Initial commit
This commit is contained in:
592
technology-recommendations.md
Normal file
592
technology-recommendations.md
Normal file
@@ -0,0 +1,592 @@
|
||||
# Python Backend Technology Stack Recommendations
|
||||
|
||||
This document provides curated recommendations for common technology choices in Python backend development.
|
||||
|
||||
## Web Frameworks
|
||||
|
||||
### FastAPI (Recommended for Modern APIs)
|
||||
**Best for:** Microservices, RESTful APIs, async-first applications
|
||||
|
||||
**Pros:**
|
||||
- Automatic OpenAPI/Swagger documentation
|
||||
- Built-in request/response validation with Pydantic
|
||||
- High performance (comparable to Node.js/Go)
|
||||
- Native async/await support
|
||||
- Type hints and IDE support
|
||||
- Modern Python features
|
||||
|
||||
**Cons:**
|
||||
- Smaller ecosystem compared to Django
|
||||
- Less built-in features (need to integrate more libraries)
|
||||
- Newer framework (less mature)
|
||||
|
||||
**When to use:**
|
||||
- Building new REST or GraphQL APIs
|
||||
- High-performance requirements
|
||||
- Microservices architecture
|
||||
- Team comfortable with modern Python
|
||||
|
||||
### Django (Recommended for Full-Featured Applications)
|
||||
**Best for:** Monolithic applications, admin-heavy apps, rapid development
|
||||
|
||||
**Pros:**
|
||||
- Batteries-included (ORM, admin, auth, forms, etc.)
|
||||
- Massive ecosystem and community
|
||||
- Battle-tested and mature
|
||||
- Excellent documentation
|
||||
- Built-in admin interface
|
||||
- Strong security defaults
|
||||
|
||||
**Cons:**
|
||||
- Heavier framework
|
||||
- Less suitable for microservices
|
||||
- Async support is newer and limited
|
||||
- More opinionated structure
|
||||
|
||||
**When to use:**
|
||||
- Building full-featured web applications
|
||||
- Need admin interface out of the box
|
||||
- Rapid prototyping
|
||||
- Team prefers convention over configuration
|
||||
|
||||
### Flask (Recommended for Simple APIs)
|
||||
**Best for:** Small to medium applications, prototypes, simple APIs
|
||||
|
||||
**Pros:**
|
||||
- Lightweight and flexible
|
||||
- Easy to learn
|
||||
- Large ecosystem of extensions
|
||||
- Minimal boilerplate
|
||||
- Great for prototypes
|
||||
|
||||
**Cons:**
|
||||
- Requires more setup for production
|
||||
- No built-in async support (requires extensions)
|
||||
- Need to choose and integrate many components
|
||||
- Less structure by default
|
||||
|
||||
**When to use:**
|
||||
- Small to medium applications
|
||||
- Prototypes and MVPs
|
||||
- Learning Python web development
|
||||
- Need maximum flexibility
|
||||
|
||||
## Async Frameworks
|
||||
|
||||
### Comparison
|
||||
| Feature | FastAPI | Starlette | Quart | aiohttp |
|
||||
|---------|---------|-----------|-------|---------|
|
||||
| Performance | Excellent | Excellent | Good | Excellent |
|
||||
| Documentation | Excellent | Good | Good | Good |
|
||||
| Ease of Use | Excellent | Good | Excellent | Moderate |
|
||||
| Community | Growing | Moderate | Small | Moderate |
|
||||
| Best For | APIs | Custom apps | Flask users | Low-level control |
|
||||
|
||||
## Database Solutions
|
||||
|
||||
### PostgreSQL (Recommended for Most Cases)
|
||||
**Best for:** Production applications requiring ACID compliance
|
||||
|
||||
**Pros:**
|
||||
- ACID compliant
|
||||
- Rich feature set (JSONB, full-text search, etc.)
