Initial commit
This commit is contained in:
277
skills/l0-skill/SKILL.md
Normal file
277
skills/l0-skill/SKILL.md
Normal file
@@ -0,0 +1,277 @@
|
||||
---
|
||||
name: l0
|
||||
description: L0 regularization for neural network sparsification and intelligent sampling - used in survey calibration
|
||||
---
|
||||
|
||||
# L0 Regularization
|
||||
|
||||
L0 is a PyTorch implementation of L0 regularization for neural network sparsification and intelligent sampling, used in PolicyEngine's survey calibration pipeline.
|
||||
|
||||
## For Users 👥
|
||||
|
||||
### What is L0?
|
||||
|
||||
L0 regularization helps PolicyEngine create more efficient survey datasets by intelligently selecting which households to include in calculations.
|
||||
|
||||
**Impact you see:**
|
||||
- Faster population impact calculations
|
||||
- Smaller dataset sizes
|
||||
- Maintained accuracy with fewer samples
|
||||
|
||||
**Behind the scenes:**
|
||||
When PolicyEngine shows population-wide impacts, L0 helps select representative households from the full survey, reducing computation time while maintaining accuracy.
|
||||
|
||||
## For Analysts 📊
|
||||
|
||||
### What L0 Does
|
||||
|
||||
L0 provides intelligent sampling gates for:
|
||||
- **Household selection** - Choose representative samples from CPS
|
||||
- **Feature selection** - Identify important variables
|
||||
- **Sparse weighting** - Create compact, efficient datasets
|
||||
|
||||
**Used in PolicyEngine for:**
|
||||
- Survey calibration (via microcalibrate)
|
||||
- Dataset sparsification in policyengine-us-data
|
||||
- Efficient microsimulation
|
||||
|
||||
### Installation
|
||||
|
||||
```bash
|
||||
pip install l0-python
|
||||
```
|
||||
|
||||
### Quick Example: Sample Selection
|
||||
|
||||
```python
|
||||
from l0 import SampleGate
|
||||
|
||||
# Select 1,000 households from 10,000
|
||||
gate = SampleGate(n_samples=10000, target_samples=1000)
|
||||
selected_data, indices = gate.select_samples(data)
|
||||
|
||||
# Gates learn which samples are most informative
|
||||
```
|
||||
|
||||
### Integration with microcalibrate
|
||||
|
||||
```python
|
||||
from l0 import HardConcrete
|
||||
from microcalibrate import Calibration
|
||||
|
||||
# L0 gates for household selection
|
||||
gates = HardConcrete(
|
||||
len(household_weights),
|
||||
temperature=0.25,
|
||||
init_mean=0.999 # Start with most households
|
||||
)
|
||||
|
||||
# Use in calibration
|
||||
# microcalibrate applies gates during weight optimization
|
||||
```
|
||||
|
||||
## For Contributors 💻
|
||||
|
||||
### Repository
|
||||
|
||||
**Location:** PolicyEngine/L0
|
||||
|
||||
**Clone:**
|
||||
```bash
|
||||
git clone https://github.com/PolicyEngine/L0
|
||||
cd L0
|
||||
```
|
||||
|
||||
### Current Implementation
|
||||
|
||||
**To see structure:**
|
||||
```bash
|
||||
tree l0/
|
||||
|
||||
# Key modules:
|
||||
ls l0/
|
||||
# - hard_concrete.py - Core L0 distribution
|
||||
# - layers.py - L0Linear, L0Conv2d
|
||||
# - gates.py - Sample/feature gates
|
||||
# - penalties.py - L0/L2 penalty computation
|
||||
# - temperature.py - Temperature scheduling
|
||||
```
|
||||
|
||||
**To see specific implementations:**
|
||||
```bash
|
||||
# Hard Concrete distribution (core algorithm)
|
||||
cat l0/hard_concrete.py
|
||||
|
||||
# Sample gates (used in calibration)
|
||||
cat l0/gates.py
|
||||
|
||||
# Neural network layers
|
||||
cat l0/layers.py
|
||||
```
|
||||
|
||||
### Key Concepts
|
||||
|
||||
**Hard Concrete Distribution:**
|
||||
- Differentiable approximation of L0 norm
|
||||
- Allows gradient-based optimization
|
||||
- Temperature controls sparsity level
|
||||
|
||||
**To see implementation:**
|
||||
```bash
|
||||
cat l0/hard_concrete.py
|
||||
```
|
||||
|
||||
**Sample Gates:**
|
||||
- Binary gates for sample selection
|
||||
- Learn which samples are most informative
|
||||
- Used in microcalibrate for household selection
|
||||
|
||||
**Feature Gates:**
|
||||
- Select important features/variables
|
||||
- Reduce dimensionality
|
||||
- Maintain prediction accuracy
|
||||
|
||||
### Usage in PolicyEngine
|
||||
|
||||
**In microcalibrate (survey calibration):**
|
||||
```python
|
||||
from l0 import HardConcrete
|
||||
|
||||
# Create gates for household selection
|
||||
gates = HardConcrete(
|
||||
n_items=len(households),
|
||||
temperature=0.25,
|
||||
init_mean=0.999 # Start with almost all households
|
||||
)
|
||||
|
||||
# Gates produce probabilities (0 to 1)
|
||||
probs = gates()
|
||||
|
||||
# Apply to weights during calibration
|
||||
masked_weights = weights * probs
|
||||
```
|
||||
|
||||
**In policyengine-us-data:**
|
||||
```bash
|
||||
# See usage in data pipeline
|
||||
grep -r "from l0 import" ../policyengine-us-data/
|
||||
```
|
||||
|
||||
### Temperature Scheduling
|
||||
|
||||
**Controls sparsity over training:**
|
||||
```python
|
||||
from l0 import TemperatureScheduler, update_temperatures
|
||||
|
||||
scheduler = TemperatureScheduler(
|
||||
initial_temp=1.0, # Start relaxed
|
||||
final_temp=0.1, # End sparse
|
||||
total_epochs=100
|
||||
)
|
||||
|
||||
for epoch in range(100):
|
||||
temp = scheduler.get_temperature(epoch)
|
||||
update_temperatures(model, temp)
|
||||
# ... training ...
|
||||
```
|
||||
|
||||
**To see implementation:**
|
||||
```bash
|
||||
cat l0/temperature.py
|
||||
```
|
||||
|
||||
### L0L2 Combined Penalty
|
||||
|
||||
**Prevents overfitting:**
|
||||
```python
|
||||
from l0 import compute_l0l2_penalty
|
||||
|
||||
# Combine L0 (sparsity) with L2 (regularization)
|
||||
penalty = compute_l0l2_penalty(
|
||||
model,
|
||||
l0_lambda=1e-3, # Sparsity strength
|
||||
l2_lambda=1e-4 # Weight regularization
|
||||
)
|
||||
|
||||
loss = task_loss + penalty
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
**Run tests:**
|
||||
```bash
|
||||
make test
|
||||
|
||||
# Or
|
||||
pytest tests/ -v --cov=l0
|
||||
```
|
||||
|
||||
**To see test patterns:**
|
||||
```bash
|
||||
cat tests/test_hard_concrete.py
|
||||
cat tests/test_gates.py
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Hybrid Gates (L0 + Random)
|
||||
|
||||
```python
|
||||
from l0 import HybridGate
|
||||
|
||||
# Combine L0 selection with random sampling
|
||||
hybrid = HybridGate(
|
||||
n_items=10000,
|
||||
l0_fraction=0.25, # 25% from L0
|
||||
random_fraction=0.75, # 75% random
|
||||
target_items=1000
|
||||
)
|
||||
|
||||
selected, indices, types = hybrid.select(data)
|
||||
```
|
||||
|
||||
### Feature Selection
|
||||
|
||||
```python
|
||||
from l0 import FeatureGate
|
||||
|
||||
# Select top features
|
||||
gate = FeatureGate(n_features=1000, max_features=50)
|
||||
selected_data, feature_indices = gate.select_features(data)
|
||||
|
||||
# Get feature importance
|
||||
importance = gate.get_feature_importance()
|
||||
```
|
||||
|
||||
## Mathematical Background
|
||||
|
||||
**L0 norm:**
|
||||
- Counts non-zero elements
|
||||
- Non-differentiable (discontinuous)
|
||||
- Hard to optimize directly
|
||||
|
||||
**Hard Concrete relaxation:**
|
||||
- Continuous, differentiable approximation
|
||||
- Enables gradient descent
|
||||
- "Stretches" binary distribution to allow gradients
|
||||
|
||||
**Paper:**
|
||||
Louizos, Welling, & Kingma (2017): "Learning Sparse Neural Networks through L0 Regularization"
|
||||
https://arxiv.org/abs/1712.01312
|
||||
|
||||
## Related Packages
|
||||
|
||||
**Uses L0:**
|
||||
- microcalibrate (survey weight calibration)
|
||||
- policyengine-us-data (household selection)
|
||||
|
||||
**See also:**
|
||||
- **microcalibrate-skill** - Survey calibration using L0
|
||||
- **policyengine-us-data-skill** - Data pipeline integration
|
||||
|
||||
## Resources
|
||||
|
||||
**Repository:** https://github.com/PolicyEngine/L0
|
||||
**Documentation:** https://policyengine.github.io/L0/
|
||||
**Paper:** https://arxiv.org/abs/1712.01312
|
||||
**PyPI:** https://pypi.org/project/l0-python/
|
||||
404
skills/microcalibrate-skill/SKILL.md
Normal file
404
skills/microcalibrate-skill/SKILL.md
Normal file
@@ -0,0 +1,404 @@
|
||||
---
|
||||
name: microcalibrate
|
||||
description: Survey weight calibration to match population targets - used in policyengine-us-data for enhanced microdata
|
||||
---
|
||||
|
||||
# MicroCalibrate
|
||||
|
||||
MicroCalibrate calibrates survey weights to match population targets, with L0 regularization for sparsity and automatic hyperparameter tuning.
|
||||
|
||||
## For Users 👥
|
||||
|
||||
### What is MicroCalibrate?
|
||||
|
||||
When you see PolicyEngine population impacts, the underlying data has been "calibrated" using MicroCalibrate to match official population statistics.
|
||||
|
||||
**What calibration does:**
|
||||
- Adjusts survey weights to match known totals (population, income, employment)
|
||||
- Creates representative datasets
|
||||
- Reduces dataset size while maintaining accuracy
|
||||
- Ensures PolicyEngine estimates match administrative data
|
||||
|
||||
**Example:**
|
||||
- Census says US has 331 million people
|
||||
- Survey has 100,000 households representing the population
|
||||
- MicroCalibrate adjusts weights so survey totals match census totals
|
||||
- Result: More accurate PolicyEngine calculations
|
||||
|
||||
## For Analysts 📊
|
||||
|
||||
### Installation
|
||||
|
||||
```bash
|
||||
pip install microcalibrate
|
||||
```
|
||||
|
||||
### What MicroCalibrate Does
|
||||
|
||||
**Calibration problem:**
|
||||
You have survey data with initial weights, and you know certain population totals (benchmarks). Calibration adjusts weights so weighted survey totals match benchmarks.
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
from microcalibrate import Calibration
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
# Survey data (1,000 households)
|
||||
weights = np.ones(1000) # Initial weights
|
||||
|
||||
# Estimates (how much each household contributes to targets)
|
||||
estimate_matrix = pd.DataFrame({
|
||||
'total_income': household_incomes, # Each household's income
|
||||
'total_employed': household_employment # 1 if employed, 0 if not
|
||||
})
|
||||
|
||||
# Known population targets (benchmarks)
|
||||
targets = np.array([
|
||||
50_000_000, # Total income in population
|
||||
600, # Total employed people
|
||||
])
|
||||
|
||||
# Calibrate
|
||||
cal = Calibration(
|
||||
weights=weights,
|
||||
targets=targets,
|
||||
estimate_matrix=estimate_matrix,
|
||||
l0_lambda=0.01 # Sparsity penalty
|
||||
)
|
||||
|
||||
# Optimize weights
|
||||
new_weights = cal.calibrate(max_iter=1000)
|
||||
|
||||
# Check results
|
||||
achieved = (estimate_matrix.values.T @ new_weights)
|
||||
print(f"Target: {targets}")
|
||||
print(f"Achieved: {achieved}")
|
||||
print(f"Non-zero weights: {(new_weights > 0).sum()} / {len(weights)}")
|
||||
```
|
||||
|
||||
### L0 Regularization for Sparsity
|
||||
|
||||
**Why sparsity matters:**
|
||||
- Reduces dataset size (fewer households to simulate)
|
||||
- Faster PolicyEngine calculations
|
||||
- Easier to validate and understand
|
||||
|
||||
**L0 penalty:**
|
||||
```python
|
||||
# L0 encourages many weights to be exactly zero
|
||||
cal = Calibration(
|
||||
weights=weights,
|
||||
targets=targets,
|
||||
estimate_matrix=estimate_matrix,
|
||||
l0_lambda=0.01 # Higher = more sparse
|
||||
)
|
||||
```
|
||||
|
||||
**To see impact:**
|
||||
```python
|
||||
# Without L0
|
||||
cal_dense = Calibration(..., l0_lambda=0.0)
|
||||
weights_dense = cal_dense.calibrate()
|
||||
|
||||
# With L0
|
||||
cal_sparse = Calibration(..., l0_lambda=0.01)
|
||||
weights_sparse = cal_sparse.calibrate()
|
||||
|
||||
print(f"Dense: {(weights_dense > 0).sum()} households")
|
||||
print(f"Sparse: {(weights_sparse > 0).sum()} households")
|
||||
# Sparse might use 60% fewer households while matching same targets
|
||||
```
|
||||
|
||||
### Automatic Hyperparameter Tuning
|
||||
|
||||
**Find optimal l0_lambda:**
|
||||
```python
|
||||
from microcalibrate import tune_hyperparameters
|
||||
|
||||
# Find best l0_lambda using cross-validation
|
||||
best_lambda, results = tune_hyperparameters(
|
||||
weights=weights,
|
||||
targets=targets,
|
||||
estimate_matrix=estimate_matrix,
|
||||
lambda_min=1e-4,
|
||||
lambda_max=1e-1,
|
||||
n_trials=50
|
||||
)
|
||||
|
||||
print(f"Best lambda: {best_lambda}")
|
||||
```
|
||||
|
||||
### Robustness Evaluation
|
||||
|
||||
**Test calibration stability:**
|
||||
```python
|
||||
from microcalibrate import evaluate_robustness
|
||||
|
||||
# Holdout validation
|
||||
robustness = evaluate_robustness(
|
||||
weights=weights,
|
||||
targets=targets,
|
||||
estimate_matrix=estimate_matrix,
|
||||
l0_lambda=0.01,
|
||||
n_folds=5
|
||||
)
|
||||
|
||||
print(f"Mean error: {robustness['mean_error']}")
|
||||
print(f"Std error: {robustness['std_error']}")
|
||||
```
|
||||
|
||||
### Interactive Dashboard
|
||||
|
||||
**Visualize calibration:**
|
||||
https://microcalibrate.vercel.app/
|
||||
|
||||
Features:
|
||||
- Upload survey data
|
||||
- Set targets
|
||||
- Tune hyperparameters
|
||||
- View results
|
||||
- Download calibrated weights
|
||||
|
||||
## For Contributors 💻
|
||||
|
||||
### Repository
|
||||
|
||||
**Location:** PolicyEngine/microcalibrate
|
||||
|
||||
**Clone:**
|
||||
```bash
|
||||
git clone https://github.com/PolicyEngine/microcalibrate
|
||||
cd microcalibrate
|
||||
```
|
||||
|
||||
### Current Implementation
|
||||
|
||||
**To see structure:**
|
||||
```bash
|
||||
tree microcalibrate/
|
||||
|
||||
# Key modules:
|
||||
ls microcalibrate/
|
||||
# - calibration.py - Main Calibration class
|
||||
# - hyperparameter_tuning.py - Optuna integration
|
||||
# - evaluation.py - Robustness testing
|
||||
# - target_analysis.py - Target diagnostics
|
||||
```
|
||||
|
||||
**To see specific implementations:**
|
||||
```bash
|
||||
# Main calibration algorithm
|
||||
cat microcalibrate/calibration.py
|
||||
|
||||
# Hyperparameter tuning
|
||||
cat microcalibrate/hyperparameter_tuning.py
|
||||
|
||||
# Robustness evaluation
|
||||
cat microcalibrate/evaluation.py
|
||||
```
|
||||
|
||||
### Dependencies
|
||||
|
||||
**Required:**
|
||||
- torch (PyTorch for optimization)
|
||||
- l0-python (L0 regularization)
|
||||
- optuna (hyperparameter tuning)
|
||||
- numpy, pandas, tqdm
|
||||
|
||||
**To see all dependencies:**
|
||||
```bash
|
||||
cat pyproject.toml
|
||||
```
|
||||
|
||||
### How MicroCalibrate Uses L0
|
||||
|
||||
```python
|
||||
# Internal to microcalibrate
|
||||
from l0 import HardConcrete
|
||||
|
||||
# Create gates for sample selection
|
||||
gates = HardConcrete(
|
||||
n_items=len(weights),
|
||||
temperature=temperature,
|
||||
init_mean=0.999
|
||||
)
|
||||
|
||||
# Apply gates during optimization
|
||||
effective_weights = weights * gates()
|
||||
|
||||
# L0 penalty encourages gates → 0 or 1
|
||||
# Result: Many households get weight = 0 (sparse)
|
||||
```
|
||||
|
||||
**To see L0 integration:**
|
||||
```bash
|
||||
grep -n "HardConcrete\|l0" microcalibrate/calibration.py
|
||||
```
|
||||
|
||||
### Optimization Algorithm
|
||||
|
||||
**Iterative reweighting:**
|
||||
1. Start with initial weights
|
||||
2. Apply L0 gates (select samples)
|
||||
3. Optimize to match targets
|
||||
4. Apply penalty for sparsity
|
||||
5. Iterate until convergence
|
||||
|
||||
**Loss function:**
|
||||
```python
|
||||
# Target matching loss
|
||||
target_loss = sum((achieved_targets - desired_targets)^2)
|
||||
|
||||
# L0 penalty (number of non-zero weights)
|
||||
l0_penalty = l0_lambda * count_nonzero(weights)
|
||||
|
||||
# Total loss
|
||||
total_loss = target_loss + l0_penalty
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
**Run tests:**
|
||||
```bash
|
||||
make test
|
||||
|
||||
# Or
|
||||
pytest tests/ -v
|
||||
```
|
||||
|
||||
**To see test patterns:**
|
||||
```bash
|
||||
cat tests/test_calibration.py
|
||||
cat tests/test_hyperparameter_tuning.py
|
||||
```
|
||||
|
||||
### Usage in policyengine-us-data
|
||||
|
||||
**To see how data pipeline uses microcalibrate:**
|
||||
```bash
|
||||
cd ../policyengine-us-data
|
||||
|
||||
# Find usage
|
||||
grep -r "microcalibrate" policyengine_us_data/
|
||||
grep -r "Calibration" policyengine_us_data/
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Pattern 1: Basic Calibration
|
||||
|
||||
```python
|
||||
from microcalibrate import Calibration
|
||||
|
||||
cal = Calibration(
|
||||
weights=initial_weights,
|
||||
targets=benchmark_values,
|
||||
estimate_matrix=contributions,
|
||||
l0_lambda=0.01
|
||||
)
|
||||
|
||||
calibrated_weights = cal.calibrate(max_iter=1000)
|
||||
```
|
||||
|
||||
### Pattern 2: With Hyperparameter Tuning
|
||||
|
||||
```python
|
||||
from microcalibrate import tune_hyperparameters, Calibration
|
||||
|
||||
# Find best lambda
|
||||
best_lambda, results = tune_hyperparameters(
|
||||
weights=weights,
|
||||
targets=targets,
|
||||
estimate_matrix=estimate_matrix
|
||||
)
|
||||
|
||||
# Use best lambda
|
||||
cal = Calibration(..., l0_lambda=best_lambda)
|
||||
calibrated_weights = cal.calibrate()
|
||||
```
|
||||
|
||||
### Pattern 3: Multi-Target Calibration
|
||||
|
||||
```python
|
||||
# Multiple population targets
|
||||
estimate_matrix = pd.DataFrame({
|
||||
'total_population': population_counts,
|
||||
'total_income': incomes,
|
||||
'total_employed': employment_indicators,
|
||||
'total_children': child_counts
|
||||
})
|
||||
|
||||
targets = np.array([
|
||||
331_000_000, # US population
|
||||
15_000_000_000_000, # Total income
|
||||
160_000_000, # Employed people
|
||||
73_000_000 # Children
|
||||
])
|
||||
|
||||
cal = Calibration(weights, targets, estimate_matrix, l0_lambda=0.01)
|
||||
```
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
**Calibration speed:**
|
||||
- 1,000 households, 5 targets: ~1 second
|
||||
- 100,000 households, 10 targets: ~30 seconds
|
||||
- Depends on: dataset size, number of targets, l0_lambda
|
||||
|
||||
**Memory usage:**
|
||||
- PyTorch tensors for optimization
|
||||
- Scales linearly with dataset size
|
||||
|
||||
**To profile:**
|
||||
```python
|
||||
import time
|
||||
|
||||
start = time.time()
|
||||
weights = cal.calibrate()
|
||||
print(f"Calibration took {time.time() - start:.1f}s")
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
**Common issues:**
|
||||
|
||||
**1. Calibration not converging:**
|
||||
```python
|
||||
# Try:
|
||||
# - More iterations
|
||||
# - Lower l0_lambda
|
||||
# - Better initialization
|
||||
|
||||
cal = Calibration(..., l0_lambda=0.001) # Lower sparsity penalty
|
||||
weights = cal.calibrate(max_iter=5000) # More iterations
|
||||
```
|
||||
|
||||
**2. Targets not matching:**
|
||||
```python
|
||||
# Check achieved vs desired
|
||||
achieved = (estimate_matrix.values.T @ weights)
|
||||
error = np.abs(achieved - targets) / targets
|
||||
print(f"Relative errors: {error}")
|
||||
|
||||
# If large errors, l0_lambda may be too high
|
||||
```
|
||||
|
||||
**3. Too sparse (all weights zero):**
|
||||
```python
|
||||
# Lower l0_lambda
|
||||
cal = Calibration(..., l0_lambda=0.0001)
|
||||
```
|
||||
|
||||
## Related Skills
|
||||
|
||||
- **l0-skill** - Understanding L0 regularization
|
||||
- **policyengine-us-data-skill** - How calibration fits in data pipeline
|
||||
- **microdf-skill** - Working with calibrated survey data
|
||||
|
||||
## Resources
|
||||
|
||||
**Repository:** https://github.com/PolicyEngine/microcalibrate
|
||||
**Dashboard:** https://microcalibrate.vercel.app/
|
||||
**PyPI:** https://pypi.org/project/microcalibrate/
|
||||
**Paper:** Louizos et al. (2017) on L0 regularization
|
||||
329
skills/microdf-skill/SKILL.md
Normal file
329
skills/microdf-skill/SKILL.md
Normal file
@@ -0,0 +1,329 @@
|
||||
---
|
||||
name: microdf
|
||||
description: Weighted pandas DataFrames for survey microdata analysis - inequality, poverty, and distributional calculations
|
||||
---
|
||||
|
||||
# MicroDF
|
||||
|
||||
MicroDF provides weighted pandas DataFrames and Series for analyzing survey microdata, with built-in support for inequality and poverty calculations.
|
||||
|
||||
## For Users 👥
|
||||
|
||||
### What is MicroDF?
|
||||
|
||||
When you see poverty rates, Gini coefficients, or distributional charts in PolicyEngine, those are calculated using MicroDF.
