# MXCP Expert Claude Skill A comprehensive Claude skill for working with MXCP (Enterprise MCP Framework) - enabling you to build production-ready MCP servers with SQL and Python endpoints, complete with security, audit trails, and policy enforcement. ## What's Included This skill provides complete guidance for: - **Creating MXCP projects** - Initialize and structure production-ready MCP servers - **Endpoint development** - Build tools, resources, and prompts using SQL or Python - **Enterprise features** - Implement authentication, policies, and audit logging - **dbt integration** - Combine data transformation with MCP endpoints - **Quality assurance** - Validate, test, lint, and evaluate your endpoints - **Production deployment** - Monitor drift, track operations, and ensure security ## Installation 1. Download the `mxcp-expert.zip` file 2. In Claude Desktop, go to Settings → Developer → Custom Skills 3. Click "Add Skill" and upload the `mxcp-expert.zip` file 4. The skill will be automatically available when working on MXCP projects ## Skill Structure ``` mxcp-expert/ ├── SKILL.md # Main skill file with quick reference ├── assets/ # Project templates and resources │ ├── project-templates/ # Pre-built MXCP projects │ │ ├── google-calendar/ # OAuth integration examples │ │ ├── jira/ jira-oauth/ # Jira integrations │ │ ├── salesforce/ salesforce-oauth/ # Salesforce integrations │ │ ├── confluence/ # Confluence integration │ │ ├── python-demo/ # Python endpoint patterns │ │ ├── covid_owid/ # dbt data caching example │ │ ├── keycloak/ # SSO integration │ │ └── ... # More templates │ └── schemas/ # JSON Schema definitions for YAML validation │ ├── mxcp-site-schema-1.json # mxcp-site.yml validation │ ├── mxcp-config-schema-1.json # config.yml validation │ ├── tool-schema-1.json # Tool definition validation │ ├── resource-schema-1.json # Resource definition validation │ ├── prompt-schema-1.json # Prompt definition validation │ ├── eval-schema-1.json # Evaluation suite validation │ └── common-types-schema-1.json # Common type definitions ├── scripts/ # Utility scripts │ └── validate_yaml.py # YAML validation script └── references/ # Detailed documentation (23 files) ├── tool-templates.md # Ready-to-use YAML templates for tools/resources/prompts ├── project-selection-guide.md # Decision tree and template selection ├── dbt-core-guide.md # Essential dbt knowledge (seeds, models, Python models) ├── duckdb-essentials.md # DuckDB features and SQL extensions ├── endpoint-patterns.md # Complete endpoint examples ├── python-api.md # Python runtime API reference ├── policies.md # Policy enforcement guide ├── comprehensive-testing-guide.md # Complete testing strategies ├── debugging-guide.md # Systematic debugging workflows ├── error-handling-guide.md # Python error handling patterns ├── dbt-patterns.md # Advanced dbt integration patterns ├── database-connections.md # PostgreSQL, MySQL, SQLite, SQL Server ├── excel-integration.md # Excel file handling with pandas and dbt ├── claude-desktop.md # Claude Desktop setup guide ├── cli-reference.md # Complete CLI documentation ├── type-system.md # Type validation reference └── ... # 8 more specialized guides ``` ## When This Skill is Used Claude will automatically use this skill for ANY mention or reference to MXCP, including when you: - Mention "MXCP", "mxcp", "MXCP server", "MXCP project" in any context - Ask questions about MXCP or its features - Create, initialize, build, or set up MXCP projects - Edit or modify MXCP files (mxcp-site.yml, config.yml, tools/resources/prompts) - Define or work with MCP tools, resources, or prompts using MXCP - Implement SQL queries or Python endpoints for MXCP - Configure MXCP features (authentication, policies, audit logging, dbt integration) - Run MXCP commands (mxcp validate, mxcp test, mxcp serve, mxcp init, mxcp lint) - Test, validate, lint, or debug MXCP endpoints - Fix MXCP validation errors or troubleshoot issues - Deploy MXCP servers to production ## Quick Start Examples ### Example 1: CSV File to MCP Server ``` User: "I need to connect my chat to a CSV file with customer data" Claude: [Uses mxcp-expert skill] I'll help you create an MXCP server that queries your CSV file. 1. Initialize project: mkdir customer-mcp && cd customer-mcp mxcp init --bootstrap 2. Add your CSV as a dbt seed: cp customers.csv seeds/ 3. Create schema definition (seeds/schema.yml): [Creates proper schema.yml with column types and tests] 4. Load data: dbt seed dbt test 5. Create query tool: [Creates tools/get_customers.yml with parameterized SQL] 6. Test and validate: mxcp validate && mxcp test mxcp serve [Provides complete security-first implementation with validation] ``` ### Example 2: API Integration ``` User: "Connect to Google Calendar API" Claude: [Uses mxcp-expert skill] I'll use the google-calendar project template for OAuth integration. 