|
||||
- Excellent performance
|
||||
- Strong community
|
||||
- Great for complex queries
|
||||
|
||||
**Libraries:**
|
||||
- `asyncpg` - Fastest async driver
|
||||
- `psycopg2` - Traditional sync driver
|
||||
- `psycopg3` - Modern sync/async driver
|
||||
|
||||
### MySQL/MariaDB
|
||||
**Best for:** Applications with heavy read operations
|
||||
|
||||
**Pros:**
|
||||
- Fast read performance
|
||||
- Wide hosting support
|
||||
- Good replication
|
||||
- Mature ecosystem
|
||||
|
||||
**Libraries:**
|
||||
- `aiomysql` - Async driver
|
||||
- `mysqlclient` - Sync driver (fastest)
|
||||
- `PyMySQL` - Pure Python sync driver
|
||||
|
||||
### MongoDB
|
||||
**Best for:** Flexible schema, document-oriented data
|
||||
|
||||
**Pros:**
|
||||
- Schema flexibility
|
||||
- Horizontal scaling
|
||||
- Good for rapid development
|
||||
- Rich query language
|
||||
|
||||
**Libraries:**
|
||||
- `motor` - Async driver (recommended)
|
||||
- `pymongo` - Sync driver
|
||||
|
||||
### Redis
|
||||
**Best for:** Caching, sessions, real-time features
|
||||
|
||||
**Pros:**
|
||||
- Extremely fast
|
||||
- Rich data structures
|
||||
- Pub/sub support
|
||||
- Good for caching and sessions
|
||||
|
||||
**Libraries:**
|
||||
- `redis-py` - Official client with async support
|
||||
- `aioredis` - Async-first client (now merged into redis-py)
|
||||
|
||||
## ORM Solutions
|
||||
|
||||
### SQLAlchemy (Recommended)
|
||||
**Best for:** Complex queries, database agnostic code
|
||||
|
||||
**Pros:**
|
||||
- Most mature Python ORM
|
||||
- Powerful query API
|
||||
- Database agnostic
|
||||
- Great documentation
|
||||
- Good async support (2.0+)
|
||||
|
||||
**Cons:**
|
||||
- Steeper learning curve
|
||||
- More verbose than alternatives
|
||||
|
||||
```python
|
||||
# Async SQLAlchemy 2.0
|
||||
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession
|
||||
from sqlalchemy.orm import declarative_base, sessionmaker
|
||||
|
||||
engine = create_async_engine("postgresql+asyncpg://user:pass@localhost/db")
|
||||
AsyncSessionLocal = sessionmaker(engine, class_=AsyncSession, expire_on_commit=False)
|
||||
```
|
||||
|
||||
### Tortoise ORM
|
||||
**Best for:** Async-first applications, Django-like syntax
|
||||
|
||||
**Pros:**
|
||||
- Built for async from the ground up
|
||||
- Django-like API
|
||||
- Easy to learn
|
||||
- Good documentation
|
||||
|
||||
**Cons:**
|
||||
- Smaller community
|
||||
- Fewer features than SQLAlchemy
|
||||
- Limited database support
|
||||
|
||||
```python
|
||||
from tortoise import fields, models
|
||||
from tortoise.contrib.fastapi import register_tortoise
|
||||
|
||||
class User(models.Model):
|
||||
id = fields.IntField(pk=True)
|
||||
email = fields.CharField(max_length=255, unique=True)
|
||||
name = fields.CharField(max_length=255)
|
||||
```
|
||||
|
||||
### Django ORM
|
||||
**Best for:** Django projects
|
||||
|
||||
**Pros:**
|
||||
- Integrated with Django
|
||||
- Simple and intuitive
|
||||
- Excellent documentation
|
||||
- Good async support (3.1+)
|
||||
|
||||
**Cons:**
|
||||
- Tied to Django
|
||||
- Less powerful than SQLAlchemy for complex queries
|
||||
|
||||
## API Documentation
|
||||
|
||||
### OpenAPI/Swagger (FastAPI Built-in)
|
||||
**Recommended for:** REST APIs
|
||||
|
||||
**Libraries:**
|
||||
- FastAPI includes automatic generation
|
||||
- `flasgger` for Flask
|
||||
- `drf-spectacular` for Django REST Framework
|
||||
|
||||