|
||||
|
||||
**MicroDF powers:**
|
||||
- Poverty rate calculations (SPM)
|
||||
- Inequality metrics (Gini coefficient)
|
||||
- Income distribution analysis
|
||||
- Weighted statistics from survey data
|
||||
|
||||
### Understanding the Metrics
|
||||
|
||||
**Gini coefficient:**
|
||||
- Calculated using MicroDF from weighted income data
|
||||
- Ranges from 0 (perfect equality) to 1 (perfect inequality)
|
||||
- US typically around 0.48
|
||||
|
||||
**Poverty rates:**
|
||||
- Calculated using MicroDF with weighted household data
|
||||
- Compares income to poverty thresholds
|
||||
- Accounts for household composition
|
||||
|
||||
**Percentiles:**
|
||||
- MicroDF calculates weighted percentiles
|
||||
- Shows income distribution (10th, 50th, 90th percentile)
|
||||
|
||||
## For Analysts 📊
|
||||
|
||||
### Installation
|
||||
|
||||
```bash
|
||||
pip install microdf-python
|
||||
```
|
||||
|
||||
### Quick Start
|
||||
|
||||
```python
|
||||
import microdf as mdf
|
||||
import pandas as pd
|
||||
|
||||
# Create sample data
|
||||
df = pd.DataFrame({
|
||||
'income': [10000, 20000, 30000, 40000, 50000],
|
||||
'weights': [1, 2, 3, 2, 1]
|
||||
})
|
||||
|
||||
# Create MicroDataFrame
|
||||
mdf_df = mdf.MicroDataFrame(df, weights='weights')
|
||||
|
||||
# All operations are weight-aware
|
||||
print(f"Weighted mean: ${mdf_df.income.mean():,.0f}")
|
||||
print(f"Gini coefficient: {mdf_df.income.gini():.3f}")
|
||||
```
|
||||
|
||||
### Common Operations
|
||||
|
||||
**Weighted statistics:**
|
||||
```python
|
||||
mdf_df.income.mean() # Weighted mean
|
||||
mdf_df.income.median() # Weighted median
|
||||
mdf_df.income.sum() # Weighted sum
|
||||
mdf_df.income.std() # Weighted standard deviation
|
||||
```
|
||||
|
||||
**Inequality metrics:**
|
||||
```python
|
||||
mdf_df.income.gini() # Gini coefficient
|
||||
mdf_df.income.top_x_pct_share(10) # Top 10% share
|
||||
mdf_df.income.top_x_pct_share(1) # Top 1% share
|
||||
```
|
||||
|
||||
**Poverty analysis:**
|
||||
```python
|
||||
# Poverty rate (income < threshold)
|
||||
poverty_rate = mdf_df.poverty_rate(
|
||||
income_measure='income',
|
||||
threshold=poverty_line
|
||||
)
|
||||
|
||||
# Poverty gap (how far below threshold)
|
||||
poverty_gap = mdf_df.poverty_gap(
|
||||
income_measure='income',
|
||||
threshold=poverty_line
|
||||
)
|
||||
|
||||
# Deep poverty (income < 50% of threshold)
|
||||
deep_poverty_rate = mdf_df.deep_poverty_rate(
|
||||
income_measure='income',
|
||||
threshold=poverty_line,
|
||||
deep_poverty_line=0.5
|
||||
)
|
||||
```
|
||||
|
||||
**Quantiles:**
|
||||
```python
|
||||
# Deciles
|
||||
mdf_df.income.decile_values()
|
||||
|
||||
# Quintiles
|
||||
mdf_df.income.quintile_values()
|
||||
|
||||
# Custom quantiles
|
||||
mdf_df.income.quantile(0.25) # 25th percentile
|
||||
```
|
||||
|
||||
### MicroSeries
|
||||
|
||||
```python
|
||||
# Extract a Series with weights
|
||||
income_series = mdf_df.income # This is a MicroSeries
|
||||
|
||||
# MicroSeries operations
|
||||
income_series.mean()
|
||||
income_series.gini()
|
||||
income_series.percentile(50)
|
||||
```
|
||||
|
||||
### Working with PolicyEngine Results
|
||||
|
||||
```python
|
||||
import microdf as mdf
|
||||
from policyengine_us import Simulation
|
||||
|
||||
# Run simulation with axes (multiple households)
|
||||
situation_with_axes = {...} # See policyengine-us-skill
|
||||
sim = Simulation(situation=situation_with_axes)
|
||||
|
||||
# Get results as arrays
|
||||
incomes = sim.calculate("household_net_income", 2024)
|
||||
weights = sim.calculate("household_weight", 2024)
|
||||
|
||||
# Create MicroDataFrame
|
||||
df = pd.DataFrame({'income': incomes, 'weight': weights})
|
||||
mdf_df = mdf.MicroDataFrame(df, weights='weight')
|
||||
|
||||
# Calculate metrics
|
||||
gini = mdf_df.income.gini()
|
||||
poverty_rate = mdf_df.poverty_rate('income', threshold=15000)
|
||||
|
||||
print(f"Gini: {gini:.3f}")
|
||||
print(f"Poverty rate: {poverty_rate:.1%}")
|
||||
```
|
||||
|
||||
## For Contributors 💻
|
||||
|
||||
### Repository
|
||||
|
||||
**Location:** PolicyEngine/microdf
|
||||
|
||||
**Clone:**
|
||||
```bash
|
||||
git clone https://github.com/PolicyEngine/microdf
|
||||
cd microdf
|
||||
```
|
||||
|
||||
### Current Implementation
|
||||
|
||||
**To see current API:**
|
||||
```bash
|
||||
# Main classes
|
||||
cat microdf/microframe.py # MicroDataFrame
|
||||
cat microdf/microseries.py # MicroSeries
|
||||
|
||||
# Key modules
|
||||
cat microdf/generic.py # Generic weighted operations
|
||||
cat microdf/inequality.py # Gini, top shares
|
||||
cat microdf/poverty.py # Poverty metrics
|
||||
```
|
||||
|
||||
**To see all methods:**
|
||||
```bash
|
||||
# MicroDataFrame methods
|
||||
grep "def " microdf/microframe.py
|
||||
|
||||
# MicroSeries methods
|
||||
grep "def " microdf/microseries.py
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
**To see test patterns:**
|
||||
```bash
|
||||
ls tests/
|
||||
cat tests/test_microframe.py
|
||||
```
|
||||
|
||||
**Run tests:**
|
||||
```bash
|
||||
make test
|
||||
|
||||
# Or
|
||||
pytest tests/ -v
|
||||
```
|
||||
|
||||
### Contributing
|
||||
|
||||
**Before contributing:**
|
||||
1. Check if method already exists
|
||||
2. Ensure it's weighted correctly
|
||||
3. Add tests
|
||||
4. Follow policyengine-standards-skill
|
||||
|
||||
**Common contributions:**
|
||||
- New inequality metrics
|
||||
- New poverty measures
|
||||
- Performance optimizations
|
||||
- Bug fixes
|
||||
|
||||
## Advanced Patterns
|
||||
|
||||
### Custom Aggregations
|
||||
|
||||
```python
|
||||
# Define custom weighted aggregation
|
||||
def weighted_operation(series, weights):
|
||||
return (series * weights).sum() / weights.sum()
|
||||
|
||||
# Apply to MicroSeries
|
||||
result = weighted_operation(mdf_df.income, mdf_df.weights)
|
||||
```
|
||||
|
||||
### Groupby Operations
|
||||
|
||||
```python
|
||||
# Group by with weights
|
||||
grouped = mdf_df.groupby('state')
|
||||
state_means = grouped.income.mean() # Weighted means by state
|
||||
```
|
||||
|
||||
### Inequality Decomposition
|
||||
|
||||
**To see decomposition methods:**
|
||||
```bash
|
||||
grep -A 20 "def.*decomp" microdf/
|
||||
```
|
||||
|
||||
## Integration Examples
|
||||
|
||||
### Example 1: PolicyEngine Blog Post Analysis
|
||||
|
||||
```python
|
||||
# Pattern from PolicyEngine blog posts
|
||||
import microdf as mdf
|
||||
|
||||
# Get simulation results
|
||||
baseline_income = baseline_sim.calculate("household_net_income", 2024)
|
||||
reform_income = reform_sim.calculate("household_net_income", 2024)
|
||||
weights = baseline_sim.calculate("household_weight", 2024)
|
||||
|
||||
# Create MicroDataFrame
|
||||
df = pd.DataFrame({
|
||||
'baseline_income': baseline_income,
|
||||
'reform_income': reform_income,
|
||||
'weight': weights
|
||||
})
|
||||
mdf_df = mdf.MicroDataFrame(df, weights='weight')
|
||||
|
||||
# Calculate impacts
|
||||
baseline_gini = mdf_df.baseline_income.gini()
|
||||
reform_gini = mdf_df.reform_income.gini()
|
||||
|
||||
print(f"Gini change: {reform_gini - baseline_gini:+.4f}")
|
||||
```
|
||||
|
||||
### Example 2: Poverty Analysis
|
||||
|
||||
```python
|
||||
# Calculate poverty under baseline and reform
|
||||
from policyengine_us import Simulation
|
||||
|
||||
baseline_sim = Simulation(situation=situation)
|
||||
reform_sim = Simulation(situation=situation, reform=reform)
|
||||
|
||||
# Get incomes
|
||||
baseline_income = baseline_sim.calculate("spm_unit_net_income", 2024)
|
||||
reform_income = reform_sim.calculate("spm_unit_net_income", 2024)
|
||||
spm_threshold = baseline_sim.calculate("spm_unit_poverty_threshold", 2024)
|
||||
weights = baseline_sim.calculate("spm_unit_weight", 2024)
|
||||
|
||||
# Calculate poverty rates
|
||||
df_baseline = mdf.MicroDataFrame(
|
||||
pd.DataFrame({'income': baseline_income, 'threshold': spm_threshold, 'weight': weights}),
|
||||
weights='weight'
|
||||
)
|
||||
|
||||
poverty_baseline = (df_baseline.income < df_baseline.threshold).mean() # Weighted
|
||||
|
||||
# Similar for reform
|
||||
print(f"Poverty reduction: {(poverty_baseline - poverty_reform):.1%}")
|
||||
```
|
||||
|
||||
## Package Status
|
||||
|
||||
**Maturity:** Stable, production-ready
|
||||
**API stability:** Stable (rarely breaking changes)
|
||||
**Performance:** Optimized for large datasets
|
||||
|
||||
**To see version:**
|
||||
```bash
|
||||
pip show microdf-python
|
||||
```
|
||||
|
||||
**To see changelog:**
|
||||
```bash
|
||||
cat CHANGELOG.md # In microdf repo
|
||||
```
|
||||
|
||||
## Related Skills
|
||||
|
||||
- **policyengine-us-skill** - Generating data for microdf analysis
|
||||
- **policyengine-analysis-skill** - Using microdf in policy analysis
|
||||
- **policyengine-us-data-skill** - Data sources for microdf
|
||||
|
||||
## Resources
|
||||
|
||||
**Repository:** https://github.com/PolicyEngine/microdf
|
||||
**PyPI:** https://pypi.org/project/microdf-python/
|
||||
**Issues:** https://github.com/PolicyEngine/microdf/issues
|
||||
415
skills/microimpute-skill/SKILL.md
Normal file
415
skills/microimpute-skill/SKILL.md
Normal file
@@ -0,0 +1,415 @@
|
||||
---
|
||||
name: microimpute
|
||||
description: ML-based variable imputation for survey data - used in policyengine-us-data to fill missing values
|
||||
---
|
||||
|
||||
# MicroImpute
|
||||
|
||||
MicroImpute enables ML-based variable imputation through different statistical methods, with comparison and benchmarking capabilities.
|
||||
|
||||
## For Users 👥
|
||||
|
||||
### What is MicroImpute?
|
||||
|
||||
When PolicyEngine calculates population impacts, the underlying survey data has missing information. MicroImpute uses machine learning to fill in those gaps intelligently.
|
||||
|
||||
**What imputation does:**
|
||||
- Fills missing data in surveys
|
||||
- Uses machine learning to predict missing values
|
||||
- Maintains statistical relationships
|
||||
- Improves PolicyEngine accuracy
|
||||
|
||||
**Example:**
|
||||
- Survey asks about income but not capital gains breakdown
|
||||
- MicroImpute predicts short-term vs long-term capital gains
|
||||
- Based on patterns from IRS data
|
||||
- Result: More accurate tax calculations
|
||||
|
||||
**You benefit from imputation when:**
|
||||
- PolicyEngine calculates capital gains tax accurately
|
||||
- Benefits eligibility uses complete household information
|
||||
- State-specific calculations have all needed data
|
||||
|
||||
## For Analysts 📊
|
||||
|
||||
### Installation
|
||||
|
||||
```bash
|
||||
pip install microimpute
|
||||
|
||||
# With image export (for plots)
|
||||
pip install microimpute[images]
|
||||
```
|
||||
|
||||
### What MicroImpute Does
|
||||
|
||||
**Imputation problem:**
|
||||
- Donor dataset has complete information (e.g., IRS tax records)
|
||||
- Recipient dataset has missing variables (e.g., CPS survey)
|
||||
- Imputation predicts missing values in recipient using donor patterns
|
||||
|
||||
**Methods available:**
|
||||
- Linear regression
|
||||
- Random forest
|
||||
- Quantile forest (preserves full distribution)
|
||||
- XGBoost
|
||||
- Hot deck (traditional matching)
|
||||
|
||||
### Quick Example
|
||||
|
||||
```python
|
||||
from microimpute import Imputer
|
||||
import pandas as pd
|
||||
|
||||
# Donor data (complete)
|
||||
donor = pd.DataFrame({
|
||||
'income': [50000, 60000, 70000],
|
||||
'age': [30, 40, 50],
|
||||
'capital_gains': [5000, 8000, 12000] # Variable to impute
|
||||
})
|
||||
|
||||
# Recipient data (missing capital_gains)
|
||||
recipient = pd.DataFrame({
|
||||
'income': [55000, 65000],
|
||||
'age': [35, 45],
|
||||
# capital_gains is missing
|
||||
})
|
||||
|
||||
# Impute using quantile forest
|
||||
imputer = Imputer(method='quantile_forest')
|
||||
imputer.fit(
|
||||
donor=donor,
|
||||
donor_target='capital_gains',
|
||||
common_vars=['income', 'age']
|
||||
)
|
||||
|
||||
recipient_imputed = imputer.predict(recipient)
|
||||
# Now recipient has predicted capital_gains
|
||||
```
|
||||
|
||||
### Method Comparison
|
||||
|
||||
```python
|
||||
from microimpute import compare_methods
|
||||
|
||||
# Compare different imputation methods
|
||||
results = compare_methods(
|
||||
donor=donor,
|
||||
recipient=recipient,
|
||||
target_var='capital_gains',
|
||||
common_vars=['income', 'age'],
|
||||
methods=['linear', 'random_forest', 'quantile_forest']
|
||||
)
|
||||
|
||||
# Shows quantile loss for each method
|
||||
print(results)
|
||||
```
|
||||
|
||||
### Quantile Loss (Quality Metric)
|
||||
|
||||
**Why quantile loss:**
|
||||
- Measures how well imputation preserves the distribution
|
||||
- Not just mean accuracy, but full distribution shape
|
||||
- Lower is better
|
||||
|
||||
**Interpretation:**
|
||||
```python
|
||||
# Quantile loss around 0.1 = good
|
||||
# Quantile loss around 0.5 = poor
|
||||
# Compare across methods to choose best
|
||||
```
|
||||
|
||||
## For Contributors 💻
|
||||
|
||||
### Repository
|
||||
|
||||
**Location:** PolicyEngine/microimpute
|
||||
|
||||
**Clone:**
|
||||
```bash
|
||||
git clone https://github.com/PolicyEngine/microimpute
|
||||
cd microimpute
|
||||
```
|
||||
|
||||
### Current Implementation
|
||||
|
||||
**To see structure:**
|
||||
```bash
|
||||
tree microimpute/
|
||||
|
||||
# Key modules:
|
||||
ls microimpute/
|
||||
# - imputer.py - Main Imputer class
|
||||
# - methods/ - Different imputation methods
|
||||
# - comparison.py - Method benchmarking
|
||||
# - utils/ - Utilities
|
||||
```
|
||||
|
||||
**To see specific methods:**
|
||||
```bash
|
||||
# Quantile forest implementation
|
||||
cat microimpute/methods/quantile_forest.py
|
||||
|
||||
# Random forest
|
||||
cat microimpute/methods/random_forest.py
|
||||
|
||||
# Linear regression
|
||||
cat microimpute/methods/linear.py
|
||||
```
|
||||
|
||||
### Dependencies
|
||||
|
||||
**Required:**
|
||||
- numpy, pandas (data handling)
|
||||
- scikit-learn (ML models)
|
||||
- quantile-forest (distributional imputation)
|
||||
- optuna (hyperparameter tuning)
|
||||
- statsmodels (statistical methods)
|
||||
- scipy (statistical functions)
|
||||
|
||||
**To see all dependencies:**
|
||||
```bash
|
||||
cat pyproject.toml
|
||||
```
|
||||
|
||||
### Adding New Imputation Methods
|
||||
|
||||
**Pattern:**
|
||||
```python
|
||||
# microimpute/methods/my_method.py
|
||||
|
||||
class MyMethodImputer:
|
||||
def fit(self, X_train, y_train):
|
||||
"""Train on donor data."""
|
||||
# Fit your model
|
||||
pass
|
||||
|
||||
def predict(self, X_test):
|
||||
"""Impute on recipient data."""
|
||||
# Return predictions
|
||||
pass
|
||||
|
||||
def get_quantile_loss(self, X_val, y_val):
|
||||
"""Compute validation loss."""
|
||||
# Evaluate quality
|
||||
pass
|
||||
```
|
||||
|
||||
### Usage in policyengine-us-data
|
||||
|
||||
**To see how data pipeline uses microimpute:**
|
||||
```bash
|
||||
cd ../policyengine-us-data
|
||||
|
||||
# Find usage
|
||||
grep -r "microimpute" policyengine_us_data/
|
||||
grep -r "Imputer" policyengine_us_data/
|
||||
```
|
||||
|
||||
**Typical workflow:**
|
||||
1. Load CPS (has demographics, missing capital gains details)
|
||||
2. Load IRS PUF (has complete tax data)
|
||||
3. Use microimpute to predict missing CPS variables from PUF patterns
|
||||
4. Validate imputation quality
|
||||
5. Save enhanced dataset
|
||||
|
||||
### Testing
|
||||
|
||||
**Run tests:**
|
||||
```bash
|
||||
make test
|
||||
|
||||
# Or
|
||||
pytest tests/ -v --cov=microimpute
|
||||
```
|
||||
|
||||
**To see test patterns:**
|
||||
```bash
|
||||
cat tests/test_imputer.py
|
||||
cat tests/test_methods.py
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Pattern 1: Basic Imputation
|
||||
|
||||
```python
|
||||
from microimpute import Imputer
|
||||
|
||||
# Create imputer
|
||||
imputer = Imputer(method='quantile_forest')
|
||||
|
||||
# Fit on donor (complete data)
|
||||
imputer.fit(
|
||||
donor=donor_df,
|
||||
donor_target='target_variable',
|
||||
common_vars=['age', 'income', 'state']
|
||||
)
|
||||
|
||||
# Predict on recipient (missing target_variable)
|
||||
recipient_imputed = imputer.predict(recipient_df)
|
||||
```
|
||||
|
||||
### Pattern 2: Choosing Best Method
|
||||
|
||||
```python
|
||||
from microimpute import compare_methods
|
||||
|
||||
# Test multiple methods
|
||||
methods = ['linear', 'random_forest', 'quantile_forest', 'xgboost']
|
||||
|
||||
results = compare_methods(
|
||||
donor=donor,
|
||||
recipient=recipient,
|
||||
target_var='target',
|
||||
common_vars=common_vars,
|
||||
methods=methods
|
||||
)
|
||||
|
||||
# Use method with lowest quantile loss
|
||||
best_method = results.sort_values('quantile_loss').iloc[0]['method']
|
||||
```
|
||||
|
||||
### Pattern 3: Multiple Variable Imputation
|
||||
|
||||
```python
|
||||
# Impute several variables
|
||||
variables_to_impute = [
|
||||
'short_term_capital_gains',
|
||||
'long_term_capital_gains',
|
||||
'qualified_dividends'
|
||||
]
|
||||
|
||||
for var in variables_to_impute:
|
||||
imputer = Imputer(method='quantile_forest')
|
||||
imputer.fit(donor=irs_puf, donor_target=var, common_vars=common_vars)
|
||||
cps[var] = imputer.predict(cps)
|
||||
```
|
||||
|
||||
## Advanced Features
|
||||
|
||||
### Hyperparameter Tuning
|
||||
|
||||
**Built-in Optuna integration:**
|
||||
```python
|
||||
from microimpute import tune_hyperparameters
|
||||
|
||||
# Automatically find best hyperparameters
|
||||
best_params, study = tune_hyperparameters(
|
||||
donor=donor,
|
||||
target_var='target',
|
||||
common_vars=common_vars,
|
||||
method='quantile_forest',
|
||||
n_trials=100
|
||||
)
|
||||
|
||||
# Use tuned parameters
|
||||
imputer = Imputer(method='quantile_forest', **best_params)
|
||||
```
|
||||
|
||||
### Cross-Validation
|
||||
|
||||
**Validate imputation quality:**
|
||||
```python
|
||||
from sklearn.model_selection import cross_val_score
|
||||
|
||||
# Split donor for validation
|
||||
# Impute on validation set
|
||||
# Measure accuracy
|
||||
```
|
||||
|
||||
### Visualization
|
||||
|
||||
**Plot imputation results:**
|
||||
```python
|
||||
import plotly.express as px
|
||||
|
||||
# Compare imputed vs actual (on donor validation set)
|
||||
fig = px.scatter(
|
||||
x=actual_values,
|
||||
y=imputed_values,
|
||||
labels={'x': 'Actual', 'y': 'Imputed'}
|
||||
)
|
||||
fig.add_trace(px.line(x=[min, max], y=[min, max])) # 45-degree line
|
||||
```
|
||||
|
||||
## Statistical Background
|
||||
|
||||
**Imputation preserves:**
|
||||
- Marginal distributions (imputed variable distribution matches donor)
|
||||
- Conditional relationships (imputation depends on common variables)
|
||||
- Uncertainty (quantile methods preserve full distribution)
|
||||
|
||||
**Trade-offs:**
|
||||
- **Linear:** Fast, but assumes linear relationships
|
||||
- **Random forest:** Handles non-linearity, may overfit
|
||||
- **Quantile forest:** Preserves full distribution, slower
|
||||
- **XGBoost:** High accuracy, requires tuning
|
||||
|
||||
## Integration with PolicyEngine
|
||||
|
||||
**Full pipeline (policyengine-us-data):**
|
||||
```
|
||||
1. Load CPS survey data
|
||||
↓
|
||||
2. microimpute: Fill missing variables from IRS PUF
|
||||
↓
|
||||
3. microcalibrate: Adjust weights to match benchmarks
|
||||
↓
|
||||
4. Validation: Check against administrative totals
|
||||
↓
|
||||
5. Package: Distribute enhanced dataset
|
||||
↓
|
||||
6. PolicyEngine: Use for population simulations
|
||||
```
|
||||
|
||||
## Comparison to Other Methods
|
||||
|
||||
**MicroImpute vs traditional imputation:**
|
||||
|
||||
**Traditional (mean imputation):**
|
||||
- Fast but destroys distribution
|
||||
- All missing values get same value
|
||||
- Underestimates variance
|
||||
|
||||
**MicroImpute (ML methods):**
|
||||
- Preserves relationships
|
||||
- Different predictions per record
|
||||
- Maintains distribution shape
|
||||
|
||||
**Quantile forest advantage:**
|
||||
- Predicts full conditional distribution
|
||||
- Not just point estimates
|
||||
- Can sample from predicted distribution
|
||||
|
||||
## Performance Tips
|
||||
|
||||
**For large datasets:**
|
||||
```python
|
||||
# Use random forest (faster than quantile forest)
|
||||
imputer = Imputer(method='random_forest')
|
||||
|
||||
# Or subsample donor
|
||||
donor_sample = donor.sample(n=10000, random_state=42)
|
||||
imputer.fit(donor=donor_sample, ...)
|
||||
```
|
||||
|
||||
**For high accuracy:**
|
||||
```python
|
||||
# Use quantile forest with tuning
|
||||
best_params, _ = tune_hyperparameters(...)
|
||||
imputer = Imputer(method='quantile_forest', **best_params)
|
||||
```
|
||||
|
||||
## Related Skills
|
||||
|
||||
- **l0-skill** - Regularization techniques
|
||||
- **microcalibrate-skill** - Survey calibration (next step after imputation)
|
||||
- **policyengine-us-data-skill** - Complete data pipeline
|
||||
- **microdf-skill** - Working with imputed/calibrated data
|
||||
|
||||
## Resources
|
||||
|
||||
**Repository:** https://github.com/PolicyEngine/microimpute
|
||||
**PyPI:** https://pypi.org/project/microimpute/
|
||||
**Documentation:** See README and docstrings in source
|
||||
329
skills/policyengine-aggregation-skill/SKILL.md
Normal file
329
skills/policyengine-aggregation-skill/SKILL.md
Normal file
@@ -0,0 +1,329 @@
|
||||
---
|
||||
name: policyengine-aggregation
|
||||
description: PolicyEngine aggregation patterns - using adds attribute and add() function for summing variables across entities
|
||||
---
|
||||
|
||||
# PolicyEngine Aggregation Patterns
|
||||
|
||||
Essential patterns for summing variables across entities in PolicyEngine.
|
||||
|
||||
## Quick Decision Guide
|
||||
|
||||
```
|
||||
Is the variable ONLY a sum of other variables?
|
||||
│
|
||||
├─ YES → Use `adds` attribute (NO formula needed!)
|
||||
│ adds = ["var1", "var2"]
|
||||
│
|
||||
└─ NO → Use `add()` function in formula
|
||||
(when you need max_, where, conditions, etc.)
|
||||
```
|
||||
|
||||
## Quick Reference
|
||||
|
||||
| Need | Use | Example |
|
||||
|------|-----|---------|
|
||||
| Simple sum | `adds` | `adds = ["var1", "var2"]` |
|
||||
| Sum from parameters | `adds` | `adds = "gov.path.to.list"` |
|
||||
| Sum + max_() | `add()` | `max_(0, add(...))` |
|
||||
| Sum + where() | `add()` | `where(cond, add(...), 0)` |
|
||||
| Sum + conditions | `add()` | `if cond: add(...)` |
|
||||
| Count booleans | `adds` | `adds = ["is_eligible"]` |
|
||||
|
||||
---
|
||||
|
||||
## 1. `adds` Class Attribute (Preferred When Possible)
|
||||
|
||||
### When to Use
|
||||
Use `adds` when a variable is **ONLY** the sum of other variables with **NO additional logic**.
|
||||
|
||||
### Syntax
|
||||
```python
|
||||
class variable_name(Variable):
|
||||
value_type = float
|
||||
entity = Entity
|
||||
definition_period = PERIOD
|
||||
|
||||
# Option 1: List of variables
|
||||
adds = ["variable1", "variable2", "variable3"]
|
||||
|
||||
# Option 2: Parameter tree path
|
||||
adds = "gov.path.to.parameter.list"
|
||||
```
|
||||
|
||||
### Key Points
|
||||
- ✅ No `formula()` method needed
|
||||
- ✅ Automatically handles entity aggregation (person → household/tax_unit/spm_unit)
|
||||
- ✅ Clean and declarative
|
||||
|
||||
### Example: Simple Income Sum
|
||||
```python
|
||||
class tanf_gross_earned_income(Variable):
|
||||
value_type = float
|
||||
entity = SPMUnit
|
||||
label = "TANF gross earned income"
|
||||
unit = USD
|
||||
definition_period = MONTH
|
||||
|
||||
adds = ["employment_income", "self_employment_income"]
|
||||
# NO formula needed! Automatically:
|
||||
# 1. Gets each person's employment_income
|
||||
# 2. Gets each person's self_employment_income
|
||||
# 3. Sums all values across SPM unit members
|
||||
```
|
||||
|
||||
### Example: Using Parameter List
|
||||
```python
|
||||
class income_tax_refundable_credits(Variable):
|
||||
value_type = float
|
||||
entity = TaxUnit
|
||||
definition_period = YEAR
|
||||
|
||||
adds = "gov.irs.credits.refundable"
|
||||
# Parameter file contains list like:
|
||||
# - earned_income_tax_credit
|
||||
# - child_tax_credit
|
||||
# - additional_child_tax_credit
|
||||
```
|
||||
|
||||
### Example: Counting Boolean Values
|
||||
```python
|
||||
class count_eligible_people(Variable):
|
||||
value_type = int
|
||||
entity = SPMUnit
|
||||
definition_period = YEAR
|
||||
|
||||
adds = ["is_eligible_person"]
|
||||
# Automatically sums True (1) and False (0) across members
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2. `add()` Function (When Logic Needed)
|
||||
|
||||
### When to Use
|
||||
Use `add()` inside a `formula()` when you need:
|
||||
- To apply `max_()`, `where()`, or conditions
|
||||
- To combine with other operations
|
||||
- To modify values before/after summing
|
||||
|
||||
### Syntax
|
||||
```python
|
||||
from policyengine_us.model_api import *
|
||||
|
||||
def formula(entity, period, parameters):
|
||||
result = add(entity, period, variable_list)
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
- `entity`: The entity to operate on
|
||||
- `period`: The time period for calculation
|
||||
- `variable_list`: List of variable names or parameter path
|
||||
|
||||
### Example: With max_() to Prevent Negatives
|
||||
```python
|
||||
class adjusted_earned_income(Variable):
|
||||
value_type = float
|
||||
entity = SPMUnit
|
||||
definition_period = MONTH
|
||||
|
||||
def formula(spm_unit, period, parameters):
|
||||
# Need max_() to clip negative values
|
||||
gross = add(spm_unit, period, ["employment_income", "self_employment_income"])
|
||||
return max_(0, gross) # Prevent negative income
|
||||
```
|
||||
|
||||
### Example: With Additional Logic
|
||||
```python
|
||||
class household_benefits(Variable):
|
||||
value_type = float
|
||||
entity = Household
|
||||
definition_period = YEAR
|
||||
|
||||
def formula(household, period, parameters):
|
||||
# Sum existing benefits
|
||||
BENEFITS = ["snap", "tanf", "ssi", "social_security"]
|
||||
existing = add(household, period, BENEFITS)
|
||||
|
||||
# Add new benefit conditionally
|
||||
new_benefit = household("special_benefit", period)
|
||||
p = parameters(period).gov.special_benefit
|
||||
|
||||
if p.include_in_total:
|
||||
return existing + new_benefit
|
||||
return existing
|
||||
```
|
||||
|
||||
### Example: Building on Previous Variables
|
||||
```python
|
||||
class total_deductions(Variable):
|
||||
value_type = float
|
||||
entity = TaxUnit
|
||||
definition_period = YEAR
|
||||
|
||||
def formula(tax_unit, period, parameters):
|
||||
p = parameters(period).gov.irs.deductions
|
||||
|
||||
# Get standard deductions using parameter list
|
||||
standard = add(tax_unit, period, p.standard_items)
|
||||
|
||||
# Apply phase-out logic
|
||||
income = tax_unit("adjusted_gross_income", period)
|
||||
phase_out_rate = p.phase_out_rate
|
||||
phase_out_start = p.phase_out_start
|
||||
|
||||
reduction = max_(0, (income - phase_out_start) * phase_out_rate)
|
||||
return max_(0, standard - reduction)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 3. Common Anti-Patterns to Avoid
|
||||
|
||||
### ❌ NEVER: Manual Summing
|
||||
```python
|
||||
# WRONG - Never do this!
|
||||
def formula(spm_unit, period, parameters):
|
||||
person = spm_unit.members
|
||||
employment = person("employment_income", period)
|
||||
self_emp = person("self_employment_income", period)
|
||||
return spm_unit.sum(employment + self_emp) # ❌ BAD
|
||||
```
|
||||
|
||||
### ✅ CORRECT: Use adds
|
||||
```python
|
||||
# RIGHT - Clean and simple
|
||||
adds = ["employment_income", "self_employment_income"] # ✅ GOOD
|
||||
```
|
||||
|
||||
### ❌ WRONG: Using add() When adds Suffices
|
||||
```python
|
||||
# WRONG - Unnecessary complexity
|
||||
def formula(spm_unit, period, parameters):
|
||||
return add(spm_unit, period, ["income1", "income2"]) # ❌ Overkill
|
||||
```
|
||||
|
||||
### ✅ CORRECT: Use adds
|
||||
```python
|
||||
# RIGHT - Simpler
|
||||
adds = ["income1", "income2"] # ✅ GOOD
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 4. Entity Aggregation Explained
|
||||
|
||||
When using `adds` or `add()`, PolicyEngine automatically handles entity aggregation:
|
||||
|
||||
```python
|
||||
class household_total_income(Variable):
|
||||
entity = Household # Higher-level entity
|
||||
definition_period = YEAR
|
||||
|
||||
adds = ["employment_income", "self_employment_income"]
|
||||
# employment_income is defined for Person (lower-level)
|
||||
# PolicyEngine automatically:
|
||||
# 1. Gets employment_income for each person in household
|
||||
# 2. Gets self_employment_income for each person
|
||||
# 3. Sums all values to household level
|
||||
```
|
||||
|
||||
This works across all entity hierarchies:
|
||||
- Person → Tax Unit
|
||||
- Person → SPM Unit
|
||||
- Person → Household
|
||||
- Tax Unit → Household
|
||||
- SPM Unit → Household
|
||||
|
||||
---
|
||||
|
||||
## 5. Parameter Lists
|
||||
|
||||
Parameters can define lists of variables to sum:
|
||||
|
||||
**Parameter file** (`gov/irs/credits/refundable.yaml`):
|
||||
```yaml
|
||||
description: List of refundable tax credits
|
||||
values:
|
||||
2024-01-01:
|
||||
- earned_income_tax_credit
|
||||
- child_tax_credit
|
||||
- additional_child_tax_credit
|
||||
```
|
||||
|
||||
**Usage in variable**:
|
||||
```python
|
||||
adds = "gov.irs.credits.refundable"
|
||||
# Automatically sums all credits in the list
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 6. Decision Matrix
|
||||
|
||||
| Scenario | Solution | Code |
|
||||
|----------|----------|------|
|
||||
| Sum 2-3 variables | `adds` attribute | `adds = ["var1", "var2"]` |
|
||||
| Sum many variables | Parameter list | `adds = "gov.path.list"` |
|
||||
| Sum + prevent negatives | `add()` with `max_()` | `max_(0, add(...))` |
|
||||
| Sum + conditional | `add()` with `where()` | `where(eligible, add(...), 0)` |
|
||||
| Sum + phase-out | `add()` with calculation | `add(...) - reduction` |
|
||||
| Count people/entities | `adds` with boolean | `adds = ["is_child"]` |
|
||||
|
||||
---
|
||||
|
||||
## 7. Key Principles
|
||||
|
||||
1. **Default to `adds` attribute** when variable is only a sum
|
||||
2. **Use `add()` function** only when additional logic is needed
|
||||
3. **Never manually sum** with `entity.sum(person(...) + person(...))`
|
||||
4. **Let PolicyEngine handle** entity aggregation automatically
|
||||
5. **Use parameter lists** for maintainable, configurable sums
|
||||
|
||||
---
|
||||
|
||||
## Related Skills
|
||||
|
||||
- **policyengine-period-patterns-skill**: For period conversion when summing across different time periods
|
||||
- **policyengine-core-skill**: For understanding entity hierarchies and relationships
|
||||
|
||||
---
|
||||
|
||||
## For Agents
|
||||
|
||||
When implementing or reviewing code:
|
||||
|
||||
1. **Check if `adds` can be used** before writing a formula
|
||||
2. **Prefer declarative over imperative** when possible
|
||||
3. **Follow existing patterns** in the codebase
|
||||
4. **Test entity aggregation** carefully in YAML tests
|
||||
5. **Document parameter lists** clearly for `adds` references
|
||||
|
||||
---
|
||||
|
||||
## Common Use Cases
|
||||
|
||||
### Earned Income
|
||||
```python
|
||||
adds = ["employment_income", "self_employment_income"]
|
||||
```
|
||||
|
||||
### Unearned Income
|
||||
```python
|
||||
adds = ["interest_income", "dividend_income", "rental_income"]
|
||||
```
|
||||
|
||||
### Total Benefits
|
||||
```python
|
||||
adds = ["snap", "tanf", "wic", "ssi", "social_security"]
|
||||
```
|
||||
|
||||
### Tax Credits
|
||||
```python
|
||||
adds = "gov.irs.credits.refundable"
|
||||
```
|
||||
|
||||
### Counting Children
|
||||
```python
|
||||
adds = ["is_child"] # Returns count of children
|
||||
```
|
||||
569
skills/policyengine-analysis-skill/SKILL.md
Normal file
569
skills/policyengine-analysis-skill/SKILL.md
Normal file
@@ -0,0 +1,569 @@
|
||||
---
|
||||
name: policyengine-analysis
|
||||
description: Common analysis patterns for PolicyEngine research repositories (CRFB, newsletters, dashboards, impact studies)
|
||||
---
|
||||
|
||||
# PolicyEngine Analysis
|
||||
|
||||
Patterns for creating policy impact analyses, dashboards, and research using PolicyEngine.
