • Purchase order extraction
  • Contract analysis
  • Form recognition

SAP Translation Hub

Multilingual content translation:

  • Configure language pairs
  • Handle domain-specific terminology
  • Implement async translation for large documents

Use Cases Catalog

The repository includes 20+ end-to-end implementations:

Category Use Case Description
Chatbots & Agents agentic-chatbot Multi-tool AI agent implementation
email-agent Automated email processing and response
post-sales-chatbot Customer support automation
Document Processing ai-pdf-information-extraction Extract data from PDF documents
diagram-to-bpmn Convert diagrams to BPMN format
sales-order-extractor Extract sales order information
rfqx-doc-analysis-utilities RFQ document analysis
Procurement intelligent-procurement-assistant AI-powered procurement workflows
intelligent-negotiation-assistant Negotiation support with AI
vendor-selection-optimization Optimize vendor selection
Analytics anomaly-detection Detect anomalies in business data
ai-log-analyzer Analyze system logs with AI
customer-credit-check AI-assisted credit evaluation
document-outlier-detection Find outlier documents
Business Process ai-powered-email-cockpit Email classification and routing
utilities-tariff-mapping-cockpit Tariff mapping automation
touchless-transactions-ai-agent Automated GR/Invoice workflows
product-catalog-search AI-enhanced product search
ai-capability-matcher Match capabilities with AI

Quick Start

# Clone the repository
git clone [https://github.com/SAP-samples/sap-btp-ai-best-practices.git](https://github.com/SAP-samples/sap-btp-ai-best-practices.git)
cd sap-btp-ai-best-practices

# Navigate to a specific best practice
cd best-practices/generative-ai/access-to-ai-models/python
pip install -r requirements.txt
cp .env.example .env
# Edit .env with your SAP AI Core service key
python main.py

Resources

Resource Link
Documentation Portal https://btp-ai-bp.docs.sap/
GitHub Repository https://github.com/SAP-samples/sap-btp-ai-best-practices
Project Catalog https://ai4u-website.cfapps.eu10-004.hana.ondemand.com/project-catalog
SAP AI Core Documentation https://help.sap.com/docs/sap-ai-core

License: Apache-2.0
Last Updated: 2025-11-22
Repository: https://github.com/secondsky/sap-skills