### GraphQL
|
||||
|
||||
**Strawberry (Recommended for FastAPI)**
|
||||
```python
|
||||
import strawberry
|
||||
from fastapi import FastAPI
|
||||
from strawberry.fastapi import GraphQLRouter
|
||||
|
||||
@strawberry.type
|
||||
class Query:
|
||||
@strawberry.field
|
||||
def hello(self) -> str:
|
||||
return "Hello World"
|
||||
|
||||
schema = strawberry.Schema(query=Query)
|
||||
graphql_app = GraphQLRouter(schema)
|
||||
```
|
||||
|
||||
**Other Options:**
|
||||
- `Graphene` - Mature, works with Django
|
||||
- `Ariadne` - Schema-first approach
|
||||
|
||||
## Authentication & Authorization
|
||||
|
||||
### JWT Authentication
|
||||
**Libraries:**
|
||||
- `python-jose[cryptography]` - Recommended for JWT
|
||||
- `PyJWT` - Lightweight alternative
|
||||
|
||||
```python
|
||||
from jose import JWTError, jwt
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
def create_access_token(data: dict):
|
||||
to_encode = data.copy()
|
||||
expire = datetime.utcnow() + timedelta(minutes=15)
|
||||
to_encode.update({"exp": expire})
|
||||
return jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
|
||||
```
|
||||
|
||||
### OAuth2
|
||||
**Libraries:**
|
||||
- `authlib` - Comprehensive OAuth client/server
|
||||
- `python-social-auth` - Social authentication
|
||||
|
||||
### Password Hashing
|
||||
**Libraries:**
|
||||
- `passlib[bcrypt]` - Recommended
|
||||
- `argon2-cffi` - Most secure (memory-hard)
|
||||
|
||||
```python
|
||||
from passlib.context import CryptContext
|
||||
|
||||
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
|
||||
|
||||
def hash_password(password: str) -> str:
|
||||
return pwd_context.hash(password)
|
||||
|
||||
def verify_password(plain_password: str, hashed_password: str) -> bool:
|
||||
return pwd_context.verify(plain_password, hashed_password)
|
||||
```
|
||||
|
||||
## Task Queues
|
||||
|
||||
### Celery (Recommended for Most Cases)
|
||||
**Best for:** Complex workflows, scheduled tasks
|
||||
|
||||
**Pros:**
|
||||
- Mature and battle-tested
|
||||
- Rich feature set
|
||||
- Good monitoring tools
|
||||
- Supports multiple brokers
|
||||
|
||||
**Cons:**
|
||||
- Complex configuration
|
||||
- Heavy dependency
|
||||
|
||||
```python
|
||||
from celery import Celery
|
||||
|
||||
app = Celery('tasks', broker='redis://localhost:6379/0')
|
||||
|
||||
@app.task
|
||||
def process_data(data):
|
||||
# Long-running task
|
||||
pass
|
||||
```
|
||||
|
||||
### RQ (Redis Queue)
|
||||
**Best for:** Simple job queues
|
||||
|
||||
**Pros:**
|
||||
- Simple to use
|
||||
- Lightweight
|
||||
- Good for simple tasks
|
||||
|
||||
**Cons:**
|
||||
- Less features than Celery
|
||||
- Only works with Redis
|
||||
|
||||
### Dramatiq
|
||||
**Best for:** Alternatives to Celery
|
||||
|
||||
**Pros:**
|
||||
- Simpler than Celery
|
||||
- Good performance
|
||||
- Type-safe
|
||||
|
||||
**Cons:**
|
||||
- Smaller community
|
||||
|
||||
## Validation & Serialization
|
||||
|
||||
### Pydantic (Recommended)
|
||||
**Best for:** Data validation, settings management
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel, EmailStr, validator
|
||||
|
||||
class User(BaseModel):
|
||||
id: int
|
||||
email: EmailStr
|
||||
name: str
|
||||
age: int
|
||||
|
||||
@validator('age')
|
||||
def validate_age(cls, v):
|
||||
if v < 0:
|
||||
raise ValueError('Age must be positive')
|
||||
return v
|
||||
```
|
||||
|
||||
### Marshmallow
|
||||