1. Copy template: cp -r assets/project-templates/google-calendar calendar-mcp cd calendar-mcp 2. Configure OAuth in project config.yml: [Creates config.yml with OAuth settings in project directory] 3. Test authentication: mxcp serve [Explains OAuth flow] [Provides complete working OAuth integration] ``` ### Example 3: Database Connection ``` User: "Connect to my PostgreSQL production database" Claude: [Uses mxcp-expert skill] I'll help you connect to your PostgreSQL database using DuckDB ATTACH. 1. Create project and config: mkdir postgres-mcp && cd postgres-mcp mxcp init --bootstrap Create config.yml with database credentials (uses environment variables) 2. Create SQL tool with ATTACH: [Creates tools/query_customers.yml with PostgreSQL ATTACH statement] 3. Set credentials and test: export DB_HOST="localhost" DB_USER="readonly_user" DB_PASSWORD="xxx" mxcp validate && mxcp run tool query_customers 4. Alternative: Cache data with dbt for fast queries [Shows dbt source + model pattern to materialize data] [Provides both direct query and cached approaches with security best practices] ``` ## Key Features Covered ### Endpoint Development - SQL tools for data queries - Python tools for complex logic - Resources for data access - Prompts with Jinja templates - Combined SQL + Python patterns ### Enterprise Features - OAuth authentication (GitHub, Google, Microsoft, etc.) - Policy-based access control with CEL expressions - Comprehensive audit logging (JSONL format) - Field-level data filtering and masking - User context testing ### Quality Assurance - Structure validation with `mxcp validate` - Functional testing with `mxcp test` - Metadata quality checks with `mxcp lint` - LLM behavior testing with `mxcp evals` ### dbt Integration - Data transformation pipelines - External data caching - Incremental model patterns - Data quality tests ### Production Operations - Drift detection and monitoring - Audit log querying and export - Multi-environment profiles - Secrets management (Vault, 1Password) - OpenTelemetry observability ## Core Principles This skill prioritizes: 1. **Security First** - Authentication, authorization, parameterized queries, input validation 2. **Robustness** - Error handling, type safety, data quality checks 3. **Validity** - Schema compliance, structure validation 4. **Testability** - Comprehensive test coverage 5. **Testing** - Always validate/test/lint before deployment ## Mandatory Workflow **To ensure MXCP servers always work correctly, the agent follows:** 1. **Build incrementally** - One tool/component at a time 2. **Validate continuously** - `mxcp validate` after each change 3. **Test before proceeding** - `mxcp test` must pass before next step 4. **Verify manually** - Run actual tool with real data 5. **Definition of Done** - ALL validation checks must pass The agent will NEVER declare a project complete unless all validation, tests, and manual verification succeed. ## Documentation Coverage The skill includes comprehensive documentation based on official MXCP docs: **CRITICAL - Start Here**: - **build-and-validate-workflow.md** - MANDATORY workflow ensuring correctness - **minimal-working-examples.md** - Guaranteed-to-work examples (copy, test, customize) **Essential Guides** (for most projects): - **project-selection-guide.md** - Decision trees, heuristics, when to use which approach - **dbt-core-guide.md** - dbt seeds, models, schema.yml (critical for CSV/data projects) - **duckdb-essentials.md** - DuckDB SQL features, CSV import, analytics - **excel-integration.md** - Excel file handling and pandas integration - **synthetic-data-patterns.md** - Generate test data with GENERATE_SERIES **Detailed References**: - **endpoint-patterns.md** - Complete tool/resource/prompt examples - **python-api.md** - Python runtime API and library wrapping patterns - **testing-guide.md** - Comprehensive testing strategies - **policies.md** - Policy enforcement and security - **type-system.md** - Type validation rules - **cli-reference.md** - Complete CLI documentation - **claude-desktop.md** - Claude Desktop integration - **dbt-patterns.md** - Advanced dbt integration patterns ## About MXCP MXCP is an enterprise-grade MCP (Model Context Protocol) framework that provides a structured methodology for building production AI applications: 1. **Data Quality First** - Start with dbt models and data contracts 2. **Service Design** - Define types, security policies, and API contracts 3. **Smart Implementation** - Choose SQL for data, Python for logic 4. **Quality Assurance** - Validate, test, lint, and evaluate 5. **Production Operations** - Monitor drift, track audits, ensure performance ## License This skill compiles information from the MXCP project documentation. MXCP is released under the Business Source License 1.1 (BSL). For more information about MXCP: - Website: https://mxcp.dev - GitHub: https://github.com/raw-labs/mxcp - Contact: mxcp@raw-labs.com ## Skill Version Version: 1.0.0 Created: October 2025 Based on: MXCP documentation as of October 2025