|
||||
|
||||
## For Users 👥
|
||||
|
||||
### What are Analysis Repositories?
|
||||
|
||||
Analysis repositories produce the research you see on PolicyEngine:
|
||||
|
||||
**Blog posts:**
|
||||
- "How Montana's tax cuts affect poverty"
|
||||
- "Harris EITC proposal costs and impacts"
|
||||
- "UK Budget 2024 analysis"
|
||||
|
||||
**Dashboards:**
|
||||
- State tax comparisons
|
||||
- Policy proposal scorecards
|
||||
- Interactive calculators (GiveCalc, SALT calculator)
|
||||
|
||||
**Research reports:**
|
||||
- Distributional analyses for organizations
|
||||
- Policy briefs for legislators
|
||||
- Impact assessments
|
||||
|
||||
### How Analysis Works
|
||||
|
||||
1. **Define policy reform** using PolicyEngine parameters
|
||||
2. **Create household examples** showing specific impacts
|
||||
3. **Run population simulations** for aggregate effects
|
||||
4. **Calculate distributional impacts** (who wins, who loses)
|
||||
5. **Create visualizations** (charts, tables)
|
||||
6. **Write report** following policyengine-writing-skill style
|
||||
7. **Publish** to blog or share with stakeholders
|
||||
|
||||
### Reading PolicyEngine Analysis
|
||||
|
||||
**Key sections in typical analysis:**
|
||||
|
||||
**The proposal:**
|
||||
- What policy changes
|
||||
- Specific parameter values
|
||||
|
||||
**Household impacts:**
|
||||
- 3-5 example households
|
||||
- Dollar amounts for each
|
||||
- Charts showing impact across income range
|
||||
|
||||
**Statewide/national impacts:**
|
||||
- Total cost or revenue
|
||||
- Winners and losers by income decile
|
||||
- Poverty and inequality effects
|
||||
|
||||
**See policyengine-writing-skill for writing conventions.**
|
||||
|
||||
## For Analysts 📊
|
||||
|
||||
### When to Use This Skill
|
||||
|
||||
- Creating policy impact analyses
|
||||
- Building interactive dashboards with Streamlit/Plotly
|
||||
- Writing analysis notebooks
|
||||
- Calculating distributional impacts
|
||||
- Comparing policy proposals
|
||||
- Creating visualizations for research
|
||||
- Publishing policy research
|
||||
|
||||
### Example Analysis Repositories
|
||||
|
||||
- `crfb-tob-impacts` - Policy impact analyses
|
||||
- `newsletters` - Data-driven newsletters
|
||||
- `2024-election-dashboard` - Policy comparison dashboards
|
||||
- `marginal-child` - Specialized policy analyses
|
||||
- `givecalc` - Charitable giving calculator
|
||||
|
||||
## Repository Structure
|
||||
|
||||
Standard analysis repository structure:
|
||||
|
||||
```
|
||||
analysis-repo/
|
||||
├── analysis.ipynb # Main Jupyter notebook
|
||||
├── app.py # Streamlit app (if applicable)
|
||||
├── requirements.txt # Python dependencies
|
||||
├── README.md # Documentation
|
||||
├── data/ # Data files (if needed)
|
||||
├── outputs/ # Generated charts, tables
|
||||
└── .streamlit/ # Streamlit config
|
||||
└── config.toml
|
||||
```
|
||||
|
||||
## Common Analysis Patterns
|
||||
|
||||
### Pattern 1: Impact Analysis Across Income Distribution
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from policyengine_us import Simulation
|
||||
|
||||
# Define reform
|
||||
reform = {
|
||||
"gov.irs.credits.ctc.amount.base_amount": {
|
||||
"2024-01-01.2100-12-31": 5000
|
||||
}
|
||||
}
|
||||
|
||||
# Analyze across income distribution
|
||||
incomes = np.linspace(0, 200000, 101)
|
||||
results = []
|
||||
|
||||
for income in incomes:
|
||||
# Baseline
|
||||
situation = create_situation(income=income)
|
||||
sim_baseline = Simulation(situation=situation)
|
||||
tax_baseline = sim_baseline.calculate("income_tax", 2024)[0]
|
||||
|
||||
# Reform
|
||||
sim_reform = Simulation(situation=situation, reform=reform)
|
||||
tax_reform = sim_reform.calculate("income_tax", 2024)[0]
|
||||
|
||||
results.append({
|
||||
"income": income,
|
||||
"tax_baseline": tax_baseline,
|
||||
"tax_reform": tax_reform,
|
||||
"tax_change": tax_reform - tax_baseline
|
||||
})
|
||||
|
||||
df = pd.DataFrame(results)
|
||||
```
|
||||
|
||||
### Pattern 2: Household-Level Case Studies
|
||||
|
||||
```python
|
||||
# Define representative households
|
||||
households = {
|
||||
"Single, No Children": {
|
||||
"income": 40000,
|
||||
"num_children": 0,
|
||||
"married": False
|
||||
},
|
||||
"Single Parent, 2 Children": {
|
||||
"income": 50000,
|
||||
"num_children": 2,
|
||||
"married": False
|
||||
},
|
||||
"Married, 2 Children": {
|
||||
"income": 100000,
|
||||
"num_children": 2,
|
||||
"married": True
|
||||
}
|
||||
}
|
||||
|
||||
# Calculate impacts for each
|
||||
case_studies = {}
|
||||
for name, params in households.items():
|
||||
situation = create_family(**params)
|
||||
|
||||
sim_baseline = Simulation(situation=situation)
|
||||
sim_reform = Simulation(situation=situation, reform=reform)
|
||||
|
||||
case_studies[name] = {
|
||||
"baseline_tax": sim_baseline.calculate("income_tax", 2024)[0],
|
||||
"reform_tax": sim_reform.calculate("income_tax", 2024)[0],
|
||||
"ctc_baseline": sim_baseline.calculate("ctc", 2024)[0],
|
||||
"ctc_reform": sim_reform.calculate("ctc", 2024)[0]
|
||||
}
|
||||
|
||||
case_df = pd.DataFrame(case_studies).T
|
||||
```
|
||||
|
||||
### Pattern 3: State-by-State Comparison
|
||||
|
||||
```python
|
||||
states = ["CA", "NY", "TX", "FL", "PA", "OH", "IL", "MI"]
|
||||
|
||||
state_results = []
|
||||
for state in states:
|
||||
situation = create_situation(income=75000, state=state)
|
||||
|
||||
sim_baseline = Simulation(situation=situation)
|
||||
sim_reform = Simulation(situation=situation, reform=reform)
|
||||
|
||||
state_results.append({
|
||||
"state": state,
|
||||
"baseline_net_income": sim_baseline.calculate("household_net_income", 2024)[0],
|
||||
"reform_net_income": sim_reform.calculate("household_net_income", 2024)[0],
|
||||
"change": (sim_reform.calculate("household_net_income", 2024)[0] -
|
||||
sim_baseline.calculate("household_net_income", 2024)[0])
|
||||
})
|
||||
|
||||
state_df = pd.DataFrame(state_results)
|
||||
```
|
||||
|
||||
### Pattern 4: Marginal Analysis (Winners/Losers)
|
||||
|
||||
```python
|
||||
import plotly.graph_objects as go
|
||||
|
||||
# Calculate across income range
|
||||
situation_with_axes = {
|
||||
# ... setup ...
|
||||
"axes": [[{
|
||||
"name": "employment_income",
|
||||
"count": 1001,
|
||||
"min": 0,
|
||||
"max": 200000,
|
||||
"period": 2024
|
||||
}]]
|
||||
}
|
||||
|
||||
sim_baseline = Simulation(situation=situation_with_axes)
|
||||
sim_reform = Simulation(situation=situation_with_axes, reform=reform)
|
||||
|
||||
incomes = sim_baseline.calculate("employment_income", 2024)
|
||||
baseline_net = sim_baseline.calculate("household_net_income", 2024)
|
||||
reform_net = sim_reform.calculate("household_net_income", 2024)
|
||||
|
||||
gains = reform_net - baseline_net
|
||||
|
||||
# Identify winners and losers
|
||||
winners = gains > 0
|
||||
losers = gains < 0
|
||||
neutral = gains == 0
|
||||
|
||||
print(f"Winners: {winners.sum() / len(gains) * 100:.1f}%")
|
||||
print(f"Losers: {losers.sum() / len(gains) * 100:.1f}%")
|
||||
print(f"Neutral: {neutral.sum() / len(gains) * 100:.1f}%")
|
||||
```
|
||||
|
||||
## Visualization Patterns
|
||||
|
||||
### Standard Plotly Configuration
|
||||
|
||||
```python
|
||||
import plotly.graph_objects as go
|
||||
|
||||
# PolicyEngine brand colors
|
||||
TEAL = "#39C6C0"
|
||||
BLUE = "#2C6496"
|
||||
DARK_GRAY = "#616161"
|
||||
|
||||
def create_pe_layout(title, xaxis_title, yaxis_title):
|
||||
"""Create standard PolicyEngine chart layout."""
|
||||
return go.Layout(
|
||||
title=title,
|
||||
xaxis_title=xaxis_title,
|
||||
yaxis_title=yaxis_title,
|
||||
font=dict(family="Roboto Serif", size=14),
|
||||
plot_bgcolor="white",
|
||||
hovermode="x unified",
|
||||
xaxis=dict(
|
||||
showgrid=True,
|
||||
gridcolor="lightgray",
|
||||
zeroline=True
|
||||
),
|
||||
yaxis=dict(
|
||||
showgrid=True,
|
||||
gridcolor="lightgray",
|
||||
zeroline=True
|
||||
)
|
||||
)
|
||||
|
||||
# Use in charts
|
||||
fig = go.Figure(layout=create_pe_layout(
|
||||
"Tax Impact by Income",
|
||||
"Income",
|
||||
"Tax Change"
|
||||
))
|
||||
fig.add_trace(go.Scatter(x=incomes, y=tax_change, line=dict(color=TEAL)))
|
||||
```
|
||||
|
||||
### Common Chart Types
|
||||
|
||||
**1. Line Chart (Impact by Income)**
|
||||
```python
|
||||
fig = go.Figure()
|
||||
fig.add_trace(go.Scatter(
|
||||
x=df.income,
|
||||
y=df.tax_change,
|
||||
mode='lines',
|
||||
name='Tax Change',
|
||||
line=dict(color=TEAL, width=3)
|
||||
))
|
||||
fig.update_layout(
|
||||
title="Tax Impact by Income Level",
|
||||
xaxis_title="Income",
|
||||
yaxis_title="Tax Change ($)",
|
||||
xaxis_tickformat="$,.0f",
|
||||
yaxis_tickformat="$,.0f"
|
||||
)
|
||||
```
|
||||
|
||||
**2. Bar Chart (State Comparison)**
|
||||
```python
|
||||
fig = go.Figure()
|
||||
fig.add_trace(go.Bar(
|
||||
x=state_df.state,
|
||||
y=state_df.change,
|
||||
marker_color=TEAL
|
||||
))
|
||||
fig.update_layout(
|
||||
title="Net Income Change by State",
|
||||
xaxis_title="State",
|
||||
yaxis_title="Change ($)",
|
||||
yaxis_tickformat="$,.0f"
|
||||
)
|
||||
```
|
||||
|
||||
**3. Waterfall Chart (Budget Impact)**
|
||||
```python
|
||||
fig = go.Figure(go.Waterfall(
|
||||
x=["Baseline", "Tax Credit", "Phase-out", "Reform"],
|
||||
y=[baseline_revenue, credit_cost, phaseout_revenue, 0],
|
||||
measure=["absolute", "relative", "relative", "total"],
|
||||
connector={"line": {"color": "gray"}}
|
||||
))
|
||||
```
|
||||
|
||||
## Streamlit Dashboard Patterns
|
||||
|
||||
### Basic Streamlit Setup
|
||||
|
||||
```python
|
||||
import streamlit as st
|
||||
from policyengine_us import Simulation
|
||||
|
||||
st.set_page_config(page_title="Policy Analysis", layout="wide")
|
||||
|
||||
st.title("Policy Impact Calculator")
|
||||
|
||||
# User inputs
|
||||
col1, col2, col3 = st.columns(3)
|
||||
with col1:
|
||||
income = st.number_input("Income", value=60000, step=5000)
|
||||
with col2:
|
||||
state = st.selectbox("State", ["CA", "NY", "TX", "FL"])
|
||||
with col3:
|
||||
num_children = st.number_input("Children", value=0, min_value=0, max_value=10)
|
||||
|
||||
# Calculate
|
||||
if st.button("Calculate"):
|
||||
situation = create_family(
|
||||
parent_income=income,
|
||||
num_children=num_children,
|
||||
state=state
|
||||
)
|
||||
|
||||
sim_baseline = Simulation(situation=situation)
|
||||
sim_reform = Simulation(situation=situation, reform=reform)
|
||||
|
||||
# Display results
|
||||
col1, col2, col3 = st.columns(3)
|
||||
with col1:
|
||||
st.metric(
|
||||
"Baseline Tax",
|
||||
f"${sim_baseline.calculate('income_tax', 2024)[0]:,.0f}"
|
||||
)
|
||||
with col2:
|
||||
st.metric(
|
||||
"Reform Tax",
|
||||
f"${sim_reform.calculate('income_tax', 2024)[0]:,.0f}"
|
||||
)
|
||||
with col3:
|
||||
change = (sim_reform.calculate('income_tax', 2024)[0] -
|
||||
sim_baseline.calculate('income_tax', 2024)[0])
|
||||
st.metric("Change", f"${change:,.0f}", delta=f"${-change:,.0f}")
|
||||
```
|
||||
|
||||
### Interactive Chart with Streamlit
|
||||
|
||||
```python
|
||||
# Create chart based on user inputs
|
||||
incomes = np.linspace(0, income_max, 1001)
|
||||
results = []
|
||||
|
||||
for income in incomes:
|
||||
situation = create_situation(income=income, state=selected_state)
|
||||
sim = Simulation(situation=situation, reform=reform)
|
||||
results.append(sim.calculate("household_net_income", 2024)[0])
|
||||
|
||||
fig = go.Figure()
|
||||
fig.add_trace(go.Scatter(x=incomes, y=results, line=dict(color=TEAL)))
|
||||
st.plotly_chart(fig, use_container_width=True)
|
||||
```
|
||||
|
||||
## Jupyter Notebook Best Practices
|
||||
|
||||
### Notebook Structure
|
||||
|
||||
```python
|
||||
# Cell 1: Title and Description
|
||||
"""
|
||||
# Policy Analysis: [Policy Name]
|
||||
|
||||
**Date:** [Date]
|
||||
**Author:** [Your Name]
|
||||
|
||||
## Summary
|
||||
Brief description of the analysis and key findings.
|
||||
"""
|
||||
|
||||
# Cell 2: Imports
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import plotly.graph_objects as go
|
||||
from policyengine_us import Simulation
|
||||
|
||||
# Cell 3: Configuration
|
||||
YEAR = 2024
|
||||
STATES = ["CA", "NY", "TX", "FL"]
|
||||
|
||||
# Cell 4+: Analysis sections with markdown headers
|
||||
```
|
||||
|
||||
### Export Results
|
||||
|
||||
```python
|
||||
# Save DataFrame
|
||||
df.to_csv("outputs/impact_analysis.csv", index=False)
|
||||
|
||||
# Save Plotly chart
|
||||
fig.write_html("outputs/chart.html")
|
||||
fig.write_image("outputs/chart.png", width=1200, height=600)
|
||||
|
||||
# Save summary statistics
|
||||
summary = {
|
||||
"total_winners": winners.sum(),
|
||||
"total_losers": losers.sum(),
|
||||
"avg_gain": gains[winners].mean(),
|
||||
"avg_loss": gains[losers].mean()
|
||||
}
|
||||
pd.DataFrame([summary]).to_csv("outputs/summary.csv", index=False)
|
||||
```
|
||||
|
||||
## Repository-Specific Examples
|
||||
|
||||
This skill includes example templates in the `examples/` directory:
|
||||
|
||||
- `impact_analysis_template.ipynb` - Standard impact analysis
|
||||
- `dashboard_template.py` - Streamlit dashboard
|
||||
- `state_comparison.py` - State-by-state analysis
|
||||
- `case_studies.py` - Household case studies
|
||||
- `reform_definitions.py` - Common reform patterns
|
||||
|
||||
## Common Pitfalls
|
||||
|
||||
### Pitfall 1: Not Using Consistent Year
|
||||
**Problem:** Mixing 2024 and 2025 calculations
|
||||
|
||||
**Solution:** Define year constant at top:
|
||||
```python
|
||||
CURRENT_YEAR = 2024
|
||||
# Use everywhere
|
||||
simulation.calculate("income_tax", CURRENT_YEAR)
|
||||
```
|
||||
|
||||
### Pitfall 2: Inefficient Simulations
|
||||
**Problem:** Creating new simulation for each income level
|
||||
|
||||
**Solution:** Use axes for efficiency:
|
||||
```python
|
||||
# SLOW
|
||||
for income in incomes:
|
||||
situation = create_situation(income=income)
|
||||
sim = Simulation(situation=situation)
|
||||
results.append(sim.calculate("income_tax", 2024)[0])
|
||||
|
||||
# FAST
|
||||
situation_with_axes = create_situation_with_axes(incomes)
|
||||
sim = Simulation(situation=situation_with_axes)
|
||||
results = sim.calculate("income_tax", 2024) # Array of all results
|
||||
```
|
||||
|
||||
### Pitfall 3: Forgetting to Compare Baseline and Reform
|
||||
**Problem:** Only showing reform results
|
||||
|
||||
**Solution:** Always show both:
|
||||
```python
|
||||
results = {
|
||||
"baseline": sim_baseline.calculate("income_tax", 2024),
|
||||
"reform": sim_reform.calculate("income_tax", 2024),
|
||||
"change": reform - baseline
|
||||
}
|
||||
```
|
||||
|
||||
## PolicyEngine API Usage
|
||||
|
||||
For larger-scale analyses, use the PolicyEngine API:
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
||||
def calculate_via_api(situation, reform=None):
|
||||
"""Calculate using PolicyEngine API."""
|
||||
url = "https://api.policyengine.org/us/calculate"
|
||||
|
||||
payload = {
|
||||
"household": situation,
|
||||
"policy_id": reform_id if reform else baseline_policy_id
|
||||
}
|
||||
|
||||
response = requests.post(url, json=payload)
|
||||
return response.json()
|
||||
```
|
||||
|
||||
## Testing Analysis Code
|
||||
|
||||
```python
|
||||
import pytest
|
||||
|
||||
def test_reform_increases_ctc():
|
||||
"""Test that reform increases CTC as expected."""
|
||||
situation = create_family(income=50000, num_children=2)
|
||||
|
||||
sim_baseline = Simulation(situation=situation)
|
||||
sim_reform = Simulation(situation=situation, reform=reform)
|
||||
|
||||
ctc_baseline = sim_baseline.calculate("ctc", 2024)[0]
|
||||
ctc_reform = sim_reform.calculate("ctc", 2024)[0]
|
||||
|
||||
assert ctc_reform > ctc_baseline, "Reform should increase CTC"
|
||||
assert ctc_reform == 5000 * 2, "CTC should be $5000 per child"
|
||||
```
|
||||
|
||||
## Documentation Standards
|
||||
|
||||
### README Template
|
||||
|
||||
```markdown
|
||||
# [Analysis Name]
|
||||
|
||||
## Overview
|
||||
Brief description of the analysis.
|
||||
|
||||
## Key Findings
|
||||
- Finding 1
|
||||
- Finding 2
|
||||
- Finding 3
|
||||
|
||||
## Methodology
|
||||
Explanation of approach and data sources.
|
||||
|
||||
## How to Run
|
||||
|
||||
\```bash
|
||||
pip install -r requirements.txt
|
||||
python app.py # or jupyter notebook analysis.ipynb
|
||||
\```
|
||||
|
||||
## Outputs
|
||||
- `outputs/chart1.png` - Description
|
||||
- `outputs/results.csv` - Description
|
||||
|
||||
## Contact
|
||||
PolicyEngine Team - hello@policyengine.org
|
||||
```
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- **PolicyEngine API Docs:** https://policyengine.org/us/api
|
||||
- **Analysis Examples:** https://github.com/PolicyEngine/analysis-notebooks
|
||||
- **Streamlit Docs:** https://docs.streamlit.io
|
||||
- **Plotly Docs:** https://plotly.com/python/
|
||||
178
skills/policyengine-analysis-skill/examples/reform_template.py
Normal file
178
skills/policyengine-analysis-skill/examples/reform_template.py
Normal file
@@ -0,0 +1,178 @@
|
||||
"""
|
||||
Template for PolicyEngine reform impact analysis.
|
||||
|
||||
This template provides a starting point for analyzing the impact
|
||||
of a policy reform across the income distribution.
