Files
gh-rafaelcalleja-claude-mar…/skills/ai-multimodal/scripts/document_converter.py
2025-11-30 08:48:52 +08:00

396 lines
12 KiB
Python

#!/usr/bin/env python3
"""
Convert documents to Markdown using Gemini API.
Supports all document types:
- PDF documents (native vision processing)
- Images (JPEG, PNG, WEBP, HEIC)
- Office documents (DOCX, XLSX, PPTX)
- HTML, TXT, and other text formats
Features:
- Converts to clean markdown format
- Preserves structure, tables, and formatting
- Extracts text from images and scanned documents
- Batch conversion support
- Saves to docs/assets/document-extraction.md by default
"""
import argparse
import os
import sys
import time
from pathlib import Path
from typing import Optional, List, Dict, Any
try:
from google import genai
from google.genai import types
except ImportError:
print("Error: google-genai package not installed")
print("Install with: pip install google-genai")
sys.exit(1)
try:
from dotenv import load_dotenv
except ImportError:
load_dotenv = None
def find_api_key() -> Optional[str]:
"""Find Gemini API key using correct priority order.
Priority order (highest to lowest):
1. process.env (runtime environment variables)
2. .claude/skills/ai-multimodal/.env (skill-specific config)
3. .claude/skills/.env (shared skills config)
4. .claude/.env (Claude global config)
"""
# Priority 1: Already in process.env (highest)
api_key = os.getenv('GEMINI_API_KEY')
if api_key:
return api_key
# Load .env files if dotenv available
if load_dotenv:
# Determine base paths
script_dir = Path(__file__).parent
skill_dir = script_dir.parent # .claude/skills/ai-multimodal
skills_dir = skill_dir.parent # .claude/skills
claude_dir = skills_dir.parent # .claude
# Priority 2: Skill-specific .env
env_file = skill_dir / '.env'
if env_file.exists():
load_dotenv(env_file)
api_key = os.getenv('GEMINI_API_KEY')
if api_key:
return api_key
# Priority 3: Shared skills .env
env_file = skills_dir / '.env'
if env_file.exists():
load_dotenv(env_file)
api_key = os.getenv('GEMINI_API_KEY')
if api_key:
return api_key
# Priority 4: Claude global .env
env_file = claude_dir / '.env'
if env_file.exists():
load_dotenv(env_file)
api_key = os.getenv('GEMINI_API_KEY')
if api_key:
return api_key
return None
def find_project_root() -> Path:
"""Find project root directory."""
script_dir = Path(__file__).parent
# Look for .git or .claude directory
for parent in [script_dir] + list(script_dir.parents):
if (parent / '.git').exists() or (parent / '.claude').exists():
return parent
return script_dir
def get_mime_type(file_path: str) -> str:
"""Determine MIME type from file extension."""
ext = Path(file_path).suffix.lower()
mime_types = {
# Documents
'.pdf': 'application/pdf',
'.txt': 'text/plain',
'.html': 'text/html',
'.htm': 'text/html',
'.md': 'text/markdown',
'.csv': 'text/csv',
# Images
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.png': 'image/png',
'.webp': 'image/webp',
'.heic': 'image/heic',
'.heif': 'image/heif',
# Office (need to be uploaded as binary)
'.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'.xlsx': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
'.pptx': 'application/vnd.openxmlformats-officedocument.presentationml.presentation',
}
return mime_types.get(ext, 'application/octet-stream')
def upload_file(client: genai.Client, file_path: str, verbose: bool = False) -> Any:
"""Upload file to Gemini File API."""
if verbose:
print(f"Uploading {file_path}...")
myfile = client.files.upload(file=file_path)
# Wait for processing if needed
max_wait = 300 # 5 minutes
elapsed = 0
while myfile.state.name == 'PROCESSING' and elapsed < max_wait:
time.sleep(2)
myfile = client.files.get(name=myfile.name)
elapsed += 2
if verbose and elapsed % 10 == 0:
print(f" Processing... {elapsed}s")
if myfile.state.name == 'FAILED':
raise ValueError(f"File processing failed: {file_path}")
if myfile.state.name == 'PROCESSING':
raise TimeoutError(f"Processing timeout after {max_wait}s: {file_path}")
if verbose:
print(f" Uploaded: {myfile.name}")
return myfile
def convert_to_markdown(
client: genai.Client,
file_path: str,
model: str = 'gemini-2.5-flash',
custom_prompt: Optional[str] = None,
verbose: bool = False,
max_retries: int = 3
) -> Dict[str, Any]:
"""Convert a document to markdown using Gemini."""
for attempt in range(max_retries):
try:
file_path_obj = Path(file_path)
file_size = file_path_obj.stat().st_size
use_file_api = file_size > 20 * 1024 * 1024 # >20MB
# Default prompt for markdown conversion
if custom_prompt:
prompt = custom_prompt
else:
prompt = """Convert this document to clean, well-formatted Markdown.
Requirements:
- Preserve all content, structure, and formatting
- Convert tables to markdown table format
- Maintain heading hierarchy (# ## ### etc)
- Preserve lists, code blocks, and quotes
- Extract text from images if present
- Keep formatting consistent and readable
Output only the markdown content without any preamble or explanation."""
