Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:54:41 +08:00
commit 47e178c6cb
15 changed files with 5385 additions and 0 deletions

View File

@@ -0,0 +1,598 @@
# SAP AI Launchpad Complete Guide
Comprehensive reference for SAP AI Launchpad features and operations.
**Documentation Source:** [https://github.com/SAP-docs/sap-artificial-intelligence/tree/main/docs/sap-ai-launchpad](https://github.com/SAP-docs/sap-artificial-intelligence/tree/main/docs/sap-ai-launchpad)
---
## Table of Contents
1. [Overview](#overview)
2. [Initial Setup](#initial-setup)
3. [Workspaces and Connections](#workspaces-and-connections)
4. [User Roles](#user-roles)
5. [Generative AI Hub](#generative-ai-hub)
6. [Prompt Editor](#prompt-editor)
7. [Orchestration Workflows](#orchestration-workflows)
8. [ML Operations](#ml-operations)
9. [Configurations](#configurations)
10. [Deployments](#deployments)
11. [Executions and Runs](#executions-and-runs)
12. [Schedules](#schedules)
13. [Datasets and Artifacts](#datasets-and-artifacts)
14. [Model Comparison](#model-comparison)
15. [Applications](#applications)
16. [Meta API and Custom Runtime Capabilities](#meta-api-and-custom-runtime-capabilities)
---
## Overview
SAP AI Launchpad is a multitenant SaaS application on SAP BTP that provides:
- Management UI for AI runtimes (SAP AI Core)
- Generative AI Hub for prompt experimentation
- ML Operations for model lifecycle management
- Analytics and monitoring dashboards
### Two User Types
| Type | Description |
|------|-------------|
| **AI Scenario Producer** | Engineers developing and productizing AI scenarios |
| **AI Scenario Consumer** | Business analysts subscribing to and using AI scenarios |
---
## Initial Setup
### Prerequisites
1. SAP BTP enterprise account
2. Subaccount with Cloud Foundry enabled
3. SAP AI Launchpad subscription
4. SAP AI Core instance (for runtime connection)
### Setup Steps
1. **Create Subaccount** with Cloud Foundry environment
2. **Subscribe to SAP AI Launchpad** in Service Marketplace
3. **Create Service Instance** of SAP AI Core (if needed)
4. **Assign Role Collections** to users
5. **Add Connection** to SAP AI Core runtime
### Service Plans
| Plan | Cost | Support | GenAI Hub |
|------|------|---------|-----------|
| **Free** | Free | Community only, no SLA | No |
| **Standard** | Monthly fixed price | Full SAP support | Yes |
**Note:** Free → Standard upgrade preserves data; downgrade not supported.
---
## Workspaces and Connections
### Adding a Connection
1. Navigate to **Administration****Connections**
2. Click **Add**
3. Enter connection details:
- Name
- Service Key (from SAP AI Core)
4. Test connection
5. Save
### Managing Connections
| Operation | Description |
|-----------|-------------|
| Edit | Modify connection settings |
| Delete | Remove connection |
| Test | Verify connectivity |
| Set Default | Make primary connection |
### Assigning Connection to Workspace
1. Navigate to **Workspaces**
2. Select workspace
3. Click **Assign Connection**
4. Select connection from dropdown
5. Confirm
---
## User Roles
### Administrative Roles
| Role | Capabilities |
|------|--------------|
| `ailaunchpad_admin` | Full administrative access |
| `ailaunchpad_connections_editor` | Manage connections |
| `ailaunchpad_aicore_admin` | SAP AI Core integration management |
### ML Operations Roles
| Role | Capabilities |
|------|--------------|
| `ailaunchpad_mloperations_viewer` | View ML operations |
| `ailaunchpad_mloperations_editor` | Full ML operations access |
### Generative AI Hub Roles
| Role | Capabilities |
|------|--------------|
| `genai_manager` | Full GenAI hub access, save prompts |
| `genai_experimenter` | Prompt experimentation only |
| `prompt_manager` | Manage saved prompts |
| `prompt_experimenter` | Use saved prompts |
### Functions Explorer Roles
| Role | Capabilities |
|------|--------------|
| `ailaunchpad_functions_explorer_editor_v2` | Edit functions explorer |
| `ailaunchpad_functions_explorer_viewer_v2` | View functions explorer |
**Note:** Role names `prompt_media_executor` and `orchestration_executor` may be deprecated. Verify current role names in SAP documentation.