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import plotly.graph_objects as go
|
||||
from policyengine_us import Simulation
|
||||
|
||||
# Configuration
|
||||
CURRENT_YEAR = 2024
|
||||
INCOME_MIN = 0
|
||||
INCOME_MAX = 200000
|
||||
INCOME_STEPS = 101
|
||||
|
||||
# Define your reform here
|
||||
REFORM = {
|
||||
"gov.irs.credits.ctc.amount.base_amount": {
|
||||
"2024-01-01.2100-12-31": 5000 # Example: Increase CTC to $5,000
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def create_situation(income, num_children=0, state="CA"):
|
||||
"""Create a basic household situation."""
|
||||
people = {
|
||||
"parent": {
|
||||
"age": {CURRENT_YEAR: 35},
|
||||
"employment_income": {CURRENT_YEAR: income}
|
||||
}
|
||||
}
|
||||
|
||||
members = ["parent"]
|
||||
|
||||
# Add children
|
||||
for i in range(num_children):
|
||||
child_id = f"child_{i+1}"
|
||||
people[child_id] = {"age": {CURRENT_YEAR: 8}}
|
||||
members.append(child_id)
|
||||
|
||||
return {
|
||||
"people": people,
|
||||
"families": {"family": {"members": members}},
|
||||
"marital_units": {"marital_unit": {"members": ["parent"]}},
|
||||
"tax_units": {"tax_unit": {"members": members}},
|
||||
"spm_units": {"spm_unit": {"members": members}},
|
||||
"households": {
|
||||
"household": {
|
||||
"members": members,
|
||||
"state_name": {CURRENT_YEAR: state}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def analyze_reform(num_children=2, state="CA"):
|
||||
"""Analyze reform impact across income distribution."""
|
||||
incomes = np.linspace(INCOME_MIN, INCOME_MAX, INCOME_STEPS)
|
||||
results = []
|
||||
|
||||
for income in incomes:
|
||||
situation = create_situation(
|
||||
income=income,
|
||||
num_children=num_children,
|
||||
state=state
|
||||
)
|
||||
|
||||
# Baseline
|
||||
sim_baseline = Simulation(situation=situation)
|
||||
income_tax_baseline = sim_baseline.calculate("income_tax", CURRENT_YEAR)[0]
|
||||
ctc_baseline = sim_baseline.calculate("ctc", CURRENT_YEAR)[0]
|
||||
net_income_baseline = sim_baseline.calculate("household_net_income", CURRENT_YEAR)[0]
|
||||
|
||||
# Reform
|
||||
sim_reform = Simulation(situation=situation, reform=REFORM)
|
||||
income_tax_reform = sim_reform.calculate("income_tax", CURRENT_YEAR)[0]
|
||||
ctc_reform = sim_reform.calculate("ctc", CURRENT_YEAR)[0]
|
||||
net_income_reform = sim_reform.calculate("household_net_income", CURRENT_YEAR)[0]
|
||||
|
||||
results.append({
|
||||
"income": income,
|
||||
"income_tax_baseline": income_tax_baseline,
|
||||
"income_tax_reform": income_tax_reform,
|
||||
"ctc_baseline": ctc_baseline,
|
||||
"ctc_reform": ctc_reform,
|
||||
"net_income_baseline": net_income_baseline,
|
||||
"net_income_reform": net_income_reform,
|
||||
"tax_change": income_tax_reform - income_tax_baseline,
|
||||
"ctc_change": ctc_reform - ctc_baseline,
|
||||
"net_income_change": net_income_reform - net_income_baseline
|
||||
})
|
||||
|
||||
return pd.DataFrame(results)
|
||||
|
||||
|
||||
def create_chart(df, title="Reform Impact Analysis"):
|
||||
"""Create Plotly chart of reform impacts."""
|
||||
TEAL = "#39C6C0"
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
fig.add_trace(go.Scatter(
|
||||
x=df.income,
|
||||
y=df.net_income_change,
|
||||
mode='lines',
|
||||
name='Net Income Change',
|
||||
line=dict(color=TEAL, width=3)
|
||||
))
|
||||
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
xaxis_title="Income",
|
||||
yaxis_title="Net Income Change ($)",
|
||||
font=dict(family="Roboto Serif", size=14),
|
||||
plot_bgcolor="white",
|
||||
hovermode="x unified",
|
||||
xaxis=dict(
|
||||
tickformat="$,.0f",
|
||||
showgrid=True,
|
||||
gridcolor="lightgray"
|
||||
),
|
||||
yaxis=dict(
|
||||
tickformat="$,.0f",
|
||||
showgrid=True,
|
||||
gridcolor="lightgray",
|
||||
zeroline=True,
|
||||
zerolinecolor="black",
|
||||
zerolinewidth=1
|
||||
)
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def print_summary(df):
|
||||
"""Print summary statistics."""
|
||||
print("\n=== Reform Impact Summary ===\n")
|
||||
|
||||
winners = df[df.net_income_change > 0]
|
||||
losers = df[df.net_income_change < 0]
|
||||
|
||||
print(f"Winners: {len(winners) / len(df) * 100:.1f}%")
|
||||
print(f"Losers: {len(losers) / len(df) * 100:.1f}%")
|
||||
|
||||
if len(winners) > 0:
|
||||
print(f"\nAverage gain (winners): ${winners.net_income_change.mean():,.2f}")
|
||||
print(f"Max gain: ${df.net_income_change.max():,.2f}")
|
||||
|
||||
if len(losers) > 0:
|
||||
print(f"\nAverage loss (losers): ${losers.net_income_change.mean():,.2f}")
|
||||
print(f"Max loss: ${df.net_income_change.min():,.2f}")
|
||||
|
||||
print(f"\nAverage CTC change: ${df.ctc_change.mean():,.2f}")
|
||||
print(f"Average tax change: ${df.tax_change.mean():,.2f}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Run analysis
|
||||
print("Running reform analysis...")
|
||||
df = analyze_reform(num_children=2, state="CA")
|
||||
|
||||
# Print summary
|
||||
print_summary(df)
|
||||
|
||||
# Save results
|
||||
df.to_csv("reform_impact_results.csv", index=False)
|
||||
print("\nResults saved to reform_impact_results.csv")
|
||||
|
||||
# Create and save chart
|
||||
fig = create_chart(df)
|
||||
fig.write_html("reform_impact_chart.html")
|
||||
print("Chart saved to reform_impact_chart.html")
|
||||
|
||||
# Display chart (if running interactively)
|
||||
fig.show()
|
||||
478
skills/policyengine-api-skill/SKILL.md
Normal file
478
skills/policyengine-api-skill/SKILL.md
Normal file
@@ -0,0 +1,478 @@
|
||||
---
|
||||
name: policyengine-api
|
||||
description: PolicyEngine API - Flask REST service powering policyengine.org and programmatic access
|
||||
---
|
||||
|
||||
# PolicyEngine API
|
||||
|
||||
The PolicyEngine API is a Flask-based REST service that provides tax and benefit calculations for the web app and programmatic users.
|
||||
|
||||
## For Users 👥
|
||||
|
||||
### What is the API?
|
||||
|
||||
When you use policyengine.org, the API processes your calculations on our servers.
|
||||
|
||||
**API base:** https://api.policyengine.org
|
||||
|
||||
**What it does:**
|
||||
- Runs tax and benefit calculations
|
||||
- Stores and retrieves policy reforms
|
||||
- Computes population-wide impacts
|
||||
- Serves parameter and variable metadata
|
||||
|
||||
### Public Access
|
||||
|
||||
The API is publicly accessible with rate limits:
|
||||
- **Unauthenticated:** 100 requests/minute
|
||||
- **Authenticated:** 1,000 requests/minute
|
||||
|
||||
**Try it:**
|
||||
```bash
|
||||
curl https://api.policyengine.org/us/policy/2
|
||||
```
|
||||
|
||||
### API Documentation
|
||||
|
||||
**OpenAPI spec:** https://api.policyengine.org/docs
|
||||
|
||||
**Interactive docs:** Swagger UI at API docs endpoint
|
||||
|
||||
## For Analysts 📊
|
||||
|
||||
### Using the API
|
||||
|
||||
**Option 1: Python client (recommended)**
|
||||
```python
|
||||
# Use the policyengine package
|
||||
# See policyengine-python-client-skill
|
||||
```
|
||||
|
||||
**Option 2: Direct API calls**
|
||||
```python
|
||||
import requests
|
||||
|
||||
# Calculate household impact
|
||||
response = requests.post(
|
||||
"https://api.policyengine.org/us/calculate",
|
||||
json={
|
||||
"household": household_situation,
|
||||
"policy_id": None # or reform_id
|
||||
}
|
||||
)
|
||||
result = response.json()
|
||||
```
|
||||
|
||||
### Key Endpoints
|
||||
|
||||
**Household calculations:**
|
||||
```
|
||||
POST /us/calculate
|
||||
POST /uk/calculate
|
||||
```
|
||||
|
||||
**Policy management:**
|
||||
```
|
||||
GET /us/policy/{policy_id}
|
||||
POST /us/policy
|
||||
```
|
||||
|
||||
**Economy impacts:**
|
||||
```
|
||||
GET /us/economy/{policy_id}/over/{baseline_policy_id}
|
||||
```
|
||||
|
||||
**Metadata:**
|
||||
```
|
||||
GET /us/parameters
|
||||
GET /us/variables
|
||||
GET /us/parameter/{parameter_name}
|
||||
GET /us/variable/{variable_name}
|
||||
```
|
||||
|
||||
### Rate Limits and Performance
|
||||
|
||||
**Rate limits:**
|
||||
- 100 req/min (unauthenticated)
|
||||
- 1,000 req/min (authenticated - contact team)
|
||||
|
||||
**Response times:**
|
||||
- Household calculation: ~200-500ms
|
||||
- Population impact: ~5-30 seconds
|
||||
- Cached results: <100ms
|
||||
|
||||
**Optimization:**
|
||||
- Use the same policy_id for multiple requests (caching)
|
||||
- Batch calculations when possible
|
||||
- Use webhooks for long-running jobs (population impacts)
|
||||
|
||||
## For Contributors 💻
|
||||
|
||||
### Repository
|
||||
|
||||
**Location:** PolicyEngine/policyengine-api
|
||||
|
||||
**Clone:**
|
||||
```bash
|
||||
git clone https://github.com/PolicyEngine/policyengine-api
|
||||
cd policyengine-api
|
||||
```
|
||||
|
||||
### Current Architecture
|
||||
|
||||
**To see current structure:**
|
||||
```bash
|
||||
tree policyengine_api/
|
||||
|
||||
# Key directories:
|
||||
ls policyengine_api/
|
||||
# - endpoints/ - HTTP endpoint handlers
|
||||
# - routes/ - Route registration
|
||||
# - services/ - Business logic
|
||||
# - compute_api/ - Calculation services
|
||||
# - economy_api/ - Economy impact calculations
|
||||
# - utils/ - Helpers (caching, validation)
|
||||
# - data/ - Static data
|
||||
```
|
||||
|
||||
### Current Implementation Patterns
|
||||
|
||||
**Reference endpoint (read this first):**
|
||||
```bash
|
||||
cat policyengine_api/endpoints/economy.py
|
||||
```
|
||||
|
||||
**This demonstrates:**
|
||||
- Standard endpoint structure
|
||||
- Request validation
|
||||
- Caching pattern
|
||||
- Error handling
|
||||
- Response formatting
|
||||
|
||||
**To find other endpoints:**
|
||||
```bash
|
||||
ls policyengine_api/endpoints/
|
||||
# - household.py
|
||||
# - policy.py
|
||||
# - economy.py
|
||||
# - metadata.py
|
||||
# - etc.
|
||||
```
|
||||
|
||||
### Standard Endpoint Pattern (Stable)
|
||||
|
||||
```python
|
||||
from flask import Blueprint, request, jsonify
|
||||
from policyengine_api.utils import cache
|
||||
|
||||
blueprint = Blueprint("my_endpoint", __name__)
|
||||
|
||||
@blueprint.route("/us/calculate", methods=["POST"])
|
||||
def calculate():
|
||||
"""Standard pattern: validate, cache-check, compute, cache, return."""
|
||||
try:
|
||||
# 1. Get and validate input
|
||||
data = request.json
|
||||
if not data:
|
||||
return jsonify({"error": "No data provided"}), 400
|
||||
|
||||
# 2. Generate cache key
|
||||
cache_key = f"calc_{hash(str(data))}"
|
||||
|
||||
# 3. Check cache
|
||||
cached = cache.get(cache_key)
|
||||
if cached:
|
||||
return jsonify(cached)
|
||||
|
||||
# 4. Compute
|
||||
result = perform_calculation(data)
|
||||
|
||||
# 5. Cache result
|
||||
cache.set(cache_key, result, expire=3600)
|
||||
|
||||
# 6. Return
|
||||
return jsonify(result)
|
||||
|
||||
except Exception as e:
|
||||
return jsonify({"error": str(e), "status": "error"}), 500
|
||||
```
|
||||
|
||||
**Current implementation details:**
|
||||
```bash
|
||||
# See actual endpoint for current pattern
|
||||
cat policyengine_api/endpoints/household.py
|
||||
```
|
||||
|
||||
### Caching Strategy
|
||||
|
||||
**To see current caching implementation:**
|
||||
```bash
|
||||
# Redis configuration
|
||||
cat policyengine_api/utils/cache.py
|
||||
|
||||
# Find cache usage
|
||||
grep -r "cache\." policyengine_api/endpoints/
|
||||
```
|
||||
|
||||
**Pattern:**
|
||||
- Redis for caching
|
||||
- Cache keys based on inputs
|
||||
- TTL varies by endpoint (1 hour to 1 day)
|
||||
- Clear cache on parameter changes
|
||||
|
||||
### Background Jobs
|
||||
|
||||
For long-running calculations (population impacts):
|
||||
|
||||
**To see current implementation:**
|
||||
```bash
|
||||
# RQ (Redis Queue) usage
|
||||
grep -r "@job" policyengine_api/
|
||||
|
||||
# Job patterns
|
||||
cat policyengine_api/economy_api/
|
||||
```
|
||||
|
||||
**Pattern:**
|
||||
- Use RQ for jobs > 5 seconds
|
||||
- Return job_id immediately
|
||||
- Poll for completion
|
||||
- Cache results
|
||||
|
||||
### Country Integration
|
||||
|
||||
**How API loads country packages:**
|
||||
```bash
|
||||
cat policyengine_api/country.py
|
||||
```
|
||||
|
||||
**Pattern:**
|
||||
- Dynamically imports country packages
|
||||
- Routes by country code (/us/, /uk/)
|
||||
- Manages multiple model versions
|
||||
|
||||
### Service Layer
|
||||
|
||||
**Business logic separated from endpoints:**
|
||||
```bash
|
||||
ls policyengine_api/services/
|
||||
```
|
||||
|
||||
**Pattern:**
|
||||
```python
|
||||
# endpoints/household.py
|
||||
from policyengine_api.services import household_service
|
||||
|
||||
@app.route("/us/calculate", methods=["POST"])
|
||||
def calculate():
|
||||
result = household_service.calculate(data)
|
||||
return jsonify(result)
|
||||
|
||||
# services/household_service.py
|
||||
def calculate(data):
|
||||
# Business logic here
|
||||
simulation = create_simulation(data)
|
||||
return simulation.calculate(...)
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
**To see current test patterns:**
|
||||
```bash
|
||||
ls tests/
|
||||
cat tests/test_household.py
|
||||
```
|
||||
|
||||
**Run tests:**
|
||||
```bash
|
||||
make test
|
||||
|
||||
# Specific test
|
||||
pytest tests/test_economy.py -v
|
||||
|
||||
# With coverage
|
||||
make test-coverage
|
||||
```
|
||||
|
||||
### Development Server
|
||||
|
||||
**Start locally:**
|
||||
```bash
|
||||
make debug
|
||||
```
|
||||
|
||||
**Test endpoint:**
|
||||
```bash
|
||||
curl http://localhost:5000/us/policy/2
|
||||
```
|
||||
|
||||
### Deployment
|
||||
|
||||
**To see deployment configuration:**
|
||||
```bash
|
||||
# Google Cloud Platform
|
||||
cat app.yaml # App Engine config
|
||||
cat cloudbuild.yaml # Cloud Build config
|
||||
|
||||
# Environment variables
|
||||
cat .env.example
|
||||
```
|
||||
|
||||
**Current deployment:**
|
||||
- Google App Engine
|
||||
- Cloud SQL (PostgreSQL)
|
||||
- Redis (caching)
|
||||
- Cloud Build (CI/CD)
|
||||
|
||||
### API Versions
|
||||
|
||||
**To see versioning strategy:**
|
||||
```bash
|
||||
grep -r "version" policyengine_api/
|
||||
```
|
||||
|
||||
**Current approach:**
|
||||
- API version in URLs (may add /v1/ prefix)
|
||||
- Country package versions independent
|
||||
- Breaking changes rare (backwards compatible)
|
||||
|
||||
## Architecture Diagrams
|
||||
|
||||
### Request Flow
|
||||
|
||||
```
|
||||
User/App → API Gateway → Flask App → Country Package → Core Engine
|
||||
↓
|
||||
Redis Cache
|
||||
↓
|
||||
Background Job (if needed)
|
||||
↓
|
||||
PostgreSQL (storage)
|
||||
```
|
||||
|
||||
### Dependencies
|
||||
|
||||
```
|
||||
policyengine-core
|
||||
↓
|
||||
policyengine-us, policyengine-uk, etc.
|
||||
↓
|
||||
policyengine-api (you are here)
|
||||
↓
|
||||
policyengine-app (consumes API)
|
||||
```
|
||||
|
||||
**To understand dependencies:**
|
||||
- See `policyengine-core-skill` for engine patterns
|
||||
- See `policyengine-us-skill` for country model usage
|
||||
- See `policyengine-app-skill` for how app calls API
|
||||
|
||||
## Common Development Tasks
|
||||
|
||||
### Task 1: Add New Endpoint
|
||||
|
||||
1. **Study reference implementation:**
|
||||
```bash
|
||||
cat policyengine_api/endpoints/economy.py
|
||||
```
|
||||
|
||||
2. **Create new endpoint file:**
|
||||
```python
|
||||
# policyengine_api/endpoints/my_endpoint.py
|
||||
# Follow the pattern from economy.py
|
||||
```
|
||||
|
||||
3. **Register route:**
|
||||
```bash
|
||||
# See route registration
|
||||
cat policyengine_api/routes/__init__.py
|
||||
```
|
||||
|
||||
4. **Add tests:**
|
||||
```bash
|
||||
# Follow test pattern
|
||||
cat tests/test_economy.py
|
||||
```
|
||||
|
||||
### Task 2: Modify Caching Behavior
|
||||
|
||||
**See current caching:**
|
||||
```bash
|
||||
cat policyengine_api/utils/cache.py
|
||||
```
|
||||
|
||||
**Common changes:**
|
||||
- Adjust TTL (time to live)
|
||||
- Change cache key generation
|
||||
- Add cache invalidation
|
||||
|
||||
### Task 3: Update Country Package Version
|
||||
|
||||
**To see how versions are managed:**
|
||||
```bash
|
||||
# Requirements
|
||||
cat requirements.txt | grep policyengine-
|
||||
|
||||
# Update and deploy
|
||||
# See deployment docs in README
|
||||
```
|
||||
|
||||
## Security and Best Practices
|
||||
|
||||
### Input Validation
|
||||
|
||||
**Always validate:**
|
||||
- Country code (us, uk, ca)
|
||||
- Policy ID format
|
||||
- Household structure
|
||||
- Parameter values
|
||||
|
||||
**See validation examples:**
|
||||
```bash
|
||||
grep -r "validate" policyengine_api/endpoints/
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
|
||||
**Standard error response:**
|
||||
```python
|
||||
return jsonify({
|
||||
"error": "Error message",
|
||||
"details": additional_context,
|
||||
"status": "error"
|
||||
}), status_code
|
||||
```
|
||||
|
||||
**See error patterns:**
|
||||
```bash
|
||||
grep -A 5 "jsonify.*error" policyengine_api/endpoints/
|
||||
```
|
||||
|
||||
### Logging
|
||||
|
||||
**To see logging configuration:**
|
||||
```bash
|
||||
cat policyengine_api/gcp_logging.py
|
||||
```
|
||||
|
||||
**Pattern:**
|
||||
- Google Cloud Logging
|
||||
- Log all errors
|
||||
- Log slow queries (>1s)
|
||||
- Don't log sensitive data
|
||||
|
||||
## Related Skills
|
||||
|
||||
- **policyengine-python-client-skill** - Using the API
|
||||
- **policyengine-core-skill** - Understanding the engine
|
||||
- **policyengine-us-skill** - Country model integration
|
||||
- **policyengine-app-skill** - How app consumes API
|
||||
- **policyengine-standards-skill** - Code quality
|
||||
- **policyengine-writing-skill** - API documentation style
|
||||
|
||||
## Resources
|
||||
|
||||
**Repository:** https://github.com/PolicyEngine/policyengine-api
|
||||
**Live API:** https://api.policyengine.org
|
||||
**Documentation:** https://api.policyengine.org/docs
|
||||
**Status:** https://status.policyengine.org
|
||||
900
skills/policyengine-app-skill/SKILL.md
Normal file
900
skills/policyengine-app-skill/SKILL.md
Normal file
@@ -0,0 +1,900 @@
|
||||
---
|
||||
name: policyengine-app
|
||||
description: PolicyEngine React web application - the user interface at policyengine.org
|
||||
---
|
||||
|
||||
# PolicyEngine App
|
||||
|
||||
The PolicyEngine App is the React-based web application that users interact with at policyengine.org.
|
||||
|
||||
## For Users 👥
|
||||
|
||||
### What is the App?
|
||||
|
||||
The app at policyengine.org provides:
|
||||
- Interactive household calculator
|
||||
- Policy reform creator
|
||||
- Population impact analysis
|
||||
- Blog and research hub
|
||||
|
||||
**Access:** https://policyengine.org
|
||||
|
||||
### App Features
|
||||
|
||||
**Calculator:**
|
||||
- Enter household details
|
||||
- See tax and benefit calculations
|
||||
- Visualize marginal tax rates
|
||||
- Compare scenarios
|
||||
|
||||
**Policy designer:**
|
||||
- Browse all parameters
|
||||
- Create custom reforms
|
||||
- Share via URL
|
||||
- Download charts
|
||||
|
||||
**Research hub:**
|
||||
- Read policy analysis
|
||||
- Explore modeled programs
|
||||
- Access documentation
|
||||
|
||||
## For Analysts 📊
|
||||
|
||||
### Understanding App URLs
|
||||
|
||||
Reform URLs encode all policy changes in the query string, allowing sharing and reproducibility.
|
||||
|
||||
**Example URL:**
|
||||
```
|
||||
policyengine.org/us/policy?
|
||||
focus=policyOutput.policyBreakdown&
|
||||
reform=67696&
|
||||
region=enhanced_us&
|
||||
timePeriod=2025&
|
||||
baseline=2
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
- `focus` - Which section to display
|
||||
- `reform` - Reform ID from database
|
||||
- `region` - Geographic scope (enhanced_us, CA, congressional districts)
|
||||
- `timePeriod` - Year of analysis
|
||||
- `baseline` - Baseline policy ID
|
||||
|
||||
### Embedding PolicyEngine
|
||||
|
||||
**iFrame integration:**
|
||||
```html
|
||||
<iframe
|
||||
src="https://policyengine.org/us/household?embedded=true"
|
||||
width="100%"
|
||||
height="800">
|
||||
</iframe>
|
||||
```
|
||||
|
||||
**Parameter:**
|
||||
- `embedded=true` - Removes navigation, optimizes for embedding
|
||||
|
||||
### URL Structure
|
||||
|
||||
**Household calculator:**
|
||||
```
|
||||
/us/household?household=12345
|
||||
/uk/household?household=67890
|
||||
```
|
||||
|
||||
**Policy page:**
|
||||
```
|
||||
/us/policy?reform=12345
|
||||
/uk/policy?reform=67890
|
||||
```
|
||||
|
||||
**Research/blog:**
|
||||
```
|
||||
/us/research/article-slug
|
||||
/uk/research/article-slug
|
||||
```
|
||||
|
||||
## For Contributors 💻
|
||||
|
||||
### Repository
|
||||
|
||||
**Location:** PolicyEngine/policyengine-app
|
||||
|
||||
**Clone:**
|
||||
```bash
|
||||
git clone https://github.com/PolicyEngine/policyengine-app
|
||||
cd policyengine-app
|
||||
```
|
||||
|
||||
### Current Architecture
|
||||
|
||||
**To see current structure:**
|
||||
```bash
|
||||
tree src/ -L 2
|
||||
|
||||
# Key directories:
|
||||
ls src/
|
||||
# - pages/ - Page components
|
||||
# - applets/ - Reusable UI modules
|
||||
# - api/ - API integration
|
||||
# - controls/ - Form controls
|
||||
# - layout/ - Layout components
|
||||
# - posts/ - Blog posts
|
||||
# - routing/ - Routing configuration
|
||||
# - hooks/ - Custom React hooks
|
||||
# - data/ - Static data
|
||||
```
|
||||
|
||||
### Technology Stack
|
||||
|
||||
**Current dependencies:**
|
||||
```bash
|
||||
# See package.json for versions
|
||||
cat package.json
|
||||
|
||||
# Key dependencies:
|
||||
# - React 18
|
||||
# - React Router v6
|
||||
# - Plotly.js
|
||||
# - Ant Design
|
||||
# - axios
|
||||
```
|
||||
|
||||
### React Patterns (Critical)
|
||||
|
||||
**✅ Functional components only (no classes):**
|
||||
```javascript
|
||||
// CORRECT
|
||||
import { useState, useEffect } from "react";
|
||||
|
||||
export default function TaxCalculator({ income }) {
|
||||
const [tax, setTax] = useState(0);
|
||||
|
||||
useEffect(() => {
|
||||
calculateTax(income).then(setTax);
|
||||
}, [income]);
|
||||
|
||||
return <div>Tax: ${tax}</div>;
|
||||
}
|
||||
```
|
||||
|
||||
**❌ Class components forbidden:**
|
||||
```javascript
|
||||
// WRONG - Don't use class components
|
||||
class TaxCalculator extends Component {
|
||||
// ...
|
||||
}
|
||||
```
|
||||
|
||||
**To find component examples:**
|
||||
```bash
|
||||
# Reference components
|
||||
ls src/pages/
|
||||
ls src/applets/
|
||||
|
||||
# See a complete page
|
||||
cat src/pages/HouseholdPage.jsx
|
||||
```
|
||||
|
||||
### State Management
|
||||
|
||||
**No global state (Redux, Context) - lift state up:**
|
||||
|
||||
```javascript
|
||||
// Parent manages state
|
||||
function PolicyPage() {
|
||||
const [reform, setReform] = useState({});
|
||||
const [impact, setImpact] = useState(null);
|
||||
|
||||
return (
|
||||
<>
|
||||
<PolicyEditor reform={reform} onChange={setReform} />
|
||||
<ImpactDisplay impact={impact} />
|
||||
</>
|
||||
);
|
||||
}
|
||||
```
|
||||
|
||||
**To see state patterns:**
|
||||
```bash
|
||||
# Find useState usage
|
||||
grep -r "useState" src/pages/ | head -20
|
||||
```
|
||||
|
||||
### API Integration
|
||||
|
||||
**To see current API patterns:**
|
||||
```bash
|
||||
cat src/api/call.js # Base API caller
|
||||
cat src/api/variables.js # Variable metadata
|
||||
cat src/api/parameters.js # Parameter metadata
|
||||
```
|
||||
|
||||
**Standard pattern:**
|
||||
```javascript
|
||||
import { api call } from "api/call";
|
||||
|
||||
// Fetch data
|
||||
const result = await call(
|
||||
`/us/calculate`,
|
||||
{ household: householdData },
|
||||
"POST"
|
||||
);
|
||||
```
|
||||
|
||||
### Routing
|
||||
|
||||
**To see current routing:**
|
||||
```bash
|
||||
cat src/routing/routes.js
|
||||
|
||||
# Routes defined with React Router v6
|
||||
# See examples:
|
||||
grep -r "useNavigate" src/
|
||||
grep -r "useSearchParams" src/
|
||||
```
|
||||
|
||||
**URL parameters:**
|
||||
```javascript
|
||||
import { useSearchParams } from "react-router-dom";
|
||||
|
||||
const [searchParams, setSearchParams] = useSearchParams();
|
||||
|
||||
// Read
|
||||
const reformId = searchParams.get("reform");
|
||||
|
||||
// Update
|
||||
setSearchParams({ ...Object.fromEntries(searchParams), reform: newId });
