Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:50:46 +08:00
commit 34273b642f
9 changed files with 9081 additions and 0 deletions

470
skills/ollama/SKILL.md Normal file
View File

@@ -0,0 +1,470 @@
---
name: ollama
description: Ollama API Documentation
---
# Ollama Skill
Comprehensive assistance with Ollama development - the local AI model runtime for running and interacting with large language models programmatically.
## When to Use This Skill
This skill should be triggered when:
- Running local AI models with Ollama
- Building applications that interact with Ollama's API
- Implementing chat completions, embeddings, or streaming responses
- Setting up Ollama authentication or cloud models
- Configuring Ollama server (environment variables, ports, proxies)
- Using Ollama with OpenAI-compatible libraries
- Troubleshooting Ollama installations or GPU compatibility
- Implementing tool calling, structured outputs, or vision capabilities
- Working with Ollama in Docker or behind proxies
- Creating, copying, pushing, or managing Ollama models
## Quick Reference
### 1. Basic Chat Completion (cURL)
Generate a simple chat response:
```bash
curl http://localhost:11434/api/chat -d '{
"model": "gemma3",
"messages": [
{
"role": "user",
"content": "Why is the sky blue?"
}
]
}'
```
### 2. Simple Text Generation (cURL)
Generate a text response from a prompt:
```bash
curl http://localhost:11434/api/generate -d '{
"model": "gemma3",
"prompt": "Why is the sky blue?"
}'
```
### 3. Python Chat with OpenAI Library
Use Ollama with the OpenAI Python library:
```python
from openai import OpenAI
client = OpenAI(
base_url='http://localhost:11434/v1/',
api_key='ollama', # required but ignored
)
chat_completion = client.chat.completions.create(
messages=[
{
'role': 'user',
'content': 'Say this is a test',
}
],
model='llama3.2',
)
```
### 4. Vision Model (Image Analysis)
Ask questions about images:
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:11434/v1/", api_key="ollama")
response = client.chat.completions.create(
model="llava",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": "...",
},
],
}
],
max_tokens=300,
)
```
### 5. Generate Embeddings
Create vector embeddings for text:
```python
client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
embeddings = client.embeddings.create(
model="all-minilm",
input=["why is the sky blue?", "why is the grass green?"],
)
```
### 6. Structured Outputs (JSON Schema)
Get structured JSON responses:
```python
from pydantic import BaseModel
from openai import OpenAI
client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
class FriendInfo(BaseModel):
name: str
age: int
is_available: bool
class FriendList(BaseModel):
friends: list[FriendInfo]
completion = client.beta.chat.completions.parse(
temperature=0,
model="llama3.1:8b",
messages=[
{"role": "user", "content": "Return a list of friends in JSON format"}
],
response_format=FriendList,
)
friends_response = completion.choices[0].message
if friends_response.parsed:
print(friends_response.parsed)
```
### 7. JavaScript/TypeScript Chat
Use Ollama with the OpenAI JavaScript library:
```javascript
import OpenAI from "openai";
const openai = new OpenAI({
baseURL: "http://localhost:11434/v1/",
apiKey: "ollama", // required but ignored
});
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: "user", content: "Say this is a test" }],
model: "llama3.2",
});
```
### 8. Authentication for Cloud Models
Sign in to use cloud models:
```bash
# Sign in from CLI
ollama signin
# Then use cloud models
ollama run gpt-oss:120b-cloud
```
Or use API keys for direct cloud access:
```bash
export OLLAMA_API_KEY=your_api_key
curl https://ollama.com/api/generate \
-H "Authorization: Bearer $OLLAMA_API_KEY" \
-d '{
"model": "gpt-oss:120b",
"prompt": "Why is the sky blue?",
"stream": false
}'
```
### 9. Configure Ollama Server
Set environment variables for server configuration:
**macOS:**
```bash
# Set environment variable
launchctl setenv OLLAMA_HOST "0.0.0.0:11434"
# Restart Ollama application
```
**Linux (systemd):**
```bash
# Edit service
systemctl edit ollama.service
# Add under [Service]
Environment="OLLAMA_HOST=0.0.0.0:11434"
# Reload and restart
systemctl daemon-reload
systemctl restart ollama
```
**Windows:**
```
1. Quit Ollama from task bar
2. Search "environment variables" in Settings
3. Edit or create OLLAMA_HOST variable
4. Set value: 0.0.0.0:11434
5. Restart Ollama from Start menu
```
### 10. Check Model GPU Loading
Verify if your model is using GPU:
```bash
ollama ps
```
Output shows:
- `100% GPU` - Fully loaded on GPU
- `100% CPU` - Fully loaded in system memory
- `48%/52% CPU/GPU` - Split between both
## Key Concepts
### Base URLs
- **Local API (default)**: `http://localhost:11434/api`
- **Cloud API**: `https://ollama.com/api`
- **OpenAI Compatible**: `/v1/` endpoints for OpenAI libraries
### Authentication
- **Local**: No authentication required for `http://localhost:11434`
- **Cloud Models**: Requires signing in (`ollama signin`) or API key
- **API Keys**: For programmatic access to `https://ollama.com/api`
### Models
- **Local Models**: Run on your machine (e.g., `gemma3`, `llama3.2`, `qwen3`)
- **Cloud Models**: Suffix `-cloud` (e.g., `gpt-oss:120b-cloud`, `qwen3-coder:480b-cloud`)
- **Vision Models**: Support image inputs (e.g., `llava`)
### Common Environment Variables
- `OLLAMA_HOST` - Change bind address (default: `127.0.0.1:11434`)
- `OLLAMA_CONTEXT_LENGTH` - Context window size (default: `2048` tokens)
- `OLLAMA_MODELS` - Model storage directory
- `OLLAMA_ORIGINS` - Allow additional web origins for CORS
- `HTTPS_PROXY` - Proxy server for model downloads
### Error Handling
**Status Codes:**
- `200` - Success
- `400` - Bad Request (invalid parameters)
- `404` - Not Found (model doesn't exist)
- `429` - Too Many Requests (rate limit)
- `500` - Internal Server Error
- `502` - Bad Gateway (cloud model unreachable)
**Error Format:**
```json
{
"error": "the model failed to generate a response"
}
```
### Streaming vs Non-Streaming
- **Streaming** (default): Returns response chunks as JSON objects (NDJSON)
- **Non-Streaming**: Set `"stream": false` to get complete response in one object
## Reference Files
This skill includes comprehensive documentation in `references/`:
- **llms-txt.md** - Complete API reference covering:
- All API endpoints (`/api/generate`, `/api/chat`, `/api/embed`, etc.)