---
## Generative AI Hub
### Access Path
**Workspaces** → Select workspace → **Generative AI Hub**
### Features
| Feature | Description |
|---------|-------------|
| **Prompt Editor** | Interactive prompt testing |
| **Model Library** | Browse available models |
| **Grounding Management** | Manage document pipelines |
| **Orchestration** | Build workflow configurations |
| **Chat** | Direct model interaction |
| **Saved Prompts** | Prompt management |
### Model Library
View model specifications including:
- Capabilities (chat, embeddings, vision)
- Context window sizes
- Performance benchmarks
- Cost per token
- Deprecation dates
---
## Prompt Editor
### Access
**Generative AI Hub****Prompt Editor**
### Interface Elements
| Element | Description |
|---------|-------------|
| **Name** | Prompt identifier (manager roles only) |
| **Collection** | Organize prompts (manager roles only) |
| **Messages** | Configure message blocks with roles |
| **Variables** | Define input placeholders |
| **Model Selection** | Choose model and version |
| **Parameters** | Adjust model parameters |
| **Metadata** | Tags and notes (manager roles only) |
### Message Roles
- **System**: Instructions for the model
- **User**: User input
- **Assistant**: Previous assistant responses
### Variable Syntax
Use `{{variable_name}}` for placeholders with definitions section.
### Running Prompts
1. Configure messages and variables
2. Select model (optional - uses default)
3. Adjust parameters
4. Click **Run**
5. View response (streaming available)
### Image Inputs
- Supported for select models (GPT-4o, Gemini, Llama Vision)
- Maximum 5MB across all inputs
- Requires `prompt_media_executor` role
### Saving Prompts
- Click **Save** (manager roles only)
- Assign to collection
- Add tags and notes
- Version automatically managed
### Prompt Types
| Type | Description |
|------|-------------|
| Question Answering | Q&A interactions |
| Summarization | Extract key points |
| Inferencing | Sentiment, entity extraction |
| Transformations | Translation, format conversion |
| Expansions | Content generation |
---
## Orchestration Workflows
### Access
**Generative AI Hub****Orchestration****Create**
### Workflow Modules
| Order | Module | Required |
|-------|--------|----------|
| 1 | Grounding | Optional |
| 2 | Templating | **Mandatory** |
| 3 | Input Translation | Optional |
| 4 | Data Masking | Optional |
| 5 | Input Filtering | Optional |
| 6 | Model Configuration | **Mandatory** |
| 7 | Output Filtering | Optional |
| 8 | Output Translation | Optional |
**Required Modules Explained:**
- **Templating**: Constructs the actual prompt/messages sent to the LLM using input variables and context
- **Model Configuration**: Specifies which LLM model to use and its parameters (temperature, max_tokens, etc.)
### Building Workflows
1. Click **Create** to start new workflow
2. Configure required modules (Templating, Model)
3. Enable optional modules via **Edit**
4. Configure each enabled module
5. Click **Test** to run workflow
6. Click **Save** to store configuration
### JSON Upload
- Maximum file size: 200 KB
- Format: JSON with `module_configurations`
- Note: Workflows with images can be downloaded but not uploaded
### Saving Workflows
- Save as configuration for reuse
- Assign name and description
- Link to deployments
---
## ML Operations
### Access
**Workspaces** → Select workspace → **ML Operations**
### Components
| Component | Purpose |
|-----------|---------|
| **Configurations** | Parameter and artifact settings |
| **Executions** | Training jobs |
| **Deployments** | Model serving |
| **Schedules** | Automated executions |
| **Datasets** | Training data |
| **Models** | Trained models |
| **Result Sets** | Inference outputs |
| **Other Artifacts** | Miscellaneous artifacts |
---
## Configurations
### Creating Configuration
1. Navigate to **ML Operations****Configurations**
2. Click **Create**
3. Enter details:
- Name
- Scenario
- Executable
- Parameters
- Input artifacts
4. Save
### Configuration Contents
| Field | Description |
|-------|-------------|
| Name | Configuration identifier |
| Scenario | AI scenario reference |
| Executable | Workflow or serving template |
| Parameter Bindings | Key-value parameters |
| Artifact Bindings | Input artifact references |
---
## Deployments
### Creating Deployment
1. Navigate to **ML Operations****Deployments**
2. Click **Create**
3. Select configuration
4. Set duration (optional TTL)
5. Click **Create**
### Deployment Details
| Field | Description |
|-------|-------------|
| ID | Unique identifier |
| Status | Current state |
| URL | Inference endpoint |
| Configuration | Associated config |
| Created | Timestamp |
| Duration | TTL if set |
### Deployment Statuses
| Status | Description | Actions |
|--------|-------------|---------|
| Pending | Starting | Stop |
| Running | Active | Stop |
| Stopping | Shutting down | Wait |
| Stopped | Inactive | Delete |
| Dead | Failed | Delete |
| Unknown | Initial | Delete |
### Operations
| Operation | Description |
|-----------|-------------|
| View | See deployment details |
| View Logs | Access pipeline logs |
| Update | Change configuration |
| Stop | Halt deployment |
| Delete | Remove deployment |
### Bulk Operations
- Stop multiple deployments
- Delete multiple deployments (up to 100)
---
## Executions and Runs
### Creating Execution
1. Navigate to **ML Operations****Executions**
2. Click **Create**
3. Select configuration
4. Click **Create**
### Execution Statuses
| Status | Description |
|--------|-------------|
| Pending | Queued |
| Running | Executing |