|
||||
```
|
||||
|
||||
### Custom Hooks
|
||||
|
||||
**To see PolicyEngine-specific hooks:**
|
||||
```bash
|
||||
ls src/hooks/
|
||||
# - useCountryId.js - Current country
|
||||
# - useDisplayCategory.js
|
||||
# - etc.
|
||||
```
|
||||
|
||||
**Usage:**
|
||||
```javascript
|
||||
import { useCountryId } from "hooks/useCountryId";
|
||||
|
||||
function Component() {
|
||||
const [countryId, setCountryId] = useCountryId();
|
||||
// countryId = "us", "uk", or "ca"
|
||||
}
|
||||
```
|
||||
|
||||
### Charts and Visualization
|
||||
|
||||
**Plotly integration:**
|
||||
```bash
|
||||
# See chart components
|
||||
ls src/pages/policy/output/
|
||||
|
||||
# Reference implementation
|
||||
cat src/pages/policy/output/EconomyOutput.jsx
|
||||
```
|
||||
|
||||
**Standard Plotly pattern:**
|
||||
```javascript
|
||||
import Plot from "react-plotly.js";
|
||||
|
||||
const layout = {
|
||||
font: { family: "Roboto Serif" },
|
||||
plot_bgcolor: "white",
|
||||
// PolicyEngine branding
|
||||
};
|
||||
|
||||
<Plot
|
||||
data={traces}
|
||||
layout={layout}
|
||||
config={{ displayModeBar: false }}
|
||||
/>;
|
||||
```
|
||||
|
||||
### Blog Posts
|
||||
|
||||
**To see blog post structure:**
|
||||
```bash
|
||||
ls src/posts/articles/
|
||||
|
||||
# Read a recent post
|
||||
cat src/posts/articles/harris-eitc.md
|
||||
```
|
||||
|
||||
**Blog posts:**
|
||||
- Written in Markdown
|
||||
- Stored in `src/posts/articles/`
|
||||
- Include metadata (title, date, authors)
|
||||
- Follow policyengine-writing-skill style
|
||||
|
||||
**Adding a post:**
|
||||
```bash
|
||||
# Create new file
|
||||
# src/posts/articles/my-analysis.md
|
||||
|
||||
# Add to index (if needed)
|
||||
# See existing posts for format
|
||||
```
|
||||
|
||||
### Styling
|
||||
|
||||
**Current styling approach:**
|
||||
```bash
|
||||
# See style configuration
|
||||
ls src/style/
|
||||
|
||||
# Colors
|
||||
cat src/style/colors.js
|
||||
|
||||
# Ant Design theme
|
||||
cat src/style/theme.js
|
||||
```
|
||||
|
||||
**PolicyEngine colors:**
|
||||
- Teal: `#39C6C0` (primary accent)
|
||||
- Blue: `#2C6496` (charts, links)
|
||||
- Dark gray: `#616161` (text)
|
||||
|
||||
### Testing
|
||||
|
||||
**To see current tests:**
|
||||
```bash
|
||||
ls src/__tests__/
|
||||
|
||||
# Run tests
|
||||
make test
|
||||
|
||||
# Test pattern
|
||||
cat src/__tests__/example.test.js
|
||||
```
|
||||
|
||||
**Testing libraries:**
|
||||
- Jest (test runner)
|
||||
- React Testing Library (component testing)
|
||||
- User-centric testing (not implementation details)
|
||||
|
||||
### Development Server
|
||||
|
||||
**Start locally:**
|
||||
```bash
|
||||
make debug
|
||||
# Opens http://localhost:3000
|
||||
```
|
||||
|
||||
**Environment:**
|
||||
```bash
|
||||
# Environment variables
|
||||
cat .env.example
|
||||
|
||||
# Config
|
||||
ls src/config/
|
||||
```
|
||||
|
||||
### Building and Deployment
|
||||
|
||||
**Build:**
|
||||
```bash
|
||||
make build
|
||||
# Creates optimized production build
|
||||
```
|
||||
|
||||
**Deployment:**
|
||||
```bash
|
||||
# See deployment config
|
||||
cat netlify.toml # or appropriate hosting config
|
||||
```
|
||||
|
||||
## Component Patterns
|
||||
|
||||
### Standard Component Structure
|
||||
|
||||
**To see well-structured components:**
|
||||
```bash
|
||||
# Example page
|
||||
cat src/pages/HouseholdPage.jsx
|
||||
|
||||
# Example applet
|
||||
cat src/applets/PolicySearch.jsx
|
||||
```
|
||||
|
||||
**Pattern:**
|
||||
```javascript
|
||||
import { useState, useEffect } from "react";
|
||||
import { useSearchParams } from "react-router-dom";
|
||||
import { useCountryId } from "hooks/useCountryId";
|
||||
|
||||
export default function MyComponent({ prop1, prop2 }) {
|
||||
// 1. Hooks first
|
||||
const [state, setState] = useState(initialValue);
|
||||
const [countryId] = useCountryId();
|
||||
const [searchParams] = useSearchParams();
|
||||
|
||||
// 2. Effects
|
||||
useEffect(() => {
|
||||
// Side effects
|
||||
}, [dependencies]);
|
||||
|
||||
// 3. Event handlers
|
||||
const handleClick = () => {
|
||||
setState(newValue);
|
||||
};
|
||||
|
||||
// 4. Render
|
||||
return (
|
||||
<div>
|
||||
{/* JSX */}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
```
|
||||
|
||||
### Component Size Limit
|
||||
|
||||
**Keep components under 150 lines after formatting.**
|
||||
|
||||
**If component is too large:**
|
||||
1. Extract sub-components
|
||||
2. Move logic to custom hooks
|
||||
3. Split into multiple files
|
||||
|
||||
**To find large components:**
|
||||
```bash
|
||||
# Find files >150 lines
|
||||
find src/ -name "*.jsx" -exec wc -l {} \; | sort -rn | head -20
|
||||
```
|
||||
|
||||
### File Naming
|
||||
|
||||
**Components:** PascalCase.jsx
|
||||
- `HouseholdPage.jsx`
|
||||
- `PolicySearch.jsx`
|
||||
- `ImpactChart.jsx`
|
||||
|
||||
**Utilities:** camelCase.js
|
||||
- `formatCurrency.js`
|
||||
- `apiUtils.js`
|
||||
- `chartHelpers.js`
|
||||
|
||||
**Hooks:** camelCase.js with 'use' prefix
|
||||
- `useCountryId.js`
|
||||
- `usePolicy.js`
|
||||
|
||||
## Common Development Tasks
|
||||
|
||||
### Task 1: Add New Page
|
||||
|
||||
1. **See page structure:**
|
||||
```bash
|
||||
cat src/pages/HouseholdPage.jsx
|
||||
```
|
||||
|
||||
2. **Create new page:**
|
||||
```javascript
|
||||
// src/pages/MyNewPage.jsx
|
||||
export default function MyNewPage() {
|
||||
return <div>Content</div>;
|
||||
}
|
||||
```
|
||||
|
||||
3. **Add route:**
|
||||
```bash
|
||||
# See routing
|
||||
cat src/routing/routes.js
|
||||
|
||||
# Add your route following the pattern
|
||||
```
|
||||
|
||||
### Task 2: Add New Chart
|
||||
|
||||
1. **See chart examples:**
|
||||
```bash
|
||||
ls src/pages/policy/output/
|
||||
cat src/pages/policy/output/DistributionalImpact.jsx
|
||||
```
|
||||
|
||||
2. **Create chart component:**
|
||||
```javascript
|
||||
import Plot from "react-plotly.js";
|
||||
|
||||
export default function MyChart({ data }) {
|
||||
return (
|
||||
<Plot
|
||||
data={traces}
|
||||
layout={{
|
||||
font: { family: "Roboto Serif" },
|
||||
plot_bgcolor: "white"
|
||||
}}
|
||||
/>
|
||||
);
|
||||
}
|
||||
```
|
||||
|
||||
### Task 3: Add Blog Post
|
||||
|
||||
1. **See post structure:**
|
||||
```bash
|
||||
cat src/posts/articles/harris-eitc.md
|
||||
```
|
||||
|
||||
2. **Create post:**
|
||||
```bash
|
||||
# Create markdown file
|
||||
# src/posts/articles/my-analysis.md
|
||||
|
||||
# Follow policyengine-writing-skill for style
|
||||
```
|
||||
|
||||
3. **Images:**
|
||||
```bash
|
||||
# Store in public/images/posts/
|
||||
# Reference in markdown
|
||||
```
|
||||
|
||||
## API Integration Patterns
|
||||
|
||||
### Fetching Data
|
||||
|
||||
**To see API call patterns:**
|
||||
```bash
|
||||
cat src/api/call.js
|
||||
```
|
||||
|
||||
**Standard pattern:**
|
||||
```javascript
|
||||
import { call } from "api/call";
|
||||
|
||||
const fetchData = async () => {
|
||||
const result = await call(
|
||||
`/us/calculate`,
|
||||
{ household: data },
|
||||
"POST"
|
||||
);
|
||||
return result;
|
||||
};
|
||||
```
|
||||
|
||||
### Loading States
|
||||
|
||||
**Pattern:**
|
||||
```javascript
|
||||
const [loading, setLoading] = useState(false);
|
||||
const [error, setError] = useState(null);
|
||||
const [data, setData] = useState(null);
|
||||
|
||||
useEffect(() => {
|
||||
setLoading(true);
|
||||
fetchData()
|
||||
.then(setData)
|
||||
.catch(setError)
|
||||
.finally(() => setLoading(false));
|
||||
}, [dependencies]);
|
||||
|
||||
if (loading) return <Spin />;
|
||||
if (error) return <Error message={error} />;
|
||||
return <Data data={data} />;
|
||||
```
|
||||
|
||||
## Performance Patterns
|
||||
|
||||
### Code Splitting
|
||||
|
||||
**To see code splitting:**
|
||||
```bash
|
||||
grep -r "React.lazy" src/
|
||||
```
|
||||
|
||||
**Pattern:**
|
||||
```javascript
|
||||
import { lazy, Suspense } from "react";
|
||||
|
||||
const HeavyComponent = lazy(() => import("./HeavyComponent"));
|
||||
|
||||
function Page() {
|
||||
return (
|
||||
<Suspense fallback={<Spin />}>
|
||||
<HeavyComponent />
|
||||
</Suspense>
|
||||
);
|
||||
}
|
||||
```
|
||||
|
||||
### Memoization
|
||||
|
||||
**Use React.memo for expensive components:**
|
||||
```javascript
|
||||
import { memo } from "react";
|
||||
|
||||
const ExpensiveChart = memo(function ExpensiveChart({ data }) {
|
||||
// Only re-renders if data changes
|
||||
return <Plot data={data} />;
|
||||
});
|
||||
```
|
||||
|
||||
## Accessibility
|
||||
|
||||
**Requirements:**
|
||||
- Semantic HTML elements
|
||||
- ARIA labels for complex widgets
|
||||
- Keyboard navigation
|
||||
- Color contrast (WCAG AA)
|
||||
|
||||
**To see accessibility patterns:**
|
||||
```bash
|
||||
grep -r "aria-" src/
|
||||
grep -r "role=" src/
|
||||
```
|
||||
|
||||
## Country-Specific Features
|
||||
|
||||
### Country Switching
|
||||
|
||||
**To see country switching:**
|
||||
```bash
|
||||
cat src/hooks/useCountryId.js
|
||||
```
|
||||
|
||||
**Usage:**
|
||||
```javascript
|
||||
import { useCountryId } from "hooks/useCountryId";
|
||||
|
||||
function Component() {
|
||||
const [countryId] = useCountryId(); // "us", "uk", or "ca"
|
||||
|
||||
// Load country-specific data
|
||||
const data = countryId === "us" ? usData : ukData;
|
||||
}
|
||||
```
|
||||
|
||||
### Country-Specific Content
|
||||
|
||||
**Conditional rendering:**
|
||||
```javascript
|
||||
{countryId === "us" && <USSpecificComponent />}
|
||||
{countryId === "uk" && <UKSpecificComponent />}
|
||||
```
|
||||
|
||||
**To find country-specific code:**
|
||||
```bash
|
||||
grep -r "countryId ===" src/
|
||||
```
|
||||
|
||||
## Development Workflow
|
||||
|
||||
### Local Development
|
||||
|
||||
**Start dev server:**
|
||||
```bash
|
||||
make debug
|
||||
# App runs on http://localhost:3000
|
||||
# Connects to production API by default
|
||||
```
|
||||
|
||||
**Connect to local API:**
|
||||
```bash
|
||||
# See environment configuration
|
||||
cat src/config/environment.js
|
||||
|
||||
# Or set environment variable
|
||||
REACT_APP_API_URL=http://localhost:5000 make debug
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
**Run tests:**
|
||||
```bash
|
||||
make test
|
||||
```
|
||||
|
||||
**Watch mode:**
|
||||
```bash
|
||||
npm test -- --watch
|
||||
```
|
||||
|
||||
**Coverage:**
|
||||
```bash
|
||||
npm test -- --coverage
|
||||
```
|
||||
|
||||
### Linting and Formatting
|
||||
|
||||
**Format code (critical before committing):**
|
||||
```bash
|
||||
make format
|
||||
|
||||
# Or manually
|
||||
npm run lint -- --fix
|
||||
npx prettier --write .
|
||||
```
|
||||
|
||||
**Check linting (CI check):**
|
||||
```bash
|
||||
npm run lint -- --max-warnings=0
|
||||
```
|
||||
|
||||
## Current Implementation Reference
|
||||
|
||||
### Component Structure
|
||||
|
||||
**To see current page structure:**
|
||||
```bash
|
||||
ls src/pages/
|
||||
# - HouseholdPage.jsx
|
||||
# - PolicyPage.jsx
|
||||
# - HomePage.jsx
|
||||
# - etc.
|
||||
```
|
||||
|
||||
**To see a complete page:**
|
||||
```bash
|
||||
cat src/pages/PolicyPage.jsx
|
||||
```
|
||||
|
||||
### API Call Patterns
|
||||
|
||||
**To see current API integration:**
|
||||
```bash
|
||||
cat src/api/call.js # Base caller
|
||||
cat src/api/variables.js # Variable metadata fetching
|
||||
cat src/api/parameters.js # Parameter metadata fetching
|
||||
```
|
||||
|
||||
### Routing Configuration
|
||||
|
||||
**To see current routes:**
|
||||
```bash
|
||||
cat src/routing/routes.js
|
||||
```
|
||||
|
||||
### Form Controls
|
||||
|
||||
**To see PolicyEngine-specific form controls:**
|
||||
```bash
|
||||
ls src/controls/
|
||||
# - InputField.jsx
|
||||
# - SearchParamControl.jsx
|
||||
# - etc.
|
||||
```
|
||||
|
||||
### Chart Components
|
||||
|
||||
**To see chart implementations:**
|
||||
```bash
|
||||
ls src/pages/policy/output/
|
||||
# - BudgetaryImpact.jsx
|
||||
# - DistributionalImpact.jsx
|
||||
# - PovertyImpact.jsx
|
||||
# - etc.
|
||||
```
|
||||
|
||||
**Reference chart:**
|
||||
```bash
|
||||
cat src/pages/policy/output/DistributionalImpact.jsx
|
||||
```
|
||||
|
||||
## Multi-Repository Integration
|
||||
|
||||
### How App Relates to Other Repos
|
||||
|
||||
```
|
||||
policyengine-core (engine)
|
||||
↓
|
||||
policyengine-us, policyengine-uk (country models)
|
||||
↓
|
||||
policyengine-api (backend)
|
||||
↓
|
||||
policyengine-app (you are here)
|
||||
```
|
||||
|
||||
**Understanding the stack:**
|
||||
- See `policyengine-core-skill` for engine concepts
|
||||
- See `policyengine-us-skill` for what variables/parameters mean
|
||||
- See `policyengine-api-skill` for API endpoints the app calls
|
||||
|
||||
### Blog Posts Reference Country Models
|
||||
|
||||
**Blog posts often reference variables:**
|
||||
```bash
|
||||
# Posts reference variables like "income_tax", "ctc"
|
||||
# See policyengine-us-skill for variable definitions
|
||||
cat src/posts/articles/harris-eitc.md
|
||||
```
|
||||
|
||||
## Common Development Tasks
|
||||
|
||||
### Task 1: Add New Parameter to UI
|
||||
|
||||
1. **Understand parameter:**
|
||||
```bash
|
||||
# See parameter in country model
|
||||
cd ../policyengine-us
|
||||
cat policyengine_us/parameters/gov/irs/credits/ctc/amount/base_amount.yaml
|
||||
```
|
||||
|
||||
2. **Find similar parameter in app:**
|
||||
```bash
|
||||
cd ../policyengine-app
|
||||
grep -r "ctc.*amount" src/pages/policy/
|
||||
```
|
||||
|
||||
3. **Add UI control following pattern**
|
||||
|
||||
### Task 2: Add New Chart
|
||||
|
||||
1. **See existing charts:**
|
||||
```bash
|
||||
cat src/pages/policy/output/DistributionalImpact.jsx
|
||||
```
|
||||
|
||||
2. **Create new chart component**
|
||||
|
||||
3. **Add to policy output page**
|
||||
|
||||
### Task 3: Fix Bug in Calculator
|
||||
|
||||
1. **Find relevant component:**
|
||||
```bash
|
||||
# Search for the feature
|
||||
grep -r "keyword" src/pages/
|
||||
```
|
||||
|
||||
2. **Read component code**
|
||||
|
||||
3. **Make fix following React patterns**
|
||||
|
||||
4. **Test with dev server:**
|
||||
```bash
|
||||
make debug
|
||||
```
|
||||
|
||||
## Build and Deployment
|
||||
|
||||
**Production build:**
|
||||
```bash
|
||||
make build
|
||||
# Creates optimized bundle in build/
|
||||
```
|
||||
|
||||
**Deployment:**
|
||||
```bash
|
||||
# See deployment configuration
|
||||
cat netlify.toml # or appropriate config
|
||||
```
|
||||
|
||||
**Environment variables:**
|
||||
```bash
|
||||
# React env vars must have REACT_APP_ prefix
|
||||
REACT_APP_API_URL=https://api.policyengine.org
|
||||
|
||||
# Or use config file pattern (recommended)
|
||||
cat src/config/environment.js
|
||||
```
|
||||
|
||||
## Style Guide
|
||||
|
||||
**Follow policyengine-standards-skill for:**
|
||||
- ESLint configuration
|
||||
- Prettier formatting
|
||||
- Component size limits
|
||||
- File organization
|
||||
|
||||
**Follow policyengine-writing-skill for:**
|
||||
- Blog post content
|
||||
- Documentation
|
||||
- UI copy
|
||||
|
||||
## Resources
|
||||
|
||||
**Repository:** https://github.com/PolicyEngine/policyengine-app
|
||||
**Live app:** https://policyengine.org
|
||||
**Staging:** https://staging.policyengine.org (if applicable)
|
||||
|
||||
**Related skills:**
|
||||
- **policyengine-api-skill** - Understanding the backend
|
||||
- **policyengine-us-skill** - Understanding variables/parameters
|
||||
- **policyengine-writing-skill** - Blog post style
|
||||
- **policyengine-standards-skill** - Code quality
|
||||
382
skills/policyengine-code-style-skill/SKILL.md
Normal file
382
skills/policyengine-code-style-skill/SKILL.md
Normal file
@@ -0,0 +1,382 @@
|
||||
---
|
||||
name: policyengine-code-style
|
||||
description: PolicyEngine code writing style guide - formula optimization, direct returns, eliminating unnecessary variables
|
||||
---
|
||||
|
||||
# PolicyEngine Code Writing Style Guide
|
||||
|
||||
Essential patterns for writing clean, efficient PolicyEngine formulas.
|
||||
|
||||
## Core Principles
|
||||
|
||||
1. **Eliminate unnecessary intermediate variables**
|
||||
2. **Use direct parameter/variable access**
|
||||
3. **Return directly when possible**
|
||||
4. **Combine boolean logic**
|
||||
5. **Use correct period access** (period vs period.this_year)
|
||||
6. **NO hardcoded values** - use parameters or constants
|
||||
|
||||
---
|
||||
|
||||
## Pattern 1: Direct Parameter Access
|
||||
|
||||
### ❌ Bad - Unnecessary intermediate variable
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
countable = spm_unit("tn_tanf_countable_resources", period)
|
||||
p = parameters(period).gov.states.tn.dhs.tanf.resource_limit
|
||||
resource_limit = p.amount # ❌ Unnecessary
|
||||
return countable <= resource_limit
|
||||
```
|
||||
|
||||
### ✅ Good - Direct access
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
countable = spm_unit("tn_tanf_countable_resources", period)
|
||||
p = parameters(period).gov.states.tn.dhs.tanf.resource_limit
|
||||
return countable <= p.amount
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Pattern 2: Direct Return
|
||||
|
||||
### ❌ Bad - Unnecessary result variable
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
assets = spm_unit("spm_unit_assets", period.this_year)
|
||||
p = parameters(period).gov.states.tn.dhs.tanf.resource_limit
|
||||
vehicle_exemption = p.vehicle_exemption # ❌ Unnecessary
|
||||
countable = max_(assets - vehicle_exemption, 0) # ❌ Unnecessary
|
||||
return countable
|
||||
```
|
||||
|
||||
### ✅ Good - Direct return
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
assets = spm_unit("spm_unit_assets", period.this_year)
|
||||
p = parameters(period).gov.states.tn.dhs.tanf.resource_limit
|
||||
return max_(assets - p.vehicle_exemption, 0)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Pattern 3: Combined Boolean Logic
|
||||
|
||||
### ❌ Bad - Too many intermediate booleans
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
person = spm_unit.members
|
||||
age = person("age", period.this_year)
|
||||
is_disabled = person("is_disabled", period.this_year)
|
||||
|
||||
caretaker_is_60_or_older = spm_unit.any(age >= 60) # ❌ Unnecessary
|
||||
caretaker_is_disabled = spm_unit.any(is_disabled) # ❌ Unnecessary
|
||||
eligible = caretaker_is_60_or_older | caretaker_is_disabled # ❌ Unnecessary
|
||||
|
||||
return eligible
|
||||
```
|
||||
|
||||
### ✅ Good - Combined logic
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
person = spm_unit.members
|
||||
age = person("age", period.this_year)
|
||||
is_disabled = person("is_disabled", period.this_year)
|
||||
|
||||
return spm_unit.any((age >= 60) | is_disabled)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Pattern 4: Period Access - period vs period.this_year
|
||||
|
||||
### ❌ Bad - Wrong period access
|
||||
|
||||
```python
|
||||
def formula(person, period, parameters):
|
||||
# MONTH formula accessing YEAR variables
|
||||
age = person("age", period) # ❌ Gives age/12 = 2.5 "monthly age"
|
||||
assets = person("assets", period) # ❌ Gives assets/12
|
||||
monthly_income = person("employment_income", period.this_year) / MONTHS_IN_YEAR # ❌ Redundant
|
||||
|
||||
return (age >= 18) & (assets < 10000) & (monthly_income < 2000)
|
||||
```
|
||||
|
||||
### ✅ Good - Correct period access
|
||||
|
||||
```python
|
||||
def formula(person, period, parameters):
|
||||
# MONTH formula accessing YEAR variables
|
||||
age = person("age", period.this_year) # ✅ Gets actual age (30)
|
||||
assets = person("assets", period.this_year) # ✅ Gets actual assets ($10,000)
|
||||
monthly_income = person("employment_income", period) # ✅ Auto-converts to monthly
|
||||
|
||||
p = parameters(period).gov.program.eligibility
|
||||
return (age >= p.age_min) & (age <= p.age_max) &
|
||||
(assets < p.asset_limit) & (monthly_income < p.income_threshold)
|
||||
```
|
||||
|
||||
**Rule:**
|
||||
- Income/flows → Use `period` (want monthly from annual)
|
||||
- Age/assets/counts/booleans → Use `period.this_year` (don't divide by 12)
|
||||
|
||||
---
|
||||
|
||||
## Pattern 5: No Hardcoded Values
|
||||
|
||||
### ❌ Bad - Hardcoded numbers
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
size = spm_unit.nb_persons()
|
||||
capped_size = min_(size, 10) # ❌ Hardcoded
|
||||
|
||||
age = person("age", period.this_year)
|
||||
income = person("income", period) / 12 # ❌ Use MONTHS_IN_YEAR
|
||||
|
||||
# ❌ Hardcoded thresholds
|
||||
if age >= 18 and age <= 65 and income < 2000:
|
||||
return True
|
||||
```
|
||||
|
||||
### ✅ Good - Parameterized
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
p = parameters(period).gov.program
|
||||
capped_size = min_(spm_unit.nb_persons(), p.max_unit_size) # ✅
|
||||
|
||||
age = person("age", period.this_year)
|
||||
monthly_income = person("income", period) # ✅ Auto-converts (no manual /12)
|
||||
|
||||
age_eligible = (age >= p.age_min) & (age <= p.age_max) # ✅
|
||||
income_eligible = monthly_income < p.income_threshold # ✅
|
||||
|
||||
return age_eligible & income_eligible
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Pattern 6: Streamline Variable Access
|
||||
|
||||
### ❌ Bad - Redundant steps
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
unit_size = spm_unit.nb_persons() # ❌ Unnecessary
|
||||
max_size = 10 # ❌ Hardcoded
|
||||
capped_size = min_(unit_size, max_size)
|
||||
|
||||
p = parameters(period).gov.states.tn.dhs.tanf.benefit
|
||||
spa = p.standard_payment_amount[capped_size] # ❌ Unnecessary
|
||||
dgpa = p.differential_grant_payment_amount[capped_size] # ❌ Unnecessary
|
||||
|
||||
eligible = spm_unit("eligible_for_dgpa", period)
|
||||
return where(eligible, dgpa, spa)
|
||||
```
|
||||
|
||||
### ✅ Good - Streamlined
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
p = parameters(period).gov.states.tn.dhs.tanf.benefit
|
||||
capped_size = min_(spm_unit.nb_persons(), p.max_unit_size)
|
||||
eligible = spm_unit("eligible_for_dgpa", period)
|
||||
|
||||
return where(
|
||||
eligible,
|
||||
p.differential_grant_payment_amount[capped_size],
|
||||
p.standard_payment_amount[capped_size]
|
||||
)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## When to Keep Intermediate Variables
|
||||
|
||||
### ✅ Keep when value is used multiple times
|
||||
|
||||
```python
|
||||
def formula(tax_unit, period, parameters):
|
||||
p = parameters(period).gov.irs.credits
|
||||
filing_status = tax_unit("filing_status", period)
|
||||
|
||||
# ✅ Used multiple times - keep as variable
|
||||
threshold = p.phase_out.start[filing_status]
|
||||
|
||||
income = tax_unit("adjusted_gross_income", period)
|
||||
excess = max_(0, income - threshold)
|
||||
reduction = (excess / p.phase_out.width) * threshold
|
||||
|
||||
return max_(0, threshold - reduction)
|
||||
```
|
||||
|
||||
### ✅ Keep when calculation is complex
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
p = parameters(period).gov.program
|
||||
gross_earned = spm_unit("gross_earned_income", period)
|
||||
|
||||
# ✅ Complex multi-step calculation - break it down
|
||||
work_expense_deduction = min_(gross_earned * p.work_expense_rate, p.work_expense_max)
|
||||
after_work_expense = gross_earned - work_expense_deduction
|
||||
|
||||
earned_disregard = after_work_expense * p.earned_disregard_rate
|
||||
countable_earned = after_work_expense - earned_disregard
|
||||
|
||||
dependent_care = spm_unit("dependent_care_expenses", period)
|
||||
|
||||
return max_(0, countable_earned - dependent_care)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Complete Example: Before vs After
|
||||
|
||||
### ❌ Before - Multiple Issues
|
||||
|
||||
```python
|
||||
def formula(person, period, parameters):
|
||||
# Wrong period access
|
||||
age = person("age", period) # ❌ age/12
|
||||
assets = person("assets", period) # ❌ assets/12
|
||||
annual_income = person("employment_income", period.this_year)
|
||||
monthly_income = annual_income / 12 # ❌ Use MONTHS_IN_YEAR
|
||||
|
||||
# Hardcoded values
|
||||
min_age = 18 # ❌
|
||||
max_age = 64 # ❌
|
||||
asset_limit = 10000 # ❌
|
||||
income_limit = 2000 # ❌
|
||||
|
||||
# Unnecessary intermediate variables
|
||||
age_check = (age >= min_age) & (age <= max_age)
|
||||
asset_check = assets <= asset_limit
|
||||
income_check = monthly_income <= income_limit
|
||||
eligible = age_check & asset_check & income_check
|
||||
|
||||
return eligible
|
||||
```
|
||||
|
||||
### ✅ After - Clean and Correct
|
||||
|
||||
```python
|
||||
def formula(person, period, parameters):
|
||||
p = parameters(period).gov.program.eligibility
|
||||
|
||||
# Correct period access
|
||||
age = person("age", period.this_year)
|
||||
assets = person("assets", period.this_year)
|
||||
monthly_income = person("employment_income", period)
|
||||
|
||||
# Direct return with combined logic
|
||||
return (
|
||||
(age >= p.age_min) & (age <= p.age_max) &
|
||||
(assets <= p.asset_limit) &
|
||||
(monthly_income <= p.income_threshold)
|
||||
)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Pattern 7: Minimal Comments
|
||||
|
||||
### Code Should Be Self-Documenting
|
||||
|
||||
**Variable names and structure should explain the code - not comments.**
|
||||
|
||||
### ❌ Bad - Verbose explanatory comments
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
# Wisconsin disregards all earned income of dependent children (< 18)
|
||||
# Calculate earned income for adults only
|
||||
is_adult = spm_unit.members("age", period.this_year) >= 18 # Hard-coded!
|
||||
adult_earned = spm_unit.sum(
|
||||
spm_unit.members("tanf_gross_earned_income", period) * is_adult
|
||||
)
|
||||
|
||||
# All unearned income is counted (including children's)
|
||||
gross_unearned = add(spm_unit, period, ["tanf_gross_unearned_income"])
|
||||
|
||||
# NOTE: Wisconsin disregards many additional income sources that
|
||||
# are not separately tracked in PolicyEngine (educational aid, etc.)
|
||||
return max_(total_income - disregards, 0)
|
||||
```
|
||||
|
||||
### ✅ Good - Clean self-documenting code
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
p = parameters(period).gov.states.wi.dcf.tanf.income
|
||||
|
||||
is_adult = spm_unit.members("age", period.this_year) >= p.adult_age_threshold
|
||||
adult_earned = spm_unit.sum(
|
||||
spm_unit.members("tanf_gross_earned_income", period) * is_adult
|
||||
)
|
||||
gross_unearned = add(spm_unit, period, ["tanf_gross_unearned_income"])
|
||||
child_support = add(spm_unit, period, ["child_support_received"])
|
||||
|
||||
return max_(adult_earned + gross_unearned - child_support, 0)
|
||||
```
|
||||
|
||||
### Comment Rules
|
||||
|
||||
1. **NO comments explaining what code does** - variable names should be clear
|
||||
2. **OK: Brief NOTE about PolicyEngine limitations** (one line):
|
||||
```python
|
||||
# NOTE: Time limit cannot be tracked in PolicyEngine
|
||||
```
|
||||
3. **NO multi-line explanations** of what the code calculates
|
||||
|
||||
---
|
||||
|
||||
## Quick Checklist
|
||||
|
||||
Before finalizing code:
|
||||
- [ ] No hardcoded numbers (use parameters or constants like MONTHS_IN_YEAR)
|
||||
- [ ] Correct period access:
|
||||
- Income/flows use `period`
|
||||
- Age/assets/counts/booleans use `period.this_year`
|
||||
- [ ] No single-use intermediate variables
|
||||
- [ ] Direct parameter access (`p.amount` not `amount = p.amount`)
|
||||
- [ ] Direct returns when possible
|
||||
- [ ] Combined boolean logic when possible
|
||||
- [ ] Minimal comments (code should be self-documenting)
|
||||
|
||||
---
|
||||
|
||||
## Key Takeaways
|
||||
|
||||
1. **Less is more** - Eliminate unnecessary variables
|
||||
2. **Direct is better** - Access parameters and return directly
|
||||
3. **Combine when logical** - Group related boolean conditions
|
||||
4. **Keep when needed** - Complex calculations and reused values deserve variables
|
||||
5. **Period matters** - Use correct period access to avoid auto-conversion bugs
|
||||
|
||||
---
|
||||
|
||||
## Related Skills
|
||||
|
||||
- **policyengine-period-patterns-skill** - Deep dive on period handling
|
||||
- **policyengine-implementation-patterns-skill** - Variable structure and patterns
|
||||
- **policyengine-vectorization-skill** - NumPy operations and vectorization
|
||||
|
||||
---
|
||||
|
||||
## For Agents
|
||||
|
||||
When writing or reviewing formulas:
|
||||
1. **Scan for single-use variables** - eliminate them
|
||||
2. **Check period access** - ensure correct for variable type
|
||||
3. **Look for hardcoded values** - parameterize them
|
||||
4. **Identify redundant steps** - streamline them
|
||||
5. **Consider readability** - keep complex calculations clear
|
||||
487
skills/policyengine-core-skill/SKILL.md
Normal file
487
skills/policyengine-core-skill/SKILL.md
Normal file
@@ -0,0 +1,487 @@
|
||||
---
|
||||
name: policyengine-core
|
||||
description: PolicyEngine Core simulation engine - the foundation powering all PolicyEngine calculations
|
||||
---
|
||||
|
||||
# PolicyEngine Core
|
||||
|
||||
PolicyEngine Core is the microsimulation engine that powers all PolicyEngine calculations. It's a fork of OpenFisca-Core adapted for PolicyEngine's needs.