**Best for:** Flask applications, complex serialization
|
||||
|
||||
## HTTP Clients
|
||||
|
||||
### httpx (Recommended)
|
||||
**Best for:** Modern async/sync HTTP client
|
||||
|
||||
```python
|
||||
import httpx
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.get('https://api.example.com')
|
||||
```
|
||||
|
||||
### aiohttp
|
||||
**Best for:** Async-only applications
|
||||
|
||||
### requests
|
||||
**Best for:** Sync-only applications (legacy)
|
||||
|
||||
## Testing
|
||||
|
||||
### pytest (Recommended)
|
||||
**Essential plugins:**
|
||||
- `pytest-asyncio` - Async test support
|
||||
- `pytest-cov` - Coverage reporting
|
||||
- `pytest-mock` - Mocking utilities
|
||||
- `pytest-xdist` - Parallel testing
|
||||
|
||||
```python
|
||||
import pytest
|
||||
from httpx import AsyncClient
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_user(client: AsyncClient):
|
||||
response = await client.post("/users", json={"email": "test@example.com"})
|
||||
assert response.status_code == 201
|
||||
```
|
||||
|
||||
### Other Tools
|
||||
- `coverage` - Code coverage
|
||||
- `faker` - Test data generation
|
||||
- `factory_boy` - Test fixtures
|
||||
- `responses` - Mock HTTP requests
|
||||
|
||||
## Observability
|
||||
|
||||
### Logging
|
||||
**Recommended:**
|
||||
- `structlog` - Structured logging
|
||||
- `python-json-logger` - JSON logging
|
||||
- Built-in `logging` module
|
||||
|
||||
### Metrics
|
||||
**Recommended:**
|
||||
- `prometheus-client` - Prometheus metrics
|
||||
- `statsd` - StatsD client
|
||||
|
||||
### Tracing
|
||||
**Recommended:**
|
||||
- `opentelemetry-api` + `opentelemetry-sdk` - OpenTelemetry
|
||||
- `ddtrace` - DataDog APM
|
||||
- `sentry-sdk` - Error tracking
|
||||
|
||||
```python
|
||||
from opentelemetry import trace
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
|
||||
trace.set_tracer_provider(TracerProvider())
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
with tracer.start_as_current_span("process_data"):
|
||||
# Your code here
|
||||
pass
|
||||
```
|
||||
|
||||
## Security
|
||||
|
||||
### Security Headers
|
||||
```python
|
||||
from fastapi.middleware.trustedhost import TrustedHostMiddleware
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
|
||||
app.add_middleware(TrustedHostMiddleware, allowed_hosts=["example.com"])
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["https://example.com"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
```
|
||||
|
||||
### Security Libraries
|
||||
- `bandit` - Security linting
|
||||
- `safety` - Dependency vulnerability scanning
|
||||
- `python-dotenv` - Environment variable management
|
||||
|
||||
## Development Tools
|
||||
|
||||
### Code Quality
|
||||
- `ruff` - Fast linter and formatter (recommended)
|
||||
- `black` - Code formatter
|
||||
- `isort` - Import sorting
|
||||
- `mypy` - Static type checking
|
||||
- `pylint` - Comprehensive linting
|
||||
|
||||
### Dependency Management
|
||||
- `poetry` - Recommended for modern projects
|
||||
- `pdm` - Fast alternative to poetry
|
||||
- `pip-tools` - Minimal approach (pip-compile)
|
||||
|
||||
### Pre-commit Hooks
|
||||
```yaml
|
||||
# .pre-commit-config.yaml
|
||||
repos:
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.1.6
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix]
|
||||
- id: ruff-format
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: v1.7.1
|
||||
hooks:
|
||||
- id: mypy
|
||||
```
|
||||
|
||||
