# Python Backend Technology Stack Recommendations This document provides curated recommendations for common technology choices in Python backend development. ## Web Frameworks ### FastAPI (Recommended for Modern APIs) **Best for:** Microservices, RESTful APIs, async-first applications **Pros:** - Automatic OpenAPI/Swagger documentation - Built-in request/response validation with Pydantic - High performance (comparable to Node.js/Go) - Native async/await support - Type hints and IDE support - Modern Python features **Cons:** - Smaller ecosystem compared to Django - Less built-in features (need to integrate more libraries) - Newer framework (less mature) **When to use:** - Building new REST or GraphQL APIs - High-performance requirements - Microservices architecture - Team comfortable with modern Python ### Django (Recommended for Full-Featured Applications) **Best for:** Monolithic applications, admin-heavy apps, rapid development **Pros:** - Batteries-included (ORM, admin, auth, forms, etc.) - Massive ecosystem and community - Battle-tested and mature - Excellent documentation - Built-in admin interface - Strong security defaults **Cons:** - Heavier framework - Less suitable for microservices - Async support is newer and limited - More opinionated structure **When to use:** - Building full-featured web applications - Need admin interface out of the box - Rapid prototyping - Team prefers convention over configuration ### Flask (Recommended for Simple APIs) **Best for:** Small to medium applications, prototypes, simple APIs **Pros:** - Lightweight and flexible - Easy to learn - Large ecosystem of extensions - Minimal boilerplate - Great for prototypes **Cons:** - Requires more setup for production - No built-in async support (requires extensions) - Need to choose and integrate many components - Less structure by default **When to use:** - Small to medium applications - Prototypes and MVPs - Learning Python web development - Need maximum flexibility ## Async Frameworks ### Comparison | Feature | FastAPI | Starlette | Quart | aiohttp | |---------|---------|-----------|-------|---------| | Performance | Excellent | Excellent | Good | Excellent | | Documentation | Excellent | Good | Good | Good | | Ease of Use | Excellent | Good | Excellent | Moderate | | Community | Growing | Moderate | Small | Moderate | | Best For | APIs | Custom apps | Flask users | Low-level control | ## Database Solutions ### PostgreSQL (Recommended for Most Cases) **Best for:** Production applications requiring ACID compliance **Pros:** - ACID compliant - Rich feature set (JSONB, full-text search, etc.) - Excellent performance - Strong community - Great for complex queries **Libraries:** - `asyncpg` - Fastest async driver - `psycopg2` - Traditional sync driver - `psycopg3` - Modern sync/async driver ### MySQL/MariaDB **Best for:** Applications with heavy read operations **Pros:** - Fast read performance - Wide hosting support - Good replication - Mature ecosystem **Libraries:** - `aiomysql` - Async driver - `mysqlclient` - Sync driver (fastest) - `PyMySQL` - Pure Python sync driver ### MongoDB **Best for:** Flexible schema, document-oriented data **Pros:** - Schema flexibility - Horizontal scaling - Good for rapid development - Rich query language **Libraries:** - `motor` - Async driver (recommended) - `pymongo` - Sync driver ### Redis **Best for:** Caching, sessions, real-time features **Pros:** - Extremely fast - Rich data structures - Pub/sub support - Good for caching and sessions **Libraries:** - `redis-py` - Official client with async support - `aioredis` - Async-first client (now merged into redis-py) ## ORM Solutions ### SQLAlchemy (Recommended) **Best for:** Complex queries, database agnostic code **Pros:** - Most mature Python ORM - Powerful query API - Database agnostic - Great documentation - Good async support (2.0+) **Cons:** - Steeper learning curve - More verbose than alternatives ```python # Async SQLAlchemy 2.0 from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession from sqlalchemy.orm import declarative_base, sessionmaker engine = create_async_engine("postgresql+asyncpg://user:pass@localhost/db") AsyncSessionLocal = sessionmaker(engine, class_=AsyncSession, expire_on_commit=False) ``` ### Tortoise ORM **Best for:** Async-first applications, Django-like syntax **Pros:** - Built for async from the ground up - Django-like API - Easy to learn - Good documentation **Cons:** - Smaller community - Fewer features than SQLAlchemy - Limited database support ```python from tortoise import fields, models from tortoise.contrib.fastapi import register_tortoise class User(models.Model): id = fields.IntField(pk=True) email = fields.CharField(max_length=255, unique=True) name = fields.CharField(max_length=255) ``` ### Django ORM **Best for:** Django projects **Pros:** - Integrated with Django - Simple and intuitive - Excellent documentation - Good async support (3.1+) **Cons:** - Tied to Django - Less powerful than SQLAlchemy for complex queries ## API Documentation ### OpenAPI/Swagger (FastAPI Built-in) **Recommended for:** REST APIs **Libraries:** - FastAPI includes automatic generation - `flasgger` for Flask - `drf-spectacular` for Django REST Framework ### GraphQL **Strawberry (Recommended for FastAPI)** ```python import strawberry from fastapi import FastAPI from strawberry.fastapi import GraphQLRouter @strawberry.type class Query: @strawberry.field def hello(self) -> str: return "Hello World" schema = strawberry.Schema(query=Query) graphql_app = GraphQLRouter(schema) ``` **Other Options:** - `Graphene` - Mature, works with Django - `Ariadne` - Schema-first approach ## Authentication & Authorization ### JWT Authentication **Libraries:** - `python-jose[cryptography]` - Recommended for JWT - `PyJWT` - Lightweight alternative ```python from jose import JWTError, jwt from datetime import datetime, timedelta def create_access_token(data: dict): to_encode = data.copy() expire = datetime.utcnow() + timedelta(minutes=15) to_encode.update({"exp": expire}) return jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM) ``` ### OAuth2 **Libraries:** - `authlib` - Comprehensive OAuth client/server - `python-social-auth` - Social authentication ### Password Hashing **Libraries:** - `passlib[bcrypt]` - Recommended - `argon2-cffi` - Most secure (memory-hard) ```python from passlib.context import CryptContext pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") def hash_password(password: str) -> str: return pwd_context.hash(password) def verify_password(plain_password: str, hashed_password: str) -> bool: return pwd_context.verify(plain_password, hashed_password) ``` ## Task Queues ### Celery (Recommended for Most Cases) **Best for:** Complex workflows, scheduled tasks **Pros:** - Mature and battle-tested - Rich feature set - Good monitoring tools - Supports multiple brokers **Cons:** - Complex configuration - Heavy dependency ```python from celery import Celery app = Celery('tasks', broker='redis://localhost:6379/0') @app.task def process_data(data): # Long-running task pass ``` ### RQ (Redis Queue) **Best for:** Simple job queues **Pros:** - Simple to use - Lightweight - Good for simple tasks **Cons:** - Less features than Celery - Only works with Redis ### Dramatiq **Best for:** Alternatives to Celery **Pros:** - Simpler than Celery - Good performance - Type-safe **Cons:** - Smaller community ## Validation & Serialization ### Pydantic (Recommended) **Best for:** Data validation, settings management ```python from pydantic import BaseModel, EmailStr, validator class User(BaseModel): id: int email: EmailStr name: str age: int @validator('age') def validate_age(cls, v): if v < 0: raise ValueError('Age must be positive') return v ``` ### Marshmallow **Best for:** Flask applications, complex serialization ## HTTP Clients ### httpx (Recommended) **Best for:** Modern async/sync HTTP client ```python import httpx async with httpx.AsyncClient() as client: response = await client.get('https://api.example.com') ``` ### aiohttp **Best for:** Async-only applications ### requests **Best for:** Sync-only applications (legacy) ## Testing ### pytest (Recommended) **Essential plugins:** - `pytest-asyncio` - Async test support - `pytest-cov` - Coverage reporting - `pytest-mock` - Mocking utilities - `pytest-xdist` - Parallel testing ```python import pytest from httpx import AsyncClient @pytest.mark.asyncio async def test_create_user(client: AsyncClient): response = await client.post("/users", json={"email": "test@example.com"}) assert response.status_code == 201 ``` ### Other Tools - `coverage` - Code coverage - `faker` - Test data generation - `factory_boy` - Test fixtures - `responses` - Mock HTTP requests ## Observability ### Logging **Recommended:** - `structlog` - Structured logging - `python-json-logger` - JSON logging - Built-in `logging` module ### Metrics **Recommended:** - `prometheus-client` - Prometheus metrics - `statsd` - StatsD client ### Tracing **Recommended:** - `opentelemetry-api` + `opentelemetry-sdk` - OpenTelemetry - `ddtrace` - DataDog APM - `sentry-sdk` - Error tracking ```python from opentelemetry import trace from opentelemetry.sdk.trace import TracerProvider trace.set_tracer_provider(TracerProvider()) tracer = trace.get_tracer(__name__) with tracer.start_as_current_span("process_data"): # Your code here pass ``` ## Security ### Security Headers ```python from fastapi.middleware.trustedhost import TrustedHostMiddleware from fastapi.middleware.cors import CORSMiddleware app.add_middleware(TrustedHostMiddleware, allowed_hosts=["example.com"]) app.add_middleware( CORSMiddleware, allow_origins=["https://example.com"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) ``` ### Security Libraries - `bandit` - Security linting - `safety` - Dependency vulnerability scanning - `python-dotenv` - Environment variable management ## Development Tools ### Code Quality - `ruff` - Fast linter and formatter (recommended) - `black` - Code formatter - `isort` - Import sorting - `mypy` - Static type checking - `pylint` - Comprehensive linting ### Dependency Management - `poetry` - Recommended for modern projects - `pdm` - Fast alternative to poetry - `pip-tools` - Minimal approach (pip-compile) ### Pre-commit Hooks ```yaml # .pre-commit-config.yaml repos: - repo: https://github.com/astral-sh/ruff-pre-commit rev: v0.1.6 hooks: - id: ruff args: [--fix] - id: ruff-format - repo: https://github.com/pre-commit/mirrors-mypy rev: v1.7.1 hooks: - id: mypy ``` ## Deployment ### ASGI Servers - `uvicorn` - Recommended for FastAPI - `hypercorn` - HTTP/2 support - `daphne` - Django channels ### WSGI Servers - `gunicorn` - Recommended for Django/Flask - `uwsgi` - Alternative option ### Production Setup ```bash # Uvicorn with Gunicorn (recommended for production) gunicorn main:app -w 4 -k uvicorn.workers.UvicornWorker ``` ## Configuration Management ### Pydantic Settings (Recommended) ```python from pydantic_settings import BaseSettings class Settings(BaseSettings): database_url: str redis_url: str secret_key: str class Config: env_file = ".env" ``` ### python-decouple Simple alternative for basic configuration ## Message Brokers ### RabbitMQ **Best for:** Complex routing, guaranteed delivery **Libraries:** - `aio-pika` - Async AMQP client ### Apache Kafka **Best for:** Event streaming, high throughput **Libraries:** - `aiokafka` - Async Kafka client - `confluent-kafka` - High-performance client ### Redis Pub/Sub **Best for:** Simple pub/sub, low latency **Libraries:** - `redis-py` with pub/sub support ## Recommended Stack Combinations ### Modern Microservices Stack - Framework: FastAPI - Database: PostgreSQL (asyncpg) - ORM: SQLAlchemy 2.0 (async) - Cache: Redis - Task Queue: Celery or Dramatiq - Validation: Pydantic - Testing: pytest + httpx - Observability: OpenTelemetry + Sentry - Deployment: Uvicorn + Docker + Kubernetes ### Traditional Monolith Stack - Framework: Django - Database: PostgreSQL (psycopg2) - ORM: Django ORM - Cache: Redis - Task Queue: Celery - API: Django REST Framework - Testing: pytest-django - Deployment: Gunicorn + Docker ### Lightweight API Stack - Framework: Flask or FastAPI - Database: PostgreSQL or MongoDB - ORM: SQLAlchemy or Motor - Testing: pytest - Deployment: Uvicorn or Gunicorn ## Version Recommendations (as of 2025) ```toml # pyproject.toml [tool.poetry.dependencies] python = "^3.11" # Python 3.11+ recommended for performance fastapi = "^0.110.0" uvicorn = {extras = ["standard"], version = "^0.27.0"} sqlalchemy = "^2.0.25" asyncpg = "^0.29.0" pydantic = "^2.5.0" pydantic-settings = "^2.1.0" redis = "^5.0.1" celery = "^5.3.4" python-jose = {extras = ["cryptography"], version = "^3.3.0"} passlib = {extras = ["bcrypt"], version = "^1.7.4"} httpx = "^0.26.0" structlog = "^24.1.0" opentelemetry-api = "^1.22.0" opentelemetry-sdk = "^1.22.0" sentry-sdk = "^1.39.0" [tool.poetry.group.dev.dependencies] pytest = "^7.4.4" pytest-asyncio = "^0.23.3" pytest-cov = "^4.1.0" ruff = "^0.1.9" mypy = "^1.8.0" ``` This technology stack provides battle-tested, production-ready solutions for Python backend development in 2025.