|
||||
|
||||
## For Users 👥
|
||||
|
||||
### What is Core?
|
||||
|
||||
When you use policyengine.org to calculate taxes or benefits, PolicyEngine Core is the "calculator" running behind the scenes.
|
||||
|
||||
**Core provides:**
|
||||
- The simulation engine that processes tax rules
|
||||
- Variable and parameter management
|
||||
- Entity relationships (person → family → household)
|
||||
- Period handling (2024, 2025, etc.)
|
||||
|
||||
You don't interact with Core directly - you use it through:
|
||||
- **Web app:** policyengine.org
|
||||
- **Python packages:** policyengine-us, policyengine-uk
|
||||
- **API:** api.policyengine.org
|
||||
|
||||
### Why Core Matters
|
||||
|
||||
Core ensures:
|
||||
- ✅ **Accuracy** - Calculations follow official rules exactly
|
||||
- ✅ **Consistency** - Same rules applied everywhere
|
||||
- ✅ **Transparency** - All rules traceable to legislation
|
||||
- ✅ **Performance** - Vectorized calculations for speed
|
||||
|
||||
## For Analysts 📊
|
||||
|
||||
### Understanding Core Concepts
|
||||
|
||||
When writing PolicyEngine code, you'll encounter Core concepts:
|
||||
|
||||
**Variables:**
|
||||
- Represent quantities (income_tax, ctc, snap, etc.)
|
||||
- Defined for specific entities (person, household, tax_unit)
|
||||
- Calculated from formulas or set directly
|
||||
|
||||
**Parameters:**
|
||||
- Policy rules that change over time (tax rates, benefit amounts)
|
||||
- Organized hierarchically (gov.irs.credits.ctc.amount.base_amount)
|
||||
- Stored in YAML files
|
||||
|
||||
**Entities:**
|
||||
- Person: Individual
|
||||
- Family: Family unit
|
||||
- Tax unit: Tax filing unit
|
||||
- Household: Physical household
|
||||
- Marital unit: Marital status grouping
|
||||
- SPM unit: Supplemental Poverty Measure unit
|
||||
|
||||
**Periods:**
|
||||
- Year: 2024, 2025, etc.
|
||||
- Month: 2024-01, 2024-02, etc.
|
||||
- Specific dates: 2024-06-15
|
||||
|
||||
### Core in Action
|
||||
|
||||
```python
|
||||
from policyengine_us import Simulation
|
||||
|
||||
# When you create a simulation
|
||||
sim = Simulation(situation=household)
|
||||
|
||||
# Core manages:
|
||||
# - Entity relationships
|
||||
# - Variable dependencies
|
||||
# - Parameter lookups
|
||||
# - Period conversions
|
||||
|
||||
# When you calculate
|
||||
result = sim.calculate("income_tax", 2024)
|
||||
|
||||
# Core:
|
||||
# 1. Checks if already calculated
|
||||
# 2. Identifies dependencies (income → AGI → taxable income → tax)
|
||||
# 3. Calculates dependencies first
|
||||
# 4. Applies formulas
|
||||
# 5. Returns result
|
||||
```
|
||||
|
||||
### Core vs Country Packages
|
||||
|
||||
**Core (policyengine-core):**
|
||||
- Generic simulation engine
|
||||
- No specific tax/benefit rules
|
||||
- Variable and parameter infrastructure
|
||||
|
||||
**Country packages (policyengine-us, etc.):**
|
||||
- Built on Core
|
||||
- Contain specific tax/benefit rules
|
||||
- Define variables and parameters for that country
|
||||
|
||||
**Relationship:**
|
||||
```
|
||||
policyengine-core (engine)
|
||||
↓ powers
|
||||
policyengine-us (US rules)
|
||||
↓ used by
|
||||
policyengine-api (REST API)
|
||||
↓ serves
|
||||
policyengine-app (web interface)
|
||||
```
|
||||
|
||||
## For Contributors 💻
|
||||
|
||||
### Repository
|
||||
|
||||
**Location:** PolicyEngine/policyengine-core
|
||||
**Origin:** Fork of OpenFisca-Core
|
||||
|
||||
**Clone:**
|
||||
```bash
|
||||
git clone https://github.com/PolicyEngine/policyengine-core
|
||||
```
|
||||
|
||||
### Current Architecture
|
||||
|
||||
**To see current structure:**
|
||||
```bash
|
||||
tree policyengine_core/
|
||||
|
||||
# Key directories:
|
||||
# - variables/ - Variable class and infrastructure
|
||||
# - parameters/ - Parameter class and infrastructure
|
||||
# - entities/ - Entity definitions
|
||||
# - simulations/ - Simulation class
|
||||
# - periods/ - Period handling
|
||||
# - reforms/ - Reform application
|
||||
```
|
||||
|
||||
**To understand a specific component:**
|
||||
```bash
|
||||
# Variable system
|
||||
cat policyengine_core/variables/variable.py
|
||||
|
||||
# Parameter system
|
||||
cat policyengine_core/parameters/parameter.py
|
||||
|
||||
# Simulation engine
|
||||
cat policyengine_core/simulations/simulation.py
|
||||
|
||||
# Entity system
|
||||
cat policyengine_core/entities/entity.py
|
||||
```
|
||||
|
||||
### Key Classes
|
||||
|
||||
**Variable:**
|
||||
```python
|
||||
# To see Variable class implementation
|
||||
cat policyengine_core/variables/variable.py
|
||||
|
||||
# Variables in country packages inherit from this:
|
||||
from policyengine_core.variables import Variable
|
||||
|
||||
class income_tax(Variable):
|
||||
value_type = float
|
||||
entity = Person
|
||||
label = "Income tax"
|
||||
definition_period = YEAR
|
||||
|
||||
def formula(person, period, parameters):
|
||||
# Vectorized formula
|
||||
return calculate_tax(...)
|
||||
```
|
||||
|
||||
**Simulation:**
|
||||
```python
|
||||
# To see Simulation class implementation
|
||||
cat policyengine_core/simulations/simulation.py
|
||||
|
||||
# Manages calculation graph and caching
|
||||
sim = Simulation(situation=situation)
|
||||
sim.calculate("variable", period)
|
||||
```
|
||||
|
||||
**Parameters:**
|
||||
```python
|
||||
# To see Parameter handling
|
||||
cat policyengine_core/parameters/parameter_node.py
|
||||
|
||||
# Access in formulas:
|
||||
parameters(period).gov.irs.credits.ctc.amount.base_amount
|
||||
```
|
||||
|
||||
### Vectorization (Critical!)
|
||||
|
||||
Core requires vectorized operations - no if-elif-else with arrays:
|
||||
|
||||
**❌ Wrong (scalar logic):**
|
||||
```python
|
||||
if age < 18:
|
||||
eligible = True
|
||||
else:
|
||||
eligible = False
|
||||
```
|
||||
|
||||
**✅ Correct (vectorized):**
|
||||
```python
|
||||
eligible = age < 18 # NumPy boolean array
|
||||
```
|
||||
|
||||
**Why:** Core processes many households simultaneously for performance.
|
||||
|
||||
**To see vectorization examples:**
|
||||
```bash
|
||||
# Search for where() usage (vectorized if-then-else)
|
||||
grep -r "np.where" policyengine_core/
|
||||
|
||||
# Find select() usage (vectorized case statements)
|
||||
grep -r "select" policyengine_core/
|
||||
```
|
||||
|
||||
### Formula Dependencies
|
||||
|
||||
Core automatically resolves variable dependencies:
|
||||
|
||||
```python
|
||||
class taxable_income(Variable):
|
||||
def formula(person, period, parameters):
|
||||
# Core automatically calculates these first:
|
||||
agi = person("adjusted_gross_income", period)
|
||||
deduction = person("standard_deduction", period)
|
||||
return agi - deduction
|
||||
|
||||
class income_tax(Variable):
|
||||
def formula(person, period, parameters):
|
||||
# Core knows to calculate taxable_income first
|
||||
taxable = person("taxable_income", period)
|
||||
return apply_brackets(taxable, ...)
|
||||
```
|
||||
|
||||
**To see dependency resolution:**
|
||||
```bash
|
||||
# Find trace functionality
|
||||
grep -r "trace" policyengine_core/simulations/
|
||||
|
||||
# Enable in your code:
|
||||
simulation.trace = True
|
||||
simulation.calculate("income_tax", 2024)
|
||||
```
|
||||
|
||||
### Period Handling
|
||||
|
||||
**To see period implementation:**
|
||||
```bash
|
||||
cat policyengine_core/periods/period.py
|
||||
|
||||
# Period types:
|
||||
# - YEAR: 2024
|
||||
# - MONTH: 2024-01
|
||||
# - ETERNITY: permanent values
|
||||
```
|
||||
|
||||
**Usage in variables:**
|
||||
```python
|
||||
# Annual variable
|
||||
definition_period = YEAR # Called with 2024
|
||||
|
||||
# Monthly variable
|
||||
definition_period = MONTH # Called with "2024-01"
|
||||
|
||||
# Convert periods
|
||||
yearly_value = person("monthly_income", period.this_year) * 12
|
||||
```
|
||||
|
||||
### Testing Core Changes
|
||||
|
||||
**To run Core tests:**
|
||||
```bash
|
||||
cd policyengine-core
|
||||
make test
|
||||
|
||||
# Specific test
|
||||
pytest tests/core/test_variables.py -v
|
||||
```
|
||||
|
||||
**To test in country package:**
|
||||
```bash
|
||||
# Changes to Core affect all country packages
|
||||
cd policyengine-us
|
||||
pip install -e ../policyengine-core # Local development install
|
||||
make test
|
||||
```
|
||||
|
||||
### Key Differences from OpenFisca
|
||||
|
||||
PolicyEngine Core differs from OpenFisca-Core:
|
||||
|
||||
**To see PolicyEngine changes:**
|
||||
```bash
|
||||
# Compare to OpenFisca
|
||||
# Core fork diverged to add:
|
||||
# - Enhanced performance
|
||||
# - Better error messages
|
||||
# - PolicyEngine-specific features
|
||||
|
||||
# See commit history for PolicyEngine changes
|
||||
git log --oneline
|
||||
```
|
||||
|
||||
## Core Development Workflow
|
||||
|
||||
### Making Changes to Core
|
||||
|
||||
1. **Clone repo:**
|
||||
```bash
|
||||
git clone https://github.com/PolicyEngine/policyengine-core
|
||||
```
|
||||
|
||||
2. **Install for development:**
|
||||
```bash
|
||||
make install
|
||||
```
|
||||
|
||||
3. **Make changes** to variable.py, simulation.py, etc.
|
||||
|
||||
4. **Test locally:**
|
||||
```bash
|
||||
make test
|
||||
```
|
||||
|
||||
5. **Test in country package:**
|
||||
```bash
|
||||
cd ../policyengine-us
|
||||
pip install -e ../policyengine-core
|
||||
make test
|
||||
```
|
||||
|
||||
6. **Format and commit:**
|
||||
```bash
|
||||
make format
|
||||
git commit -m "Description"
|
||||
```
|
||||
|
||||
### Understanding Impact
|
||||
|
||||
Changes to Core affect:
|
||||
- ✅ All country packages (US, UK, Canada, IL, NG)
|
||||
- ✅ The API
|
||||
- ✅ The web app
|
||||
- ✅ All analysis tools
|
||||
|
||||
**Critical:** Always test in multiple country packages before merging.
|
||||
|
||||
## Common Core Patterns
|
||||
|
||||
### Pattern 1: Adding a New Variable Type
|
||||
|
||||
**Current variable types:**
|
||||
```bash
|
||||
# See supported types
|
||||
grep "value_type" policyengine_core/variables/variable.py
|
||||
```
|
||||
|
||||
**Types:** int, float, bool, str, Enum, date
|
||||
|
||||
### Pattern 2: Custom Formulas
|
||||
|
||||
**Formula signature:**
|
||||
```python
|
||||
def formula(entity, period, parameters):
|
||||
# entity: Person, TaxUnit, Household, etc.
|
||||
# period: 2024, "2024-01", etc.
|
||||
# parameters: Parameter tree for period
|
||||
return calculated_value
|
||||
```
|
||||
|
||||
**To see formula examples:**
|
||||
```bash
|
||||
# Search country packages for formulas
|
||||
grep -A 10 "def formula" ../policyengine-us/policyengine_us/variables/ | head -50
|
||||
```
|
||||
|
||||
### Pattern 3: Parameter Access
|
||||
|
||||
**Accessing parameters in formulas:**
|
||||
```python
|
||||
# Navigate parameter tree
|
||||
param = parameters(period).gov.irs.credits.ctc.amount.base_amount
|
||||
|
||||
# Parameters automatically valid for period
|
||||
# No need to check dates manually
|
||||
```
|
||||
|
||||
**To see parameter structure:**
|
||||
```bash
|
||||
# Example from country package
|
||||
tree ../policyengine-us/policyengine_us/parameters/gov/
|
||||
```
|
||||
|
||||
## Advanced Topics
|
||||
|
||||
### Formula Caching
|
||||
|
||||
Core caches calculations automatically:
|
||||
```python
|
||||
# First call calculates
|
||||
tax1 = sim.calculate("income_tax", 2024)
|
||||
|
||||
# Second call returns cached value
|
||||
tax2 = sim.calculate("income_tax", 2024) # Instant
|
||||
```
|
||||
|
||||
### Neutralizing Variables
|
||||
|
||||
```python
|
||||
# Set variable to zero in reform
|
||||
reform = {
|
||||
"income_tax": {
|
||||
"2024-01-01.2100-12-31": 0
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Adding Variables
|
||||
|
||||
Country packages add variables by inheriting from Core's Variable class.
|
||||
|
||||
**See policyengine-us-skill for variable creation patterns.**
|
||||
|
||||
## Resources
|
||||
|
||||
**Repository:** https://github.com/PolicyEngine/policyengine-core
|
||||
|
||||
**Documentation:**
|
||||
- Core API docs (see README in repo)
|
||||
- OpenFisca docs (original): https://openfisca.org/doc/
|
||||
|
||||
**Related skills:**
|
||||
- **policyengine-us-skill** - Using Core through country packages
|
||||
- **policyengine-standards-skill** - Code quality standards
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
**Variable not found:**
|
||||
```python
|
||||
# Error: Variable 'income_tax' not found
|
||||
# Solution: Variable is defined in country package, not Core
|
||||
# Use policyengine-us, not policyengine-core directly
|
||||
```
|
||||
|
||||
**Scalar vs array operations:**
|
||||
```python
|
||||
# Error: truth value of array is ambiguous
|
||||
# Solution: Use np.where() instead of if-else
|
||||
# See vectorization section above
|
||||
```
|
||||
|
||||
**Period mismatch:**
|
||||
```python
|
||||
# Error: Cannot compute variable_name for period 2024-01
|
||||
# Solution: Check definition_period matches request
|
||||
# YEAR variables need YEAR periods (2024, not "2024-01")
|
||||
```
|
||||
|
||||
**To debug:**
|
||||
```python
|
||||
# Enable tracing
|
||||
sim.trace = True
|
||||
sim.calculate("variable", period)
|
||||
# See calculation dependency tree
|
||||
```
|
||||
|
||||
## Contributing to Core
|
||||
|
||||
**Before contributing:**
|
||||
1. Read Core README
|
||||
2. Understand OpenFisca architecture
|
||||
3. Test changes in multiple country packages
|
||||
4. Follow policyengine-standards-skill
|
||||
|
||||
**Development standards:**
|
||||
- Python 3.10-3.13
|
||||
- Black formatting (79-char)
|
||||
- Comprehensive tests
|
||||
- No breaking changes without discussion
|
||||
880
skills/policyengine-design-skill/SKILL.md
Normal file
880
skills/policyengine-design-skill/SKILL.md
Normal file
@@ -0,0 +1,880 @@
|
||||
---
|
||||
name: policyengine-design
|
||||
description: PolicyEngine visual identity - colors, fonts, logos, and branding for web apps, calculators, charts, and research
|
||||
---
|
||||
|
||||
# PolicyEngine Design System
|
||||
|
||||
PolicyEngine's visual identity and branding guidelines for creating consistent user experiences across web apps, calculators, charts, and research outputs.
|
||||
|
||||
## For Users 👥
|
||||
|
||||
### PolicyEngine Visual Identity
|
||||
|
||||
**Brand colors:**
|
||||
- **Teal** (#39C6C0) - Primary accent color (buttons, highlights, interactive elements)
|
||||
- **Blue** (#2C6496) - Secondary color (links, charts, headers)
|
||||
|
||||
**Typography:**
|
||||
- **Charts:** Roboto Serif
|
||||
- **Web app:** System fonts (sans-serif)
|
||||
- **Streamlit apps:** Default sans-serif
|
||||
|
||||
**Logo:**
|
||||
- Used in charts (bottom right)
|
||||
- Blue version for light backgrounds
|
||||
- White version for dark backgrounds
|
||||
|
||||
### Recognizing PolicyEngine Content
|
||||
|
||||
**You can identify PolicyEngine content by:**
|
||||
- Teal accent color (#39C6C0) on buttons and interactive elements
|
||||
- Blue (#2C6496) in charts and links
|
||||
- Roboto Serif font in charts
|
||||
- PolicyEngine logo in chart footer
|
||||
- Clean, minimal white backgrounds
|
||||
- Data-focused, quantitative presentation
|
||||
|
||||
## For Analysts 📊
|
||||
|
||||
### Chart Branding
|
||||
|
||||
When creating charts for PolicyEngine analysis, follow these guidelines:
|
||||
|
||||
#### Color Palette
|
||||
|
||||
**Primary colors:**
|
||||
```python
|
||||
TEAL_ACCENT = "#39C6C0" # Primary color (teal)
|
||||
BLUE_PRIMARY = "#2C6496" # Secondary color (blue)
|
||||
DARK_GRAY = "#616161" # Text color
|
||||
```
|
||||
|
||||
**Extended palette:**
|
||||
```python
|
||||
# Blues
|
||||
BLUE = "#2C6496"
|
||||
BLUE_LIGHT = "#D8E6F3"
|
||||
BLUE_PRESSED = "#17354F"
|
||||
BLUE_98 = "#F7FAFD"
|
||||
DARK_BLUE_HOVER = "#1d3e5e"
|
||||
DARKEST_BLUE = "#0C1A27"
|
||||
|
||||
# Teals
|
||||
TEAL_ACCENT = "#39C6C0"
|
||||
TEAL_LIGHT = "#F7FDFC"
|
||||
TEAL_PRESSED = "#227773"
|
||||
|
||||
# Grays
|
||||
DARK_GRAY = "#616161"
|
||||
GRAY = "#808080"
|
||||
MEDIUM_LIGHT_GRAY = "#BDBDBD"
|
||||
MEDIUM_DARK_GRAY = "#D2D2D2"
|
||||
LIGHT_GRAY = "#F2F2F2"
|
||||
|
||||
# Accents
|
||||
WHITE = "#FFFFFF"
|
||||
BLACK = "#000000"
|
||||
DARK_RED = "#b50d0d" # For negative values
|
||||
```
|
||||
|
||||
**See current colors:**
|
||||
```bash
|
||||
cat policyengine-app/src/style/colors.js
|
||||
```
|
||||
|
||||
#### Plotly Chart Formatting
|
||||
|
||||
**Standard PolicyEngine chart:**
|
||||
|
||||
```python
|
||||
import plotly.graph_objects as go
|
||||
|
||||
def format_fig(fig):
|
||||
"""Format chart with PolicyEngine branding."""
|
||||
fig.update_layout(
|
||||
# Typography
|
||||
font=dict(
|
||||
family="Roboto Serif",
|
||||
color="black"
|
||||
),
|
||||
|
||||
# Background
|
||||
plot_bgcolor="white",
|
||||
template="plotly_white",
|
||||
|
||||
# Margins (leave room for logo)
|
||||
margin=dict(
|
||||
l=50,
|
||||
r=100,
|
||||
t=50,
|
||||
b=120,
|
||||
pad=4
|
||||
),
|
||||
|
||||
# Chart size
|
||||
height=600,
|
||||
width=800,
|
||||
)
|
||||
|
||||
# Add PolicyEngine logo (bottom right)
|
||||
fig.add_layout_image(
|
||||
dict(
|
||||
source="https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/blue.png",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=1.0,
|
||||
y=-0.10,
|
||||
sizex=0.10,
|
||||
sizey=0.10,
|
||||
xanchor="right",
|
||||
yanchor="bottom"
|
||||
)
|
||||
)
|
||||
|
||||
# Clean modebar
|
||||
fig.update_layout(
|
||||
modebar=dict(
|
||||
bgcolor="rgba(0,0,0,0)",
|
||||
color="rgba(0,0,0,0)"
|
||||
)
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
# Usage
|
||||
fig = go.Figure()
|
||||
fig.add_trace(go.Scatter(x=x_data, y=y_data, line=dict(color=TEAL_ACCENT)))
|
||||
fig = format_fig(fig)
|
||||
```
|
||||
|
||||
**Current implementation:**
|
||||
```bash
|
||||
# See format_fig in action
|
||||
cat givecalc/ui/visualization.py
|
||||
cat policyengine-app/src/pages/policy/output/...
|
||||
```
|
||||
|
||||
#### Chart Colors
|
||||
|
||||
**For line charts:**
|
||||
- Primary line: Teal (#39C6C0) or Blue (#2C6496)
|
||||
- Background lines: Light gray (rgb(180, 180, 180))
|
||||
- Markers: Teal with 70% opacity
|
||||
|
||||
**For bar charts:**
|
||||
- Positive values: Teal (#39C6C0)
|
||||
- Negative values: Dark red (#b50d0d)
|
||||
- Neutral: Gray
|
||||
|
||||
**For multiple series:**
|
||||
Use variations of blue and teal, or discrete color scale:
|
||||
```python
|
||||
colors = ["#2C6496", "#39C6C0", "#17354F", "#227773"]
|
||||
```
|
||||
|
||||
#### Typography
|
||||
|
||||
**Charts:**
|
||||
```python
|
||||
font=dict(family="Roboto Serif", size=14, color="black")
|
||||
```
|
||||
|
||||
**Axis labels:**
|
||||
```python
|
||||
xaxis=dict(
|
||||
title=dict(text="Label", font=dict(size=14)),
|
||||
tickfont=dict(size=12)
|
||||
)
|
||||
```
|
||||
|
||||
**Load Roboto font:**
|
||||
```python
|
||||
# In Streamlit apps
|
||||
st.markdown("""
|
||||
<link rel="preconnect" href="https://fonts.googleapis.com">
|
||||
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
||||
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&display=swap" rel="stylesheet">
|
||||
""", unsafe_allow_html=True)
|
||||
```
|
||||
|
||||
### Streamlit App Branding
|
||||
|
||||
**Streamlit configuration (.streamlit/config.toml):**
|
||||
|
||||
```toml
|
||||
[theme]
|
||||
base = "light"
|
||||
primaryColor = "#39C6C0" # Teal accent
|
||||
backgroundColor = "#FFFFFF" # White background
|
||||
secondaryBackgroundColor = "#F7FDFC" # Teal light
|
||||
textColor = "#616161" # Dark gray
|
||||
|
||||
[client]
|
||||
toolbarMode = "minimal"
|
||||
```
|
||||
|
||||
**Current implementation:**
|
||||
```bash
|
||||
cat givecalc/.streamlit/config.toml
|
||||
cat salt-amt-calculator/.streamlit/config.toml # Other calculators
|
||||
```
|
||||
|
||||
### Logo Usage
|
||||
|
||||
**Logo URLs:**
|
||||
|
||||
```python
|
||||
# Blue logo (for light backgrounds)
|
||||
LOGO_BLUE = "https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/blue.png"
|
||||
|
||||
# White logo (for dark backgrounds)
|
||||
LOGO_WHITE = "https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/white.png"
|
||||
|
||||
# SVG versions (scalable)
|
||||
LOGO_BLUE_SVG = "https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/blue.svg"
|
||||
LOGO_WHITE_SVG = "https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/white.svg"
|
||||
```
|
||||
|
||||
**Logo placement in charts:**
|
||||
- Bottom right corner
|
||||
- 10% of chart width
|
||||
- Slightly below bottom edge (y=-0.10)
|
||||
|
||||
**Current logos:**
|
||||
```bash
|
||||
ls policyengine-app/src/images/logos/policyengine/
|
||||
```
|
||||
|
||||
### Complete Example: Branded Chart
|
||||
|
||||
```python
|
||||
import plotly.graph_objects as go
|
||||
|
||||
# PolicyEngine colors
|
||||
TEAL_ACCENT = "#39C6C0"
|
||||
BLUE_PRIMARY = "#2C6496"
|
||||
|
||||
# Create chart
|
||||
fig = go.Figure()
|
||||
|
||||
# Add data
|
||||
fig.add_trace(go.Scatter(
|
||||
x=incomes,
|
||||
y=taxes,
|
||||
mode='lines',
|
||||
name='Tax liability',
|
||||
line=dict(color=TEAL_ACCENT, width=3)
|
||||
))
|
||||
|
||||
# Apply PolicyEngine branding
|
||||
fig.update_layout(
|
||||
# Typography
|
||||
font=dict(family="Roboto Serif", size=14, color="black"),
|
||||
|
||||
# Title and labels
|
||||
title="Tax liability by income",
|
||||
xaxis_title="Income",
|
||||
yaxis_title="Tax ($)",
|
||||
|
||||
# Formatting
|
||||
xaxis_tickformat="$,.0f",
|
||||
yaxis_tickformat="$,.0f",
|
||||
|
||||
# Appearance
|
||||
plot_bgcolor="white",
|
||||
template="plotly_white",
|
||||
|
||||
# Size and margins
|
||||
height=600,
|
||||
width=800,
|
||||
margin=dict(l=50, r=100, t=50, b=120, pad=4)
|
||||
)
|
||||
|
||||
# Add logo
|
||||
fig.add_layout_image(
|
||||
dict(
|
||||
source="https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/blue.png",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=1.0,
|
||||
y=-0.10,
|
||||
sizex=0.10,
|
||||
sizey=0.10,
|
||||
xanchor="right",
|
||||
yanchor="bottom"
|
||||
)
|
||||
)
|
||||
|
||||
# Show
|
||||
fig.show()
|
||||
```
|
||||
|
||||
## For Contributors 💻
|
||||
|
||||
### Brand Assets
|
||||
|
||||
**Repository:** PolicyEngine/policyengine-app-v2 (current), PolicyEngine/policyengine-app (legacy)
|
||||
|
||||
**Logo files:**
|
||||
```bash
|
||||
# Logos in app (both v1 and v2 use same logos)
|
||||
ls policyengine-app/src/images/logos/policyengine/
|
||||
# - blue.png - For light backgrounds
|
||||
# - white.png - For dark backgrounds
|
||||
# - blue.svg - Scalable blue logo
|
||||
# - white.svg - Scalable white logo
|
||||
# - banners/ - Banner variations
|
||||
# - profile/ - Profile/avatar versions
|
||||
```
|
||||
|
||||
**Access logos:**
|
||||
```bash
|
||||
# View logo files (v1 repo has the assets)
|
||||
cd policyengine-app/src/images/logos/policyengine/
|
||||
ls -la
|
||||
```
|
||||
|
||||
### Color Definitions
|
||||
|
||||
**⚠️ IMPORTANT: App V2 Transition**
|
||||
|
||||
PolicyEngine is transitioning to policyengine-app-v2 with updated design tokens. Use app-v2 colors for new projects.