## Deployment
|
||||
|
||||
### ASGI Servers
|
||||
- `uvicorn` - Recommended for FastAPI
|
||||
- `hypercorn` - HTTP/2 support
|
||||
- `daphne` - Django channels
|
||||
|
||||
### WSGI Servers
|
||||
- `gunicorn` - Recommended for Django/Flask
|
||||
- `uwsgi` - Alternative option
|
||||
|
||||
### Production Setup
|
||||
```bash
|
||||
# Uvicorn with Gunicorn (recommended for production)
|
||||
gunicorn main:app -w 4 -k uvicorn.workers.UvicornWorker
|
||||
```
|
||||
|
||||
## Configuration Management
|
||||
|
||||
### Pydantic Settings (Recommended)
|
||||
```python
|
||||
from pydantic_settings import BaseSettings
|
||||
|
||||
class Settings(BaseSettings):
|
||||
database_url: str
|
||||
redis_url: str
|
||||
secret_key: str
|
||||
|
||||
class Config:
|
||||
env_file = ".env"
|
||||
```
|
||||
|
||||
### python-decouple
|
||||
Simple alternative for basic configuration
|
||||
|
||||
## Message Brokers
|
||||
|
||||
### RabbitMQ
|
||||
**Best for:** Complex routing, guaranteed delivery
|
||||
|
||||
**Libraries:**
|
||||
- `aio-pika` - Async AMQP client
|
||||
|
||||
### Apache Kafka
|
||||
**Best for:** Event streaming, high throughput
|
||||
|
||||
**Libraries:**
|
||||
- `aiokafka` - Async Kafka client
|
||||
- `confluent-kafka` - High-performance client
|
||||
|
||||
### Redis Pub/Sub
|
||||
**Best for:** Simple pub/sub, low latency
|
||||
|
||||
**Libraries:**
|
||||
- `redis-py` with pub/sub support
|
||||
|
||||
## Recommended Stack Combinations
|
||||
|
||||
### Modern Microservices Stack
|
||||
- Framework: FastAPI
|
||||
- Database: PostgreSQL (asyncpg)
|
||||
- ORM: SQLAlchemy 2.0 (async)
|
||||
- Cache: Redis
|
||||
- Task Queue: Celery or Dramatiq
|
||||
- Validation: Pydantic
|
||||
- Testing: pytest + httpx
|
||||
- Observability: OpenTelemetry + Sentry
|
||||
- Deployment: Uvicorn + Docker + Kubernetes
|
||||
|
||||
### Traditional Monolith Stack
|
||||
- Framework: Django
|
||||
- Database: PostgreSQL (psycopg2)
|
||||
- ORM: Django ORM
|
||||
- Cache: Redis
|
||||
- Task Queue: Celery
|
||||
- API: Django REST Framework
|
||||
- Testing: pytest-django
|
||||
- Deployment: Gunicorn + Docker
|
||||
|
||||
### Lightweight API Stack
|
||||
- Framework: Flask or FastAPI
|
||||
- Database: PostgreSQL or MongoDB
|
||||
- ORM: SQLAlchemy or Motor
|
||||
- Testing: pytest
|
||||
- Deployment: Uvicorn or Gunicorn
|
||||
|
||||
## Version Recommendations (as of 2025)
|
||||
|
||||
```toml
|
||||
# pyproject.toml
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.11" # Python 3.11+ recommended for performance
|
||||
fastapi = "^0.110.0"
|
||||
uvicorn = {extras = ["standard"], version = "^0.27.0"}
|
||||
sqlalchemy = "^2.0.25"
|
||||
asyncpg = "^0.29.0"
|
||||
pydantic = "^2.5.0"
|
||||
pydantic-settings = "^2.1.0"
|
||||
redis = "^5.0.1"
|
||||
celery = "^5.3.4"
|
||||
python-jose = {extras = ["cryptography"], version = "^3.3.0"}
|
||||
passlib = {extras = ["bcrypt"], version = "^1.7.4"}
|
||||
httpx = "^0.26.0"
|
||||
structlog = "^24.1.0"
|
||||
opentelemetry-api = "^1.22.0"
|
||||
opentelemetry-sdk = "^1.22.0"
|
||||
sentry-sdk = "^1.39.0"
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pytest = "^7.4.4"
|
||||
pytest-asyncio = "^0.23.3"
|
||||
pytest-cov = "^4.1.0"
|
||||
ruff = "^0.1.9"
|
||||
mypy = "^1.8.0"
|
||||
```
|
||||
|
||||
This technology stack provides battle-tested, production-ready solutions for Python backend development in 2025.
|
||||
Reference in New Issue
Block a user