| Completed | Finished successfully |
| Dead | Failed |
| Stopped | Manually stopped |
### Viewing Execution Details
- Parameters and artifacts
- Status and timing
- Logs from pipeline
- Output artifacts
- Metrics
### Comparing Executions
1. Select multiple executions
2. Click **Compare**
3. View side-by-side:
- Parameters
- Metrics
- Durations
4. Create charts for visualization
---
## Schedules
### Creating Schedule
1. Navigate to **ML Operations****Schedules**
2. Click **Create**
3. Select configuration
4. Set cron expression
5. Define start/end dates
6. Save
### Cron Expression Format
```
┌───────── minute (0-59)
│ ┌─────── hour (0-23)
│ │ ┌───── day of month (1-31)
│ │ │ ┌─── month (1-12)
│ │ │ │ ┌─ day of week (0-6)
│ │ │ │ │
* * * * *
```
### Schedule Operations
| Operation | Description |
|-----------|-------------|
| View | See schedule details |
| Edit | Modify schedule |
| Stop | Pause schedule |
| Resume | Restart schedule |
| Delete | Remove schedule |
---
## Datasets and Artifacts
### Dataset Registration
1. Navigate to **ML Operations****Datasets**
2. Click **Register**
3. Enter details:
- Name
- URL (ai://secret-name/path)
- Scenario
- Description
4. Save
### Artifact Types
| Type | Description |
|------|-------------|
| Dataset | Training/validation data |
| Model | Trained model |
| Result Set | Inference results |
| Other | Miscellaneous |
### Finding Artifacts
- Filter by scenario
- Search by name
- Sort by date
- View details
---
## Model Comparison
### Comparing Models
1. Navigate to **ML Operations****Models**
2. Select multiple models
3. Click **Compare**
4. View:
- Configuration differences
- Metric comparisons
- Performance charts
### Creating Comparison Charts
1. Select metrics to compare
2. Choose chart type
3. Configure axes
4. Generate visualization
---
## Applications
### Managing Applications
Access: **Administration****Applications**
### Operations
| Operation | Description |
|-----------|-------------|
| Create | Add new application |
| View | See application details |
| Edit | Modify settings |
| Delete | Remove application |
| Create Disclaimer | Add usage disclaimer |
### Chat Application
Create chat interfaces using deployed models:
1. Create application
2. Configure model deployment
3. Set disclaimer (optional)
4. Share application URL
---
## Meta API and Custom Runtime Capabilities
The Meta API identifies which capabilities apply to a given AI runtime, allowing SAP AI Launchpad to display only relevant features.
### Purpose
| Function | Description |
|----------|-------------|
| **Capability Management** | Enable/disable capabilities based on AI use case |
| **UI Streamlining** | Hide unnecessary features to reduce confusion |
| **API Decoupling** | Reduce impact of backend API changes |
### Supported Capabilities
| Capability | Description |
|------------|-------------|
| `userDeployments` | Allows users to create custom deployments |
| `userExecutions` | Enables execution functionality |
| `staticDeployments` | System-managed deployments |
| `timeToLiveDeployments` | TTL-based deployment limits |
| `bulkUpdates` | Bulk operations support |
| `executionSchedules` | Scheduling functionality |
| `analytics` | Analytics dashboard |
### Metadata Refresh
- **Automatic**: Refreshed periodically on schedule
- **On-demand**: Users can trigger manual refresh
- **Administration**: SAP Runtime team manages active capabilities
### Custom Runtime Usage
Custom runtimes can selectively implement only necessary capabilities, creating a tailored experience:
```
AI Runtime → Meta API Query → Capability List → Filtered UI
```
---
## Accessibility Features
SAP AI Launchpad provides:
- Keyboard navigation
- Screen reader support
- High contrast themes
- Accessible UI components
---
## Language Settings
Change interface language:
1. Navigate to user settings
2. Select language preference
3. Save changes
Supported languages vary by region and deployment.
---
## Documentation Links
- What is AI Launchpad: [https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/what-is-sap-ai-launchpad-760889a.md](https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/what-is-sap-ai-launchpad-760889a.md)
- Initial Setup: [https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/initial-setup-5d8adb6.md](https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/initial-setup-5d8adb6.md)
- Service Plans: [https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/service-plans-ec1717d.md](https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/service-plans-ec1717d.md)
- ML Operations: [https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/ml-operations-df78271.md](https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/ml-operations-df78271.md)
- Generative AI Hub: [https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/generative-ai-hub-b0b935b.md](https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/generative-ai-hub-b0b935b.md)
- Prompt Experimentation: [https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/prompt-experimentation-384cc0c.md](https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/prompt-experimentation-384cc0c.md)
- Orchestration: [https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/build-your-orchestration-workflow-b7dc8b4.md](https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/build-your-orchestration-workflow-b7dc8b4.md)
- Deployments: [https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/deployments-0543c2c.md](https://github.com/SAP-docs/sap-artificial-intelligence/blob/main/docs/sap-ai-launchpad/deployments-0543c2c.md)