# Upload or inline the file
if use_file_api:
myfile = upload_file(client, str(file_path), verbose)
content = [prompt, myfile]
else:
with open(file_path, 'rb') as f:
file_bytes = f.read()
mime_type = get_mime_type(str(file_path))
content = [
prompt,
types.Part.from_bytes(data=file_bytes, mime_type=mime_type)
]
# Generate markdown
response = client.models.generate_content(
model=model,
contents=content
)
markdown_content = response.text if hasattr(response, 'text') else ''
return {
'file': str(file_path),
'status': 'success',
'markdown': markdown_content
}
except Exception as e:
if attempt == max_retries - 1:
return {
'file': str(file_path),
'status': 'error',
'error': str(e),
'markdown': None
}
wait_time = 2 ** attempt
if verbose:
print(f" Retry {attempt + 1} after {wait_time}s: {e}")
time.sleep(wait_time)
def batch_convert(
files: List[str],
output_file: Optional[str] = None,
auto_name: bool = False,
model: str = 'gemini-2.5-flash',
custom_prompt: Optional[str] = None,
verbose: bool = False
) -> List[Dict[str, Any]]:
"""Batch convert multiple files to markdown."""
api_key = find_api_key()
if not api_key:
print("Error: GEMINI_API_KEY not found")
print("Set via: export GEMINI_API_KEY='your-key'")
print("Or create .env file with: GEMINI_API_KEY=your-key")
sys.exit(1)
client = genai.Client(api_key=api_key)
results = []
# Determine output path
if not output_file:
project_root = find_project_root()
output_dir = project_root / 'docs' / 'assets'
if auto_name and len(files) == 1:
# Auto-generate meaningful filename from input
input_path = Path(files[0])
base_name = input_path.stem
output_file = str(output_dir / f"{base_name}-extraction.md")
else:
output_file = str(output_dir / 'document-extraction.md')
output_path = Path(output_file)
output_path.parent.mkdir(parents=True, exist_ok=True)
# Process each file
for i, file_path in enumerate(files, 1):
if verbose:
print(f"\n[{i}/{len(files)}] Converting: {file_path}")
result = convert_to_markdown(
client=client,
file_path=file_path,
model=model,
custom_prompt=custom_prompt,
verbose=verbose
)
results.append(result)
if verbose:
status = result.get('status', 'unknown')
print(f" Status: {status}")
# Save combined markdown
with open(output_path, 'w', encoding='utf-8') as f:
f.write("# Document Extraction Results\n\n")
f.write(f"Converted {len(files)} document(s) to markdown.\n\n")
f.write("---\n\n")
for result in results:
f.write(f"## {Path(result['file']).name}\n\n")
if result['status'] == 'success' and result.get('markdown'):
f.write(result['markdown'])
f.write("\n\n")
elif result['status'] == 'success':
f.write("**Note**: Conversion succeeded but no content was returned.\n\n")
else:
f.write(f"**Error**: {result.get('error', 'Unknown error')}\n\n")
f.write("---\n\n")
if verbose or True: # Always show output location
print(f"\n{'='*50}")
print(f"Converted: {len(results)} file(s)")
print(f"Success: {sum(1 for r in results if r['status'] == 'success')}")
print(f"Failed: {sum(1 for r in results if r['status'] == 'error')}")
print(f"Output saved to: {output_path}")
return results
def main():
parser = argparse.ArgumentParser(
description='Convert documents to Markdown using Gemini API',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Convert single PDF to markdown (default name)
%(prog)s --input document.pdf
# Auto-generate meaningful filename
%(prog)s --input testpdf.pdf --auto-name
# Output: docs/assets/testpdf-extraction.md
# Convert multiple files
%(prog)s --input doc1.pdf doc2.docx image.png
# Specify custom output location
%(prog)s --input document.pdf --output ./output.md
# Use custom prompt
%(prog)s --input document.pdf --prompt "Extract only the tables as markdown"
# Batch convert directory
%(prog)s --input ./documents/*.pdf --verbose
Supported formats:
- PDF documents (up to 1,000 pages)
- Images (JPEG, PNG, WEBP, HEIC)
- Office documents (DOCX, XLSX, PPTX)
- Text formats (TXT, HTML, Markdown, CSV)
Default output: <project-root>/docs/assets/document-extraction.md
"""
)
parser.add_argument('--input', '-i', nargs='+', required=True,
help='Input file(s) to convert')
parser.add_argument('--output', '-o',
help='Output markdown file (default: docs/assets/document-extraction.md)')
parser.add_argument('--auto-name', '-a', action='store_true',
help='Auto-generate meaningful output filename from input (e.g., document.pdf -> document-extraction.md)')
parser.add_argument('--model', default='gemini-2.5-flash',
help='Gemini model to use (default: gemini-2.5-flash)')
parser.add_argument('--prompt', '-p',
help='Custom prompt for conversion')
parser.add_argument('--verbose', '-v', action='store_true',
help='Verbose output')
args = parser.parse_args()
# Validate input files
files = []
for file_pattern in args.input:
file_path = Path(file_pattern)
if file_path.exists() and file_path.is_file():
files.append(str(file_path))
else:
# Try glob pattern
import glob
matched = glob.glob(file_pattern)
files.extend([f for f in matched if Path(f).is_file()])
if not files:
print("Error: No valid input files found")
sys.exit(1)
# Convert files
batch_convert(
files=files,
output_file=args.output,
auto_name=args.auto_name,
model=args.model,
custom_prompt=args.prompt,
verbose=args.verbose
)
if __name__ == '__main__':
main()