--- name: microimpute description: ML-based variable imputation for survey data - used in policyengine-us-data to fill missing values --- # MicroImpute MicroImpute enables ML-based variable imputation through different statistical methods, with comparison and benchmarking capabilities. ## For Users 👥 ### What is MicroImpute? When PolicyEngine calculates population impacts, the underlying survey data has missing information. MicroImpute uses machine learning to fill in those gaps intelligently. **What imputation does:** - Fills missing data in surveys - Uses machine learning to predict missing values - Maintains statistical relationships - Improves PolicyEngine accuracy **Example:** - Survey asks about income but not capital gains breakdown - MicroImpute predicts short-term vs long-term capital gains - Based on patterns from IRS data - Result: More accurate tax calculations **You benefit from imputation when:** - PolicyEngine calculates capital gains tax accurately - Benefits eligibility uses complete household information - State-specific calculations have all needed data ## For Analysts 📊 ### Installation ```bash pip install microimpute # With image export (for plots) pip install microimpute[images] ``` ### What MicroImpute Does **Imputation problem:** - Donor dataset has complete information (e.g., IRS tax records) - Recipient dataset has missing variables (e.g., CPS survey) - Imputation predicts missing values in recipient using donor patterns **Methods available:** - Linear regression - Random forest - Quantile forest (preserves full distribution) - XGBoost - Hot deck (traditional matching) ### Quick Example ```python from microimpute import Imputer import pandas as pd # Donor data (complete) donor = pd.DataFrame({ 'income': [50000, 60000, 70000], 'age': [30, 40, 50], 'capital_gains': [5000, 8000, 12000] # Variable to impute }) # Recipient data (missing capital_gains) recipient = pd.DataFrame({ 'income': [55000, 65000], 'age': [35, 45], # capital_gains is missing }) # Impute using quantile forest imputer = Imputer(method='quantile_forest') imputer.fit( donor=donor, donor_target='capital_gains', common_vars=['income', 'age'] ) recipient_imputed = imputer.predict(recipient) # Now recipient has predicted capital_gains ``` ### Method Comparison ```python from microimpute import compare_methods # Compare different imputation methods results = compare_methods( donor=donor, recipient=recipient, target_var='capital_gains', common_vars=['income', 'age'], methods=['linear', 'random_forest', 'quantile_forest'] ) # Shows quantile loss for each method print(results) ``` ### Quantile Loss (Quality Metric) **Why quantile loss:** - Measures how well imputation preserves the distribution - Not just mean accuracy, but full distribution shape - Lower is better **Interpretation:** ```python # Quantile loss around 0.1 = good # Quantile loss around 0.5 = poor # Compare across methods to choose best ``` ## For Contributors 💻 ### Repository **Location:** PolicyEngine/microimpute **Clone:** ```bash git clone https://github.com/PolicyEngine/microimpute cd microimpute ``` ### Current Implementation **To see structure:** ```bash tree microimpute/ # Key modules: ls microimpute/ # - imputer.py - Main Imputer class # - methods/ - Different imputation methods # - comparison.py - Method benchmarking # - utils/ - Utilities ``` **To see specific methods:** ```bash # Quantile forest implementation cat microimpute/methods/quantile_forest.py # Random forest cat microimpute/methods/random_forest.py # Linear regression cat microimpute/methods/linear.py ``` ### Dependencies **Required:** - numpy, pandas (data handling) - scikit-learn (ML models) - quantile-forest (distributional imputation) - optuna (hyperparameter tuning) - statsmodels (statistical methods) - scipy (statistical functions) **To see all dependencies:** ```bash cat pyproject.toml ``` ### Adding New Imputation Methods **Pattern:** ```python # microimpute/methods/my_method.py class MyMethodImputer: def fit(self, X_train, y_train): """Train on donor data.""" # Fit your model pass def predict(self, X_test): """Impute on recipient data.""" # Return predictions pass def get_quantile_loss(self, X_val, y_val): """Compute validation loss.""" # Evaluate quality pass ``` ### Usage in policyengine-us-data **To see how data pipeline uses microimpute:** ```bash cd ../policyengine-us-data # Find usage grep -r "microimpute" policyengine_us_data/ grep -r "Imputer" policyengine_us_data/ ``` **Typical workflow:** 1. Load CPS (has demographics, missing capital gains details) 2. Load IRS