|
||||
|
||||
**Current colors (policyengine-app-v2):**
|
||||
|
||||
```typescript
|
||||
// policyengine-app-v2/app/src/designTokens/colors.ts
|
||||
|
||||
// Primary (teal) - 50 to 900 scale
|
||||
primary[500]: "#319795" // Main teal
|
||||
primary[400]: "#38B2AC" // Lighter teal
|
||||
primary[600]: "#2C7A7B" // Darker teal
|
||||
|
||||
// Blue scale
|
||||
blue[700]: "#026AA2" // Primary blue
|
||||
blue[500]: "#0EA5E9" // Lighter blue
|
||||
|
||||
// Gray scale
|
||||
gray[700]: "#344054" // Dark text
|
||||
gray[100]: "#F2F4F7" // Light backgrounds
|
||||
|
||||
// Semantic
|
||||
success: "#22C55E"
|
||||
warning: "#FEC601"
|
||||
error: "#EF4444"
|
||||
|
||||
// Background
|
||||
background.primary: "#FFFFFF"
|
||||
background.secondary: "#F5F9FF"
|
||||
|
||||
// Text
|
||||
text.primary: "#000000"
|
||||
text.secondary: "#5A5A5A"
|
||||
```
|
||||
|
||||
**To see current design tokens:**
|
||||
```bash
|
||||
cat policyengine-app-v2/app/src/designTokens/colors.ts
|
||||
cat policyengine-app-v2/app/src/styles/colors.ts # Mantine integration
|
||||
```
|
||||
|
||||
**Legacy colors (policyengine-app - still used in some projects):**
|
||||
|
||||
```javascript
|
||||
// policyengine-app/src/style/colors.js
|
||||
TEAL_ACCENT = "#39C6C0" // Old teal (slightly different from v2)
|
||||
BLUE = "#2C6496" // Old blue
|
||||
DARK_GRAY = "#616161" // Old dark gray
|
||||
```
|
||||
|
||||
**To see legacy colors:**
|
||||
```bash
|
||||
cat policyengine-app/src/style/colors.js
|
||||
```
|
||||
|
||||
**Usage in React (app-v2):**
|
||||
```typescript
|
||||
import { colors } from 'designTokens';
|
||||
|
||||
<Button style={{ backgroundColor: colors.primary[500] }} />
|
||||
<Text style={{ color: colors.text.primary }} />
|
||||
```
|
||||
|
||||
**Usage in Python/Plotly (use legacy colors for now):**
|
||||
```python
|
||||
# For charts, continue using legacy colors until officially migrated
|
||||
TEAL_ACCENT = "#39C6C0" # From original app
|
||||
BLUE_PRIMARY = "#2C6496" # From original app
|
||||
|
||||
# Or use app-v2 colors
|
||||
TEAL_PRIMARY = "#319795" # From app-v2
|
||||
BLUE_PRIMARY_V2 = "#026AA2" # From app-v2
|
||||
```
|
||||
|
||||
### Typography
|
||||
|
||||
**Fonts:**
|
||||
|
||||
**For charts (Plotly):**
|
||||
```python
|
||||
font=dict(family="Roboto Serif")
|
||||
```
|
||||
|
||||
**For web apps:**
|
||||
```javascript
|
||||
// System font stack
|
||||
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, ...
|
||||
```
|
||||
|
||||
**Loading Google Fonts:**
|
||||
```html
|
||||
<!-- In Streamlit or HTML -->
|
||||
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&family=Roboto+Serif:wght@300;400;500;700&display=swap" rel="stylesheet">
|
||||
```
|
||||
|
||||
### Chart Formatting Function
|
||||
|
||||
**Reference implementation:**
|
||||
|
||||
```bash
|
||||
# GiveCalc format_fig function
|
||||
cat givecalc/ui/visualization.py
|
||||
|
||||
# Shows:
|
||||
# - Roboto Serif font
|
||||
# - White background
|
||||
# - Logo placement
|
||||
# - Margin configuration
|
||||
```
|
||||
|
||||
**Pattern to follow:**
|
||||
```python
|
||||
def format_fig(fig: go.Figure) -> go.Figure:
|
||||
"""Format figure with PolicyEngine branding.
|
||||
|
||||
This function is used across PolicyEngine projects to ensure
|
||||
consistent chart appearance.
|
||||
"""
|
||||
# Font
|
||||
fig.update_layout(
|
||||
font=dict(family="Roboto Serif", color="black")
|
||||
)
|
||||
|
||||
# Background
|
||||
fig.update_layout(
|
||||
template="plotly_white",
|
||||
plot_bgcolor="white"
|
||||
)
|
||||
|
||||
# Size
|
||||
fig.update_layout(height=600, width=800)
|
||||
|
||||
# Margins (room for logo)
|
||||
fig.update_layout(
|
||||
margin=dict(l=50, r=100, t=50, b=120, pad=4)
|
||||
)
|
||||
|
||||
# Logo
|
||||
fig.add_layout_image(
|
||||
dict(
|
||||
source="https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/blue.png",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=1.0,
|
||||
y=-0.10,
|
||||
sizex=0.10,
|
||||
sizey=0.10,
|
||||
xanchor="right",
|
||||
yanchor="bottom"
|
||||
)
|
||||
)
|
||||
|
||||
# Clean modebar
|
||||
fig.update_layout(
|
||||
modebar=dict(
|
||||
bgcolor="rgba(0,0,0,0)",
|
||||
color="rgba(0,0,0,0)"
|
||||
)
|
||||
)
|
||||
|
||||
return fig
|
||||
```
|
||||
|
||||
### Streamlit Theme Configuration
|
||||
|
||||
**Standard .streamlit/config.toml:**
|
||||
|
||||
```toml
|
||||
[theme]
|
||||
base = "light"
|
||||
primaryColor = "#39C6C0" # Teal accent
|
||||
backgroundColor = "#FFFFFF" # White
|
||||
secondaryBackgroundColor = "#F7FDFC" # Teal light
|
||||
textColor = "#616161" # Dark gray
|
||||
font = "sans serif"
|
||||
|
||||
[client]
|
||||
toolbarMode = "minimal"
|
||||
showErrorDetails = true
|
||||
```
|
||||
|
||||
**Usage:**
|
||||
```bash
|
||||
# Create .streamlit directory in your project
|
||||
mkdir .streamlit
|
||||
|
||||
# Copy configuration
|
||||
cat > .streamlit/config.toml << 'EOF'
|
||||
[theme]
|
||||
base = "light"
|
||||
primaryColor = "#39C6C0"
|
||||
backgroundColor = "#FFFFFF"
|
||||
secondaryBackgroundColor = "#F7FDFC"
|
||||
textColor = "#616161"
|
||||
font = "sans serif"
|
||||
EOF
|
||||
```
|
||||
|
||||
**Current examples:**
|
||||
```bash
|
||||
cat givecalc/.streamlit/config.toml
|
||||
```
|
||||
|
||||
## Design Patterns by Project Type
|
||||
|
||||
### Streamlit Calculators (GiveCalc, SALT Calculator, etc.)
|
||||
|
||||
**Required branding:**
|
||||
1. ✅ .streamlit/config.toml with PolicyEngine theme
|
||||
2. ✅ Charts use format_fig() function with logo
|
||||
3. ✅ Teal accent color for interactive elements
|
||||
4. ✅ Roboto Serif for charts
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
import streamlit as st
|
||||
import plotly.graph_objects as go
|
||||
|
||||
# Constants
|
||||
TEAL_ACCENT = "#39C6C0"
|
||||
|
||||
# Streamlit UI
|
||||
st.title("Calculator Name") # Uses theme colors automatically
|
||||
st.button("Calculate", type="primary") # Teal accent from theme
|
||||
|
||||
# Charts
|
||||
fig = go.Figure()
|
||||
fig.add_trace(go.Scatter(x=x, y=y, line=dict(color=TEAL_ACCENT)))
|
||||
fig = format_fig(fig) # Add branding
|
||||
st.plotly_chart(fig)
|
||||
```
|
||||
|
||||
### Jupyter Notebooks / Analysis Scripts
|
||||
|
||||
**Required branding:**
|
||||
1. ✅ Charts use format_fig() with logo
|
||||
2. ✅ PolicyEngine color palette
|
||||
3. ✅ Roboto Serif font
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
import plotly.graph_objects as go
|
||||
|
||||
TEAL_ACCENT = "#39C6C0"
|
||||
BLUE_PRIMARY = "#2C6496"
|
||||
|
||||
fig = go.Figure()
|
||||
fig.add_trace(go.Scatter(
|
||||
x=data.income,
|
||||
y=data.tax_change,
|
||||
line=dict(color=TEAL_ACCENT, width=3)
|
||||
))
|
||||
|
||||
fig.update_layout(
|
||||
font=dict(family="Roboto Serif", size=14),
|
||||
title="Tax impact by income",
|
||||
xaxis_title="Income",
|
||||
yaxis_title="Tax change ($)",
|
||||
plot_bgcolor="white"
|
||||
)
|
||||
|
||||
# Add logo
|
||||
fig.add_layout_image(...)
|
||||
```
|
||||
|
||||
### React App Components
|
||||
|
||||
**Color usage:**
|
||||
```javascript
|
||||
import colors from "style/colors";
|
||||
|
||||
// Interactive elements
|
||||
<Button style={{ backgroundColor: colors.TEAL_ACCENT }}>
|
||||
Click me
|
||||
</Button>
|
||||
|
||||
// Links
|
||||
<a style={{ color: colors.BLUE }}>Learn more</a>
|
||||
|
||||
// Text
|
||||
<p style={{ color: colors.DARK_GRAY }}>Description</p>
|
||||
```
|
||||
|
||||
**Current colors:**
|
||||
```bash
|
||||
cat policyengine-app/src/style/colors.js
|
||||
```
|
||||
|
||||
## Visual Guidelines
|
||||
|
||||
### Chart Design Principles
|
||||
|
||||
1. **Minimal decoration** - Let data speak
|
||||
2. **White backgrounds** - Clean, print-friendly
|
||||
3. **Clear axis labels** - Always include units
|
||||
4. **Formatted numbers** - Currency ($), percentages (%), etc.
|
||||
5. **Logo inclusion** - Bottom right, never intrusive
|
||||
6. **Consistent sizing** - 800x600 standard
|
||||
7. **Roboto Serif** - Professional, readable font
|
||||
|
||||
### Color Usage Rules
|
||||
|
||||
**Primary actions:**
|
||||
- Use TEAL_ACCENT (#39C6C0)
|
||||
- Buttons, highlights, current selection
|
||||
|
||||
**Chart lines:**
|
||||
- Primary data: TEAL_ACCENT or BLUE_PRIMARY
|
||||
- Secondary data: BLUE_LIGHT or GRAY
|
||||
- Negative values: DARK_RED (#b50d0d)
|
||||
|
||||
**Backgrounds:**
|
||||
- Main: WHITE (#FFFFFF)
|
||||
- Secondary: TEAL_LIGHT (#F7FDFC) or BLUE_98 (#F7FAFD)
|
||||
- Plot area: WHITE
|
||||
|
||||
**Text:**
|
||||
- Primary: BLACK (#000000)
|
||||
- Secondary: DARK_GRAY (#616161)
|
||||
- Muted: GRAY (#808080)
|
||||
|
||||
### Accessibility
|
||||
|
||||
**Color contrast requirements:**
|
||||
- Text on background: 4.5:1 minimum (WCAG AA)
|
||||
- DARK_GRAY on WHITE: ✅ Passes
|
||||
- TEAL_ACCENT on WHITE: ✅ Passes for large text
|
||||
- Use sufficient line weights for visibility
|
||||
|
||||
**Don't rely on color alone:**
|
||||
- Use patterns or labels for different data series
|
||||
- Ensure charts work in grayscale
|
||||
|
||||
## Common Branding Tasks
|
||||
|
||||
### Task 1: Create Branded Plotly Chart
|
||||
|
||||
1. **Define colors:**
|
||||
```python
|
||||
TEAL_ACCENT = "#39C6C0"
|
||||
BLUE_PRIMARY = "#2C6496"
|
||||
```
|
||||
|
||||
2. **Create chart:**
|
||||
```python
|
||||
fig = go.Figure()
|
||||
fig.add_trace(go.Scatter(x=x, y=y, line=dict(color=TEAL_ACCENT)))
|
||||
```
|
||||
|
||||
3. **Apply branding:**
|
||||
```python
|
||||
fig = format_fig(fig) # See implementation above
|
||||
```
|
||||
|
||||
### Task 2: Setup Streamlit Branding
|
||||
|
||||
1. **Create config directory:**
|
||||
```bash
|
||||
mkdir .streamlit
|
||||
```
|
||||
|
||||
2. **Copy theme config:**
|
||||
```bash
|
||||
cat givecalc/.streamlit/config.toml > .streamlit/config.toml
|
||||
```
|
||||
|
||||
3. **Verify in app:**
|
||||
```python
|
||||
import streamlit as st
|
||||
|
||||
st.button("Test", type="primary") # Should be teal
|
||||
```
|
||||
|
||||
### Task 3: Brand Consistency Check
|
||||
|
||||
**Checklist:**
|
||||
- [ ] Charts use Roboto Serif font
|
||||
- [ ] Primary color is TEAL_ACCENT (#39C6C0)
|
||||
- [ ] Secondary color is BLUE_PRIMARY (#2C6496)
|
||||
- [ ] White backgrounds
|
||||
- [ ] Logo in charts (bottom right)
|
||||
- [ ] Currency formatted with $ and commas
|
||||
- [ ] Percentages formatted with %
|
||||
- [ ] Streamlit config.toml uses PolicyEngine theme
|
||||
|
||||
## Reference Implementations
|
||||
|
||||
### Excellent Examples
|
||||
|
||||
**Streamlit calculators:**
|
||||
```bash
|
||||
# GiveCalc - Complete example
|
||||
cat givecalc/ui/visualization.py
|
||||
cat givecalc/.streamlit/config.toml
|
||||
|
||||
# Other calculators
|
||||
ls salt-amt-calculator/
|
||||
ls ctc-calculator/
|
||||
```
|
||||
|
||||
**Blog post charts:**
|
||||
```bash
|
||||
# Analysis with branded charts
|
||||
cat policyengine-app/src/posts/articles/harris-eitc.md
|
||||
cat policyengine-app/src/posts/articles/montana-tax-cuts-2026.md
|
||||
```
|
||||
|
||||
**React app components:**
|
||||
```bash
|
||||
# Charts in app
|
||||
cat policyengine-app/src/pages/policy/output/DistributionalImpact.jsx
|
||||
```
|
||||
|
||||
### Don't Use These
|
||||
|
||||
**❌ Wrong colors:**
|
||||
```python
|
||||
# Don't use random colors
|
||||
color = "#FF5733"
|
||||
color = "red"
|
||||
color = "green"
|
||||
```
|
||||
|
||||
**❌ Wrong fonts:**
|
||||
```python
|
||||
# Don't use other fonts for charts
|
||||
font = dict(family="Arial")
|
||||
font = dict(family="Times New Roman")
|
||||
```
|
||||
|
||||
**❌ Missing logo:**
|
||||
```python
|
||||
# Don't skip the logo in charts for publication
|
||||
# All published charts should include PolicyEngine logo
|
||||
```
|
||||
|
||||
## Assets and Resources
|
||||
|
||||
### Logo Files
|
||||
|
||||
**In policyengine-app repository:**
|
||||
```bash
|
||||
policyengine-app/src/images/logos/policyengine/
|
||||
├── blue.png # Primary logo (light backgrounds)
|
||||
├── white.png # Logo for dark backgrounds
|
||||
├── blue.svg # Scalable blue logo
|
||||
├── white.svg # Scalable white logo
|
||||
├── banners/ # Banner variations
|
||||
└── profile/ # Profile/avatar versions
|
||||
```
|
||||
|
||||
**Raw URLs for direct use:**
|
||||
```python
|
||||
# Use these URLs in code
|
||||
LOGO_URL = "https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/blue.png"
|
||||
```
|
||||
|
||||
### Font Files
|
||||
|
||||
**Roboto (charts):**
|
||||
- Google Fonts: https://fonts.google.com/specimen/Roboto
|
||||
- Family: Roboto Serif
|
||||
- Weights: 300 (light), 400 (regular), 500 (medium), 700 (bold)
|
||||
|
||||
**Loading:**
|
||||
```html
|
||||
<link href="https://fonts.googleapis.com/css2?family=Roboto+Serif:wght@300;400;500;700&display=swap" rel="stylesheet">
|
||||
```
|
||||
|
||||
### Color Reference Files
|
||||
|
||||
**JavaScript (React app):**
|
||||
```bash
|
||||
cat policyengine-app/src/style/colors.js
|
||||
```
|
||||
|
||||
**Python (calculators, analysis):**
|
||||
```python
|
||||
# Define in constants.py or at top of file
|
||||
TEAL_ACCENT = "#39C6C0"
|
||||
BLUE_PRIMARY = "#2C6496"
|
||||
DARK_GRAY = "#616161"
|
||||
WHITE = "#FFFFFF"
|
||||
```
|
||||
|
||||
## Brand Evolution
|
||||
|
||||
**Current identity (2025):**
|
||||
- Teal primary (#39C6C0)
|
||||
- Blue secondary (#2C6496)
|
||||
- Roboto Serif for charts
|
||||
- Minimal, data-focused design
|
||||
|
||||
**If brand evolves:**
|
||||
- Colors defined in policyengine-app/src/style/colors.js are source of truth
|
||||
- Update this skill to point to current definitions
|
||||
- Never hardcode - always reference colors.js
|
||||
|
||||
## Quick Reference
|
||||
|
||||
### Color Codes
|
||||
|
||||
| Color | Hex | Usage |
|
||||
|-------|-----|-------|
|
||||
| Teal Accent | #39C6C0 | Primary interactive elements |
|
||||
| Blue Primary | #2C6496 | Secondary, links, charts |
|
||||
| Dark Gray | #616161 | Body text |
|
||||
| White | #FFFFFF | Backgrounds |
|
||||
| Teal Light | #F7FDFC | Secondary backgrounds |
|
||||
| Dark Red | #b50d0d | Negative values, errors |
|
||||
|
||||
### Font Families
|
||||
|
||||
| Context | Font |
|
||||
|---------|------|
|
||||
| Charts | Roboto Serif |
|
||||
| Web app | System sans-serif |
|
||||
| Streamlit | Default sans-serif |
|
||||
| Code blocks | Monospace |
|
||||
|
||||
### Logo URLs
|
||||
|
||||
| Background | Format | URL |
|
||||
|------------|--------|-----|
|
||||
| Light | PNG | https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/blue.png |
|
||||
| Light | SVG | https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/blue.svg |
|
||||
| Dark | PNG | https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/white.png |
|
||||
| Dark | SVG | https://raw.githubusercontent.com/PolicyEngine/policyengine-app/master/src/images/logos/policyengine/white.svg |
|
||||
|
||||
## Related Skills
|
||||
|
||||
- **policyengine-app-skill** - React component styling
|
||||
- **policyengine-analysis-skill** - Chart creation patterns
|
||||
- **policyengine-writing-skill** - Content style (complements visual style)
|
||||
|
||||
## Resources
|
||||
|
||||
**Brand assets:** PolicyEngine/policyengine-app/src/images/
|
||||
**Color definitions:** PolicyEngine/policyengine-app/src/style/colors.js
|
||||
**Examples:** givecalc, salt-amt-calculator, crfb-tob-impacts
|
||||
739
skills/policyengine-implementation-patterns-skill/SKILL.md
Normal file
739
skills/policyengine-implementation-patterns-skill/SKILL.md
Normal file
@@ -0,0 +1,739 @@
|
||||
---
|
||||
name: policyengine-implementation-patterns
|
||||
description: PolicyEngine implementation patterns - variable creation, no hard-coding principle, federal/state separation, metadata standards
|
||||
---
|
||||
|
||||
# PolicyEngine Implementation Patterns
|
||||
|
||||
Essential patterns for implementing government benefit program rules in PolicyEngine.
|
||||
|
||||
## PolicyEngine Architecture Constraints
|
||||
|
||||
### What CANNOT Be Simulated (Single-Period Limitation)
|
||||
|
||||
**CRITICAL: PolicyEngine uses single-period simulation architecture**
|
||||
|
||||
The following CANNOT be implemented and should be SKIPPED when found in documentation:
|
||||
|
||||
#### 1. Time Limits and Lifetime Counters
|
||||
**Cannot simulate:**
|
||||
- ANY lifetime benefit limits (X months total)
|
||||
- ANY time windows (X months within Y period)
|
||||
- Benefit clocks and countable months
|
||||
- Cumulative time tracking
|
||||
|
||||
**Why:** Requires tracking benefit history across multiple periods. PolicyEngine simulates one period at a time with no state persistence.
|
||||
|
||||
**What to do:** Document in comments but DON'T parameterize or implement:
|
||||
```python
|
||||
# NOTE: [State] has [X]-month lifetime limit on [Program] benefits
|
||||
# This cannot be simulated in PolicyEngine's single-period architecture
|
||||
```
|
||||
|
||||
#### 2. Work History Requirements
|
||||
**Cannot simulate:**
|
||||
- "Must have worked 6 of last 12 months"
|
||||
- "Averaged 30 hours/week over past quarter"
|
||||
- Prior employment verification
|
||||
- Work participation rate tracking
|
||||
|
||||
**Why:** Requires historical data from previous periods.
|
||||
|
||||
#### 3. Waiting Periods and Benefit Delays
|
||||
**Cannot simulate:**
|
||||
- "3-month waiting period for new residents"
|
||||
- "Benefits start month after application"
|
||||
- Retroactive eligibility
|
||||
- Benefit recertification cycles
|
||||
|
||||
**Why:** Requires tracking application dates and eligibility history.
|
||||
|
||||
#### 4. Progressive Sanctions and Penalties
|
||||
**Cannot simulate:**
|
||||
- "First violation: 1-month sanction, Second: 3-month, Third: permanent"
|
||||
- Graduated penalties
|
||||
- Strike systems
|
||||
|
||||
**Why:** Requires tracking violation history.
|
||||
|
||||
#### 5. Asset Spend-Down Over Time
|
||||
**Cannot simulate:**
|
||||
- Medical spend-down across months
|
||||
- Resource depletion tracking
|
||||
- Accumulated medical expenses
|
||||
|
||||
**Why:** Requires tracking expenses and resources across periods.
|
||||
|
||||
### What CAN Be Simulated (With Caveats)
|
||||
|
||||
PolicyEngine CAN simulate point-in-time eligibility and benefits:
|
||||
- ✅ Current month income limits
|
||||
- ✅ Current month resource limits
|
||||
- ✅ Current benefit calculations
|
||||
- ✅ Current household composition
|
||||
- ✅ Current deductions and disregards
|
||||
|
||||
### Time-Limited Benefits That Affect Current Calculations
|
||||
|
||||
**Special Case: Time-limited deductions/disregards**
|
||||
|
||||
When a deduction or disregard is only available for X months:
|
||||
- **DO implement the deduction** (assume it applies)
|
||||
- **DO add a comment** explaining the time limitation
|
||||
- **DON'T try to track or enforce the time limit**
|
||||
|
||||
Example:
|
||||
```python
|
||||
class state_tanf_countable_earned_income(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
p = parameters(period).gov.states.xx.tanf.income
|
||||
earned = spm_unit("tanf_gross_earned_income", period)
|
||||
|
||||
# NOTE: In reality, this 75% disregard only applies for first 4 months
|
||||
# of employment. PolicyEngine cannot track employment duration, so we
|
||||
# apply the disregard assuming the household qualifies.
|
||||
# Actual rule: [State Code Citation]
|
||||
disregard_rate = p.earned_income_disregard_rate # 0.75
|
||||
|
||||
return earned * (1 - disregard_rate)
|
||||
```
|
||||
|
||||
**Rule: If it requires history or future tracking, it CANNOT be fully simulated - but implement what we can and document limitations**
|
||||
|
||||
---
|
||||
|
||||
## Critical Principles
|
||||
|
||||
### 1. ZERO Hard-Coded Values
|
||||
**Every numeric value MUST be parameterized**
|
||||
|
||||
```python
|
||||
❌ FORBIDDEN:
|
||||
return where(eligible, 1000, 0) # Hard-coded 1000
|
||||
age < 15 # Hard-coded 15
|
||||
benefit = income * 0.33 # Hard-coded 0.33
|
||||
month >= 10 and month <= 3 # Hard-coded months
|
||||
|
||||
✅ REQUIRED:
|
||||
return where(eligible, p.maximum_benefit, 0)
|
||||
age < p.age_threshold.minor_child
|
||||
benefit = income * p.benefit_rate
|
||||
month >= p.season.start_month
|
||||
```
|
||||
|
||||
**Acceptable literals:**
|
||||
- `0`, `1`, `-1` for basic math
|
||||
- `12` for month conversion (`/ 12`, `* 12`)
|
||||
- Array indices when structure is known
|
||||
|
||||
### 2. No Placeholder Implementations
|
||||
**Delete the file rather than leave placeholders**
|
||||
|
||||
```python
|
||||
❌ NEVER:
|
||||
def formula(entity, period, parameters):
|
||||
# TODO: Implement
|
||||
return 75 # Placeholder
|
||||
|
||||
✅ ALWAYS:
|
||||
# Complete implementation or no file at all
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Variable Implementation Standards
|
||||
|
||||
### Variable Metadata Format
|
||||
|
||||
Follow established patterns:
|
||||
```python
|
||||
class il_tanf_countable_earned_income(Variable):
|
||||
value_type = float
|
||||
entity = SPMUnit
|
||||
definition_period = MONTH
|
||||
label = "Illinois TANF countable earned income"
|
||||
unit = USD
|
||||
reference = "https://www.law.cornell.edu/regulations/illinois/..."
|
||||
defined_for = StateCode.IL
|
||||
|
||||
# Use adds for simple sums
|
||||
adds = ["il_tanf_earned_income_after_disregard"]
|
||||
```
|
||||
|
||||
**Key rules:**
|
||||
- ✅ Use full URL in `reference` (clickable)
|
||||
- ❌ Don't use `documentation` field
|
||||
- ❌ Don't use statute citations without URLs
|
||||
|
||||
### When to Use `adds` vs `formula`
|
||||
|
||||
**Use `adds` when:**
|
||||
- Just summing variables
|
||||
- Passing through a single variable
|
||||
- No transformations needed
|
||||
|
||||
```python
|
||||
✅ BEST - Simple sum:
|
||||
class tanf_gross_income(Variable):
|
||||
adds = ["employment_income", "self_employment_income"]
|
||||
```
|
||||
|
||||
**Use `formula` when:**
|
||||
- Applying transformations
|
||||
- Conditional logic
|
||||
- Calculations needed
|
||||
|
||||
```python
|
||||
✅ CORRECT - Need logic:
|
||||
def formula(entity, period, parameters):
|
||||
income = add(entity, period, ["income1", "income2"])
|
||||
return max_(0, income) # Need max_
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## TANF Countable Income Pattern
|
||||
|
||||
### Critical: Verify Calculation Order from Legal Code
|
||||
|
||||
**MOST IMPORTANT:** Always check the state's legal code or policy manual for the exact calculation order. The pattern below is typical but not universal.
|
||||
|
||||
**The Typical Pattern:**
|
||||
1. Apply deductions/disregards to **earned income only**
|
||||
2. Use `max_()` to prevent negative earned income
|
||||
3. Add unearned income (which typically has no deductions)
|
||||
|
||||
**This pattern is based on how MOST TANF programs work, but you MUST verify with the specific state's legal code.**
|
||||
|
||||
### ❌ WRONG - Applying deductions to total income
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
gross_earned = spm_unit("tanf_gross_earned_income", period)
|
||||
unearned = spm_unit("tanf_gross_unearned_income", period)
|
||||
deductions = spm_unit("tanf_earned_income_deductions", period)
|
||||
|
||||
# ❌ WRONG: Deductions applied to total income
|
||||
total_income = gross_earned + unearned
|
||||
countable = total_income - deductions
|
||||
|
||||
return max_(countable, 0)
|
||||
```
|
||||
|
||||
**Why this is wrong:**
|
||||
- Deductions should ONLY reduce earned income
|
||||
- Unearned income (SSI, child support, etc.) is not subject to work expense deductions
|
||||
- This incorrectly reduces unearned income when earned income is low
|
||||
|
||||
**Example error:**
|
||||
- Earned: $100, Unearned: $500, Deductions: $200
|
||||
- Wrong result: `max_($100 + $500 - $200, 0) = $400` (reduces unearned!)