- Authentication methods (signin, API keys)
- Error handling and status codes
- OpenAI compatibility layer
- Cloud models usage
- Streaming responses
- Configuration and environment variables
- **llms.md** - Documentation index listing all available topics:
- API reference (version, model details, chat, generate, embeddings)
- Capabilities (embeddings, streaming, structured outputs, tool calling, vision)
- CLI reference
- Cloud integration
- Platform-specific guides (Linux, macOS, Windows, Docker)
- IDE integrations (VS Code, JetBrains, Xcode, Zed, Cline)
Use the reference files when you need:
- Detailed API parameter specifications
- Complete endpoint documentation
- Advanced configuration options
- Platform-specific setup instructions
- Integration guides for specific tools
## Working with This Skill
### For Beginners
Start with these common patterns:
1. **Simple generation**: Use `/api/generate` endpoint with a prompt
2. **Chat interface**: Use `/api/chat` with messages array
3. **OpenAI compatibility**: Use OpenAI libraries with `base_url='http://localhost:11434/v1/'`
4. **Check GPU usage**: Run `ollama ps` to verify model loading
Read `llms-txt.md` section on "Introduction" and "Quickstart" for foundational concepts.
### For Intermediate Users
Focus on:
- **Embeddings** for semantic search and RAG applications
- **Structured outputs** with JSON schema validation
- **Vision models** for image analysis
- **Streaming** for real-time response generation
- **Authentication** for cloud models
Check the specific API endpoints in `llms-txt.md` for detailed parameter options.
### For Advanced Users
Explore:
- **Tool calling** for function execution
- **Custom model creation** with Modelfiles
- **Server configuration** with environment variables
- **Proxy setup** for network-restricted environments
- **Docker deployment** with custom configurations
- **Performance optimization** with GPU settings
Refer to platform-specific sections in `llms.md` and configuration details in `llms-txt.md`.
### Common Use Cases
**Building a chatbot:**
1. Use `/api/chat` endpoint
2. Maintain message history in your application
3. Stream responses for better UX
4. Handle errors gracefully
**Creating embeddings for search:**
1. Use `/api/embed` endpoint
2. Store embeddings in vector database
3. Perform similarity search
4. Implement RAG (Retrieval Augmented Generation)
**Running behind a firewall:**
1. Set `HTTPS_PROXY` environment variable
2. Configure proxy in Docker if containerized
3. Ensure certificates are trusted
**Using cloud models:**
1. Run `ollama signin` once
2. Pull cloud models with `-cloud` suffix
3. Use same API endpoints as local models
## Troubleshooting
### Model Not Loading on GPU
**Check:**
```bash
ollama ps
```
**Solutions:**
- Verify GPU compatibility in documentation
- Check CUDA/ROCm installation
- Review available VRAM
- Try smaller model variants
### Cannot Access Ollama Remotely
**Problem:** Ollama only accessible from localhost
**Solution:**
```bash
# Set OLLAMA_HOST to bind to all interfaces
export OLLAMA_HOST="0.0.0.0:11434"
```
See "How do I configure Ollama server?" in `llms-txt.md` for platform-specific instructions.
### Proxy Issues
**Problem:** Cannot download models behind proxy
**Solution:**
```bash
# Set proxy (HTTPS only, not HTTP)
export HTTPS_PROXY=https://proxy.example.com
# Restart Ollama
```
See "How do I use Ollama behind a proxy?" in `llms-txt.md`.
### CORS Errors in Browser
**Problem:** Browser extension or web app cannot access Ollama
**Solution:**
```bash
# Allow specific origins
export OLLAMA_ORIGINS="chrome-extension://*,moz-extension://*"
```
See "How can I allow additional web origins?" in `llms-txt.md`.
## Resources
### Official Documentation
- Main docs: https://docs.ollama.com
- API Reference: https://docs.ollama.com/api
- Model Library: https://ollama.com/models
### Official Libraries
- Python: https://github.com/ollama/ollama-python
- JavaScript: https://github.com/ollama/ollama-js
### Community
- GitHub: https://github.com/ollama/ollama
- Community Libraries: See GitHub README for full list
## Notes
- This skill was generated from official Ollama documentation
- All examples are tested and working with Ollama's API
- Code samples include proper language detection for syntax highlighting
- Reference files preserve structure from official docs with working links
- OpenAI compatibility means most OpenAI code works with minimal changes
## Quick Command Reference
```bash
# CLI Commands
ollama signin # Sign in to ollama.com
ollama run gemma3 # Run a model interactively
ollama pull gemma3 # Download a model
ollama ps # List running models
ollama list # List installed models
# Check API Status
curl http://localhost:11434/api/version
# Environment Variables (Common)
export OLLAMA_HOST="0.0.0.0:11434"
export OLLAMA_CONTEXT_LENGTH=8192
export OLLAMA_ORIGINS="*"
export HTTPS_PROXY="https://proxy.example.com"
```