PUF (has complete tax data) 3. Use microimpute to predict missing CPS variables from PUF patterns 4. Validate imputation quality 5. Save enhanced dataset ### Testing **Run tests:** ```bash make test # Or pytest tests/ -v --cov=microimpute ``` **To see test patterns:** ```bash cat tests/test_imputer.py cat tests/test_methods.py ``` ## Common Patterns ### Pattern 1: Basic Imputation ```python from microimpute import Imputer # Create imputer imputer = Imputer(method='quantile_forest') # Fit on donor (complete data) imputer.fit( donor=donor_df, donor_target='target_variable', common_vars=['age', 'income', 'state'] ) # Predict on recipient (missing target_variable) recipient_imputed = imputer.predict(recipient_df) ``` ### Pattern 2: Choosing Best Method ```python from microimpute import compare_methods # Test multiple methods methods = ['linear', 'random_forest', 'quantile_forest', 'xgboost'] results = compare_methods( donor=donor, recipient=recipient, target_var='target', common_vars=common_vars, methods=methods ) # Use method with lowest quantile loss best_method = results.sort_values('quantile_loss').iloc[0]['method'] ``` ### Pattern 3: Multiple Variable Imputation ```python # Impute several variables variables_to_impute = [ 'short_term_capital_gains', 'long_term_capital_gains', 'qualified_dividends' ] for var in variables_to_impute: imputer = Imputer(method='quantile_forest') imputer.fit(donor=irs_puf, donor_target=var, common_vars=common_vars) cps[var] = imputer.predict(cps) ``` ## Advanced Features ### Hyperparameter Tuning **Built-in Optuna integration:** ```python from microimpute import tune_hyperparameters # Automatically find best hyperparameters best_params, study = tune_hyperparameters( donor=donor, target_var='target', common_vars=common_vars, method='quantile_forest', n_trials=100 ) # Use tuned parameters imputer = Imputer(method='quantile_forest', **best_params) ``` ### Cross-Validation **Validate imputation quality:** ```python from sklearn.model_selection import cross_val_score # Split donor for validation # Impute on validation set # Measure accuracy ``` ### Visualization **Plot imputation results:** ```python import plotly.express as px # Compare imputed vs actual (on donor validation set) fig = px.scatter( x=actual_values, y=imputed_values, labels={'x': 'Actual', 'y': 'Imputed'} ) fig.add_trace(px.line(x=[min, max], y=[min, max])) # 45-degree line ``` ## Statistical Background **Imputation preserves:** - Marginal distributions (imputed variable distribution matches donor) - Conditional relationships (imputation depends on common variables) - Uncertainty (quantile methods preserve full distribution) **Trade-offs:** - **Linear:** Fast, but assumes linear relationships - **Random forest:** Handles non-linearity, may overfit - **Quantile forest:** Preserves full distribution, slower - **XGBoost:** High accuracy, requires tuning ## Integration with PolicyEngine **Full pipeline (policyengine-us-data):** ``` 1. Load CPS survey data ↓ 2. microimpute: Fill missing variables from IRS PUF ↓ 3. microcalibrate: Adjust weights to match benchmarks ↓ 4. Validation: Check against administrative totals ↓ 5. Package: Distribute enhanced dataset ↓ 6. PolicyEngine: Use for population simulations ``` ## Comparison to Other Methods **MicroImpute vs traditional imputation:** **Traditional (mean imputation):** - Fast but destroys distribution - All missing values get same value - Underestimates variance **MicroImpute (ML methods):** - Preserves relationships - Different predictions per record - Maintains distribution shape **Quantile forest advantage:** - Predicts full conditional distribution - Not just point estimates - Can sample from predicted distribution ## Performance Tips **For large datasets:** ```python # Use random forest (faster than quantile forest) imputer = Imputer(method='random_forest') # Or subsample donor donor_sample = donor.sample(n=10000, random_state=42) imputer.fit(donor=donor_sample, ...) ``` **For high accuracy:** ```python # Use quantile forest with tuning best_params, _ = tune_hyperparameters(...) imputer = Imputer(method='quantile_forest', **best_params) ``` ## Related Skills - **l0-skill** - Regularization techniques - **microcalibrate-skill** - Survey calibration (next step after imputation) - **policyengine-us-data-skill** - Complete data pipeline - **microdf-skill** - Working with imputed/calibrated data ## Resources **Repository:** https://github.com/PolicyEngine/microimpute **PyPI:** https://pypi.org/project/microimpute/ **Documentation:** See README and docstrings in source