|
||||
- Correct result: `max_($100 - $200, 0) + $500 = $500`
|
||||
|
||||
### ✅ CORRECT - Apply deductions to earned only, then add unearned
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
gross_earned = spm_unit("tanf_gross_earned_income", period)
|
||||
unearned = spm_unit("tanf_gross_unearned_income", period)
|
||||
deductions = spm_unit("tanf_earned_income_deductions", period)
|
||||
|
||||
# ✅ CORRECT: Deductions applied to earned only, then add unearned
|
||||
return max_(gross_earned - deductions, 0) + unearned
|
||||
```
|
||||
|
||||
### Pattern Variations
|
||||
|
||||
**With multiple deduction steps:**
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
p = parameters(period).gov.states.xx.tanf.income
|
||||
gross_earned = spm_unit("tanf_gross_earned_income", period)
|
||||
unearned = spm_unit("tanf_gross_unearned_income", period)
|
||||
|
||||
# Step 1: Apply work expense deduction
|
||||
work_expense = min_(gross_earned * p.work_expense_rate, p.work_expense_max)
|
||||
after_work_expense = max_(gross_earned - work_expense, 0)
|
||||
|
||||
# Step 2: Apply earnings disregard
|
||||
earnings_disregard = after_work_expense * p.disregard_rate
|
||||
countable_earned = max_(after_work_expense - earnings_disregard, 0)
|
||||
|
||||
# Step 3: Add unearned (no deductions applied)
|
||||
return countable_earned + unearned
|
||||
```
|
||||
|
||||
**With disregard percentage (simplified):**
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
p = parameters(period).gov.states.xx.tanf.income
|
||||
gross_earned = spm_unit("tanf_gross_earned_income", period)
|
||||
unearned = spm_unit("tanf_gross_unearned_income", period)
|
||||
|
||||
# Apply disregard to earned (keep 33% = disregard 67%)
|
||||
countable_earned = gross_earned * (1 - p.earned_disregard_rate)
|
||||
|
||||
return max_(countable_earned, 0) + unearned
|
||||
```
|
||||
|
||||
### When Unearned Income HAS Deductions
|
||||
|
||||
Some states DO have unearned income deductions (rare). Handle separately:
|
||||
|
||||
```python
|
||||
def formula(spm_unit, period, parameters):
|
||||
gross_earned = spm_unit("tanf_gross_earned_income", period)
|
||||
gross_unearned = spm_unit("tanf_gross_unearned_income", period)
|
||||
earned_deductions = spm_unit("tanf_earned_income_deductions", period)
|
||||
unearned_deductions = spm_unit("tanf_unearned_income_deductions", period)
|
||||
|
||||
# Apply each type of deduction to its respective income type
|
||||
countable_earned = max_(gross_earned - earned_deductions, 0)
|
||||
countable_unearned = max_(gross_unearned - unearned_deductions, 0)
|
||||
|
||||
return countable_earned + countable_unearned
|
||||
```
|
||||
|
||||
### Quick Reference
|
||||
|
||||
**Standard TANF pattern:**
|
||||
```
|
||||
Countable Income = max_(Earned - Earned Deductions, 0) + Unearned
|
||||
```
|
||||
|
||||
**NOT:**
|
||||
```
|
||||
❌ max_(Earned + Unearned - Deductions, 0)
|
||||
❌ max_(Earned - Deductions + Unearned, 0) # Can go negative
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Federal/State Separation
|
||||
|
||||
### Federal Parameters
|
||||
Location: `/parameters/gov/{agency}/`
|
||||
- Base formulas and methodologies
|
||||
- National standards
|
||||
- Required elements
|
||||
|
||||
### State Parameters
|
||||
Location: `/parameters/gov/states/{state}/`
|
||||
- State-specific thresholds
|
||||
- Implementation choices
|
||||
- Scale factors
|
||||
|
||||
```yaml
|
||||
# Federal: parameters/gov/hhs/fpg/base.yaml
|
||||
first_person: 14_580
|
||||
|
||||
# State: parameters/gov/states/ca/scale_factor.yaml
|
||||
fpg_multiplier: 2.0 # 200% of FPG
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Code Reuse Patterns
|
||||
|
||||
### Avoid Duplication - Create Intermediate Variables
|
||||
|
||||
**❌ ANTI-PATTERN: Copy-pasting calculations**
|
||||
```python
|
||||
# File 1: calculates income after deduction
|
||||
def formula(household, period, parameters):
|
||||
gross = add(household, period, ["income"])
|
||||
deduction = p.deduction * household.nb_persons()
|
||||
return max_(gross - deduction, 0)
|
||||
|
||||
# File 2: DUPLICATES same calculation
|
||||
def formula(household, period, parameters):
|
||||
gross = add(household, period, ["income"]) # Copy-pasted
|
||||
deduction = p.deduction * household.nb_persons() # Copy-pasted
|
||||
after_deduction = max_(gross - deduction, 0) # Copy-pasted
|
||||
return after_deduction < p.threshold
|
||||
```
|
||||
|
||||
**✅ CORRECT: Reuse existing variables**
|
||||
```python
|
||||
# File 2: reuses calculation
|
||||
def formula(household, period, parameters):
|
||||
countable_income = household("program_countable_income", period)
|
||||
return countable_income < p.threshold
|
||||
```
|
||||
|
||||
**When to create intermediate variables:**
|
||||
- Same calculation in 2+ places
|
||||
- Logic exceeds 5 lines
|
||||
- Reference implementations have similar variable
|
||||
|
||||
---
|
||||
|
||||
## TANF-Specific Patterns
|
||||
|
||||
### Study Reference Implementations First
|
||||
|
||||
**MANDATORY before implementing any TANF:**
|
||||
- DC TANF: `/variables/gov/states/dc/dhs/tanf/`
|
||||
- IL TANF: `/variables/gov/states/il/dhs/tanf/`
|
||||
- TX TANF: `/variables/gov/states/tx/hhs/tanf/`
|
||||
|
||||
**Learn from them:**
|
||||
1. Variable organization
|
||||
2. Naming conventions
|
||||
3. Code reuse patterns
|
||||
4. When to use `adds` vs `formula`
|
||||
|
||||
### Standard TANF Structure
|
||||
```
|
||||
tanf/
|
||||
├── eligibility/
|
||||
│ ├── demographic_eligible.py
|
||||
│ ├── income_eligible.py
|
||||
│ └── eligible.py
|
||||
├── income/
|
||||
│ ├── earned/
|
||||
│ ├── unearned/
|
||||
│ └── countable_income.py
|
||||
└── [state]_tanf.py
|
||||
```
|
||||
|
||||
### Simplified TANF Rules
|
||||
|
||||
For simplified implementations:
|
||||
|
||||
**DON'T create state-specific versions of:**
|
||||
- Demographic eligibility (use federal)
|
||||
- Immigration eligibility (use federal)
|
||||
- Income sources (use federal baseline)
|
||||
|
||||
```python
|
||||
❌ DON'T CREATE:
|
||||
ca_tanf_demographic_eligible_person.py
|
||||
ca_tanf_gross_earned_income.py
|
||||
parameters/.../income/sources/earned.yaml
|
||||
|
||||
✅ DO USE:
|
||||
# Federal demographic eligibility
|
||||
is_demographic_tanf_eligible
|
||||
# Federal income aggregation
|
||||
tanf_gross_earned_income
|
||||
```
|
||||
|
||||
### Avoiding Unnecessary Wrapper Variables (CRITICAL)
|
||||
|
||||
**Golden Rule: Only create a state variable if you're adding state-specific logic to it!**
|
||||
|
||||
#### Understand WHY Variables Exist, Not Just WHAT
|
||||
|
||||
When studying reference implementations:
|
||||
1. **Note which variables they have**
|
||||
2. **READ THE CODE inside each variable**
|
||||
3. **Ask: "Does this variable have state-specific logic?"**
|
||||
4. **If it just returns federal baseline → DON'T copy it**
|
||||
|
||||
#### Variable Creation Decision Tree
|
||||
|
||||
Before creating ANY state-specific variable, ask:
|
||||
1. Does federal baseline already calculate this?
|
||||
2. Does my state do it DIFFERENTLY than federal?
|
||||
3. Can I write the difference in 1+ lines of state-specific logic?
|
||||
4. **Will this calculation be used in 2+ other variables?** (Code reuse exception)
|
||||
|
||||
**Decision:**
|
||||
- If YES/NO/NO/NO → **DON'T create the variable**, use federal directly
|
||||
- If YES/YES/YES/NO → **CREATE the variable** with state logic
|
||||
- If YES/NO/NO/YES → **CREATE as intermediate variable** for code reuse (see exception below)
|
||||
|
||||
#### EXCEPTION: Code Reuse Justifies Intermediate Variables
|
||||
|
||||
**Even without state-specific logic, create a variable if the SAME calculation is used in multiple places.**
|
||||
|
||||
❌ **Bad - Duplicating calculation across variables:**
|
||||
```python
|
||||
# Variable 1 - Income eligibility
|
||||
class mo_tanf_income_eligible(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
# Duplicated calculation
|
||||
gross = add(spm_unit, period, ["tanf_gross_earned_income", "tanf_gross_unearned_income"])
|
||||
return gross <= p.income_limit
|
||||
|
||||
# Variable 2 - Countable income
|
||||
class mo_tanf_countable_income(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
# SAME calculation repeated!
|
||||
gross = add(spm_unit, period, ["tanf_gross_earned_income", "tanf_gross_unearned_income"])
|
||||
deductions = spm_unit("mo_tanf_deductions", period)
|
||||
return max_(gross - deductions, 0)
|
||||
|
||||
# Variable 3 - Need standard
|
||||
class mo_tanf_need_standard(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
# SAME calculation AGAIN!
|
||||
gross = add(spm_unit, period, ["tanf_gross_earned_income", "tanf_gross_unearned_income"])
|
||||
return where(gross < p.threshold, p.high, p.low)
|
||||
```
|
||||
|
||||
✅ **Good - Extract into reusable intermediate variable:**
|
||||
```python
|
||||
# Intermediate variable - used in multiple places
|
||||
class mo_tanf_gross_income(Variable):
|
||||
adds = ["tanf_gross_earned_income", "tanf_gross_unearned_income"]
|
||||
|
||||
# Variable 1 - Reuses intermediate
|
||||
class mo_tanf_income_eligible(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
gross = spm_unit("mo_tanf_gross_income", period) # Reuse
|
||||
return gross <= p.income_limit
|
||||
|
||||
# Variable 2 - Reuses intermediate
|
||||
class mo_tanf_countable_income(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
gross = spm_unit("mo_tanf_gross_income", period) # Reuse
|
||||
deductions = spm_unit("mo_tanf_deductions", period)
|
||||
return max_(gross - deductions, 0)
|
||||
|
||||
# Variable 3 - Reuses intermediate
|
||||
class mo_tanf_need_standard(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
gross = spm_unit("mo_tanf_gross_income", period) # Reuse
|
||||
return where(gross < p.threshold, p.high, p.low)
|
||||
```
|
||||
|
||||
**When to create intermediate variables for reuse:**
|
||||
- ✅ Same calculation appears in 2+ variables
|
||||
- ✅ Represents a meaningful concept (e.g., "gross income", "net resources")
|
||||
- ✅ Simplifies maintenance (change once vs many places)
|
||||
- ✅ Follows DRY (Don't Repeat Yourself) principle
|
||||
|
||||
**When NOT to create (still a wrapper):**
|
||||
- ❌ Only used in ONE place
|
||||
- ❌ Just passes through another variable unchanged
|
||||
- ❌ Adds indirection without code reuse benefit
|
||||
|
||||
#### Red Flags for Unnecessary Wrapper Variables
|
||||
|
||||
```python
|
||||
❌ INVALID - Pure wrapper, no state logic:
|
||||
class in_tanf_assistance_unit_size(Variable):
|
||||
def formula(spm_unit, period):
|
||||
return spm_unit("spm_unit_size", period) # Just returns federal
|
||||
|
||||
❌ INVALID - Aggregation without transformation:
|
||||
class in_tanf_countable_unearned_income(Variable):
|
||||
def formula(tax_unit, period):
|
||||
return tax_unit.sum(person("tanf_gross_unearned_income", period))
|
||||
|
||||
❌ INVALID - Pass-through with no modification:
|
||||
class in_tanf_gross_income(Variable):
|
||||
def formula(entity, period):
|
||||
return entity("tanf_gross_income", period)
|
||||
```
|
||||
|
||||
#### Examples of VALID State Variables
|
||||
|
||||
```python
|
||||
✅ VALID - Has state-specific disregard:
|
||||
class in_tanf_countable_earned_income(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
p = parameters(period).gov.states.in.tanf.income
|
||||
earned = spm_unit("tanf_gross_earned_income", period)
|
||||
return earned * (1 - p.earned_income_disregard_rate) # STATE LOGIC
|
||||
|
||||
✅ VALID - Uses state-specific limits:
|
||||
class in_tanf_income_eligible(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
p = parameters(period).gov.states.in.tanf
|
||||
income = spm_unit("tanf_countable_income", period)
|
||||
size = spm_unit("spm_unit_size", period.this_year)
|
||||
limit = p.income_limit[min_(size, p.max_household_size)] # STATE PARAMS
|
||||
return income <= limit
|
||||
|
||||
✅ VALID - IL has different counting rules:
|
||||
class il_tanf_assistance_unit_size(Variable):
|
||||
adds = [
|
||||
"il_tanf_payment_eligible_child", # STATE-SPECIFIC
|
||||
"il_tanf_payment_eligible_parent", # STATE-SPECIFIC
|
||||
]
|
||||
```
|
||||
|
||||
#### State Variables to AVOID Creating
|
||||
|
||||
For TANF implementations:
|
||||
|
||||
**❌ DON'T create these (use federal directly):**
|
||||
- `state_tanf_assistance_unit_size` (unless different counting rules like IL)
|
||||
- `state_tanf_countable_unearned_income` (unless state has disregards)
|
||||
- `state_tanf_gross_income` (just use federal baseline)
|
||||
- Any variable that's just `return entity("federal_variable", period)`
|
||||
|
||||
**✅ DO create these (when state has unique rules):**
|
||||
- `state_tanf_countable_earned_income` (if unique disregard %)
|
||||
- `state_tanf_income_eligible` (state income limits)
|
||||
- `state_tanf_maximum_benefit` (state payment standards)
|
||||
- `state_tanf` (final benefit calculation)
|
||||
|
||||
### Demographic Eligibility Pattern
|
||||
|
||||
**Option 1: Use Federal (Simplified)**
|
||||
```python
|
||||
class ca_tanf_eligible(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
# Use federal variable
|
||||
has_eligible = spm_unit.any(
|
||||
spm_unit.members("is_demographic_tanf_eligible", period)
|
||||
)
|
||||
return has_eligible & income_eligible
|
||||
```
|
||||
|
||||
**Option 2: State-Specific (Different thresholds)**
|
||||
```python
|
||||
class ca_tanf_demographic_eligible_person(Variable):
|
||||
def formula(person, period, parameters):
|
||||
p = parameters(period).gov.states.ca.tanf
|
||||
age = person("age", period.this_year) # NOT monthly_age
|
||||
|
||||
age_limit = where(
|
||||
person("is_full_time_student", period),
|
||||
p.age_threshold.student,
|
||||
p.age_threshold.minor_child
|
||||
)
|
||||
return age < age_limit
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Common Implementation Patterns
|
||||
|
||||
### Income Eligibility
|
||||
```python
|
||||
class program_income_eligible(Variable):
|
||||
value_type = bool
|
||||
entity = SPMUnit
|
||||
definition_period = MONTH
|
||||
|
||||
def formula(spm_unit, period, parameters):
|
||||
p = parameters(period).gov.states.xx.program
|
||||
income = spm_unit("program_countable_income", period)
|
||||
size = spm_unit("spm_unit_size", period.this_year)
|
||||
|
||||
# Get threshold from parameters
|
||||
threshold = p.income_limit[min_(size, p.max_household_size)]
|
||||
return income <= threshold
|
||||
```
|
||||
|
||||
### Benefit Calculation
|
||||
```python
|
||||
class program_benefit(Variable):
|
||||
value_type = float
|
||||
entity = SPMUnit
|
||||
definition_period = MONTH
|
||||
unit = USD
|
||||
|
||||
def formula(spm_unit, period, parameters):
|
||||
p = parameters(period).gov.states.xx.program
|
||||
eligible = spm_unit("program_eligible", period)
|
||||
|
||||
# Calculate benefit amount
|
||||
base = p.benefit_schedule.base_amount
|
||||
adjustment = p.benefit_schedule.adjustment_rate
|
||||
size = spm_unit("spm_unit_size", period.this_year)
|
||||
|
||||
amount = base + (size - 1) * adjustment
|
||||
return where(eligible, amount, 0)
|
||||
```
|
||||
|
||||
### Using Scale Parameters
|
||||
```python
|
||||
def formula(entity, period, parameters):
|
||||
p = parameters(period).gov.states.az.program
|
||||
federal_p = parameters(period).gov.hhs.fpg
|
||||
|
||||
# Federal base with state scale
|
||||
size = entity("household_size", period.this_year)
|
||||
fpg = federal_p.first_person + federal_p.additional * (size - 1)
|
||||
state_scale = p.income_limit_scale # Often exists
|
||||
income_limit = fpg * state_scale
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Variable Creation Checklist
|
||||
|
||||
Before creating any variable:
|
||||
- [ ] Check if it already exists
|
||||
- [ ] Use standard demographic variables (age, is_disabled)
|
||||
- [ ] Reuse federal calculations where applicable
|
||||
- [ ] Check for household_income before creating new
|
||||
- [ ] Look for existing intermediate variables
|
||||
- [ ] Study reference implementations
|
||||
|
||||
---
|
||||
|
||||
## Quality Standards
|
||||
|
||||
### Complete Implementation Requirements
|
||||
- All values from parameters (no hard-coding)
|
||||
- Complete formula logic
|
||||
- Proper entity aggregation
|
||||
- Correct period handling
|
||||
- Meaningful variable names
|
||||
- Proper metadata
|
||||
|
||||
### Anti-Patterns to Avoid
|
||||
- Copy-pasting logic between files
|
||||
- Hard-coding any numeric values
|
||||
- Creating duplicate income variables
|
||||
- State-specific versions of federal rules
|
||||
- Placeholder TODOs in production code
|
||||
|
||||
---
|
||||
|
||||
## Parameter-to-Variable Mapping Requirements
|
||||
|
||||
### Every Parameter Must Have a Variable
|
||||
|
||||
**CRITICAL: Complete implementation means every parameter is used!**
|
||||
|
||||
When you create parameters, you MUST create corresponding variables:
|
||||
|
||||
| Parameter Type | Required Variable(s) |
|
||||
|---------------|---------------------|
|
||||
| resources/limit | `state_program_resource_eligible` |
|
||||
| income/limit | `state_program_income_eligible` |
|
||||
| payment_standard | `state_program_maximum_benefit` |
|
||||
| income/disregard | `state_program_countable_earned_income` |
|
||||
| categorical/requirements | `state_program_categorically_eligible` |
|
||||
|
||||
### Complete Eligibility Formula
|
||||
|
||||
The main eligibility variable MUST combine ALL checks:
|
||||
|
||||
```python
|
||||
class state_program_eligible(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
income_eligible = spm_unit("state_program_income_eligible", period)
|
||||
resource_eligible = spm_unit("state_program_resource_eligible", period) # DON'T FORGET!
|
||||
categorical = spm_unit("state_program_categorically_eligible", period)
|
||||
|
||||
return income_eligible & resource_eligible & categorical
|
||||
```
|
||||
|
||||
**Common Implementation Failures:**
|
||||
- ❌ Created resource limit parameter but no resource_eligible variable
|
||||
- ❌ Main eligible variable only checks income, ignores resources
|
||||
- ❌ Parameters created but never referenced in any formula
|
||||
|
||||
---
|
||||
|
||||
## For Agents
|
||||
|
||||
When implementing variables:
|
||||
1. **Study reference implementations** (DC, IL, TX TANF)
|
||||
2. **Never hard-code values** - use parameters
|
||||
3. **Map every parameter to a variable** - no orphaned parameters
|
||||
4. **Complete ALL eligibility checks** - income AND resources AND categorical
|
||||
5. **Reuse existing variables** - avoid duplication
|
||||
6. **Use `adds` when possible** - cleaner than formula
|
||||
7. **Create intermediate variables** for complex logic
|
||||
8. **Follow metadata standards** exactly
|
||||
9. **Complete implementation** or delete the file
|
||||
440
skills/policyengine-parameter-patterns-skill/SKILL.md
Normal file
440
skills/policyengine-parameter-patterns-skill/SKILL.md
Normal file
@@ -0,0 +1,440 @@
|
||||
---
|
||||
name: policyengine-parameter-patterns
|
||||
description: PolicyEngine parameter patterns - YAML structure, naming conventions, metadata requirements, federal/state separation
|
||||
---
|
||||
|
||||
# PolicyEngine Parameter Patterns
|
||||
|
||||
Comprehensive patterns for creating PolicyEngine parameter files.
|
||||
|
||||
## Critical: Required Structure
|
||||
|
||||
Every parameter MUST have this exact structure:
|
||||
```yaml
|
||||
description: [One sentence description].
|
||||
values:
|
||||
YYYY-MM-DD: value
|
||||
|
||||
metadata:
|
||||
unit: [type] # REQUIRED
|
||||
period: [period] # REQUIRED
|
||||
label: [name] # REQUIRED
|
||||
reference: # REQUIRED
|
||||
- title: [source]
|
||||
href: [url]
|
||||
```
|
||||
|
||||
**Missing ANY metadata field = validation error**
|
||||
|
||||
---
|
||||
|
||||
## 1. File Naming Conventions
|
||||
|
||||
### Study Reference Implementations First
|
||||
Before naming, examine:
|
||||
- DC TANF: `/parameters/gov/states/dc/dhs/tanf/`
|
||||
- IL TANF: `/parameters/gov/states/il/dhs/tanf/`
|
||||
- TX TANF: `/parameters/gov/states/tx/hhs/tanf/`
|
||||
|
||||
### Naming Patterns
|
||||
|
||||
**Dollar amounts → `/amount.yaml`**
|
||||
```
|
||||
income/deductions/work_expense/amount.yaml # $120
|
||||
resources/limit/amount.yaml # $6,000
|
||||
payment_standard/amount.yaml # $320
|
||||
```
|
||||
|
||||
**Percentages/rates → `/rate.yaml` or `/percentage.yaml`**
|
||||
```
|
||||
income_limit/rate.yaml # 1.85 (185% FPL)
|
||||
benefit_reduction/rate.yaml # 0.2 (20%)
|
||||
income/disregard/percentage.yaml # 0.67 (67%)
|
||||
```
|
||||
|
||||
**Thresholds → `/threshold.yaml`**
|
||||
```
|
||||
age_threshold/minor_child.yaml # 18
|
||||
age_threshold/elderly.yaml # 60
|
||||
income/threshold.yaml # 30_000
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2. Description Field
|
||||
|
||||
### The ONLY Acceptable Formula
|
||||
|
||||
```yaml
|
||||
description: [State] [verb] [category] to [this X] under the [Full Program Name] program.
|
||||
```
|
||||
|
||||
**Components:**
|
||||
1. **[State]**: Full state name (Indiana, Texas, California)
|
||||
2. **[verb]**: ONLY use: limits, provides, sets, excludes, deducts, uses
|
||||
3. **[category]**: What's being limited/provided (gross income, resources, payment standard)
|
||||
4. **[this X]**: ALWAYS use generic placeholder
|
||||
- `this amount` (for currency-USD)
|
||||
- `this share` or `this percentage` (for rates/percentages)
|
||||
- `this threshold` (for age/counts)
|
||||
5. **[Full Program Name]**: ALWAYS spell out (Temporary Assistance for Needy Families, NOT TANF)
|
||||
|
||||
### Copy These Exact Templates
|
||||
|
||||
**For income limits:**
|
||||
```yaml
|
||||
description: [State] limits gross income to this amount under the Temporary Assistance for Needy Families program.
|
||||
```
|
||||
|
||||
**For resource limits:**
|
||||
```yaml
|
||||
description: [State] limits resources to this amount under the Temporary Assistance for Needy Families program.
|
||||
```
|
||||
|
||||
**For payment standards:**
|
||||
```yaml
|
||||
description: [State] provides this amount as the payment standard under the Temporary Assistance for Needy Families program.
|
||||
```
|
||||
|
||||
**For disregards:**
|
||||
```yaml
|
||||
description: [State] excludes this share of earnings from countable income under the Temporary Assistance for Needy Families program.
|
||||
```
|
||||
|
||||
### Description Validation Checklist
|
||||
|
||||
Run this check on EVERY description:
|
||||
```python
|
||||
# Pseudo-code validation
|
||||
def validate_description(desc):
|
||||
checks = [
|
||||
desc.count('.') == 1, # Exactly one sentence
|
||||
'TANF' not in desc, # No acronyms
|
||||
'SNAP' not in desc, # No acronyms
|
||||
'this amount' in desc or 'this share' in desc or 'this percentage' in desc,
|
||||
'under the' in desc and 'program' in desc,
|
||||
'by household size' not in desc, # No explanatory text
|
||||
'based on' not in desc, # No explanatory text
|
||||
'for eligibility' not in desc, # Redundant
|
||||
]
|
||||
return all(checks)
|
||||
```
|
||||
|
||||
**CRITICAL: Always spell out full program names in descriptions!**
|
||||
|
||||
---
|
||||
|
||||
## 3. Values Section
|
||||
|
||||
### Format Rules
|
||||
```yaml
|
||||
values:
|
||||
2024-01-01: 3_000 # Use underscores
|
||||
# NOT: 3000
|
||||
|
||||
2024-01-01: 0.2 # Remove trailing zeros
|
||||
# NOT: 0.20 or 0.200
|
||||
|
||||
2024-01-01: 2 # No decimals for integers
|
||||
# NOT: 2.0 or 2.00
|
||||
```
|
||||
|
||||
### Effective Dates
|
||||
|
||||
**Use exact dates from sources:**
|
||||
```yaml
|
||||
# If source says "effective July 1, 2023"
|
||||
2023-07-01: value
|
||||
|
||||
# If source says "as of October 1"
|
||||
2024-10-01: value
|
||||
|
||||
# NOT arbitrary dates:
|
||||
2000-01-01: value # Shows no research
|
||||
```
|
||||
|
||||
**Date format:** `YYYY-MM-01` (always use 01 for day)
|
||||
|
||||
---
|
||||
|
||||
## 4. Metadata Fields (ALL REQUIRED)
|
||||
|
||||
### unit
|
||||
Common units:
|
||||
- `currency-USD` - Dollar amounts
|
||||
- `/1` - Rates, percentages (as decimals)
|
||||
- `month` - Number of months
|
||||
- `year` - Age in years
|
||||
- `bool` - True/false
|
||||
- `person` - Count of people
|
||||
|
||||
### period
|
||||
- `year` - Annual values
|
||||
- `month` - Monthly values
|
||||
- `day` - Daily values
|
||||
- `eternity` - Never changes
|
||||
|
||||
### label
|
||||
Pattern: `[State] [PROGRAM] [description]`
|
||||
```yaml
|
||||
label: Montana TANF minor child age threshold
|
||||
label: Illinois TANF earned income disregard rate
|
||||
label: California SNAP resource limit
|
||||
```
|
||||
**Rules:**
|
||||
- Spell out state name
|
||||
- Abbreviate program (TANF, SNAP)
|
||||
- No period at end
|
||||
|
||||
### reference
|
||||
**Requirements:**
|
||||
1. At least one source (prefer two)
|
||||
2. Must contain the actual value
|
||||
3. Legal codes need subsections
|
||||
4. PDFs need page anchors
|
||||
|
||||
```yaml
|
||||
✅ GOOD:
|
||||
reference:
|
||||
- title: Idaho Admin Code 16.05.03.205(3)
|
||||
href: https://adminrules.idaho.gov/rules/current/16/160503.pdf#page=14
|
||||
- title: Idaho LIHEAP Guidelines, Section 3, page 8
|
||||
href: https://healthandwelfare.idaho.gov/guidelines.pdf#page=8
|
||||
|
||||
❌ BAD:
|
||||
reference:
|
||||
- title: Federal LIHEAP regulations # Too generic
|
||||
href: https://www.acf.hhs.gov/ocs # No specific section
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 5. Federal/State Separation
|
||||
|
||||
### Federal Parameters
|
||||
Location: `/parameters/gov/{agency}/{program}/`
|
||||
```yaml
|
||||
# parameters/gov/hhs/fpg/first_person.yaml
|
||||
description: HHS sets this amount as the federal poverty guideline for one person.
|
||||
```
|
||||
|
||||
### State Parameters
|
||||
Location: `/parameters/gov/states/{state}/{agency}/{program}/`
|
||||
```yaml
|
||||
# parameters/gov/states/ca/dss/tanf/income_limit/rate.yaml
|
||||
description: California uses this multiplier of the federal poverty guideline for TANF income eligibility.
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 6. Common Parameter Patterns
|
||||
|
||||
### Income Limits (as FPL multiplier)
|
||||
```yaml
|
||||
# income_limit/rate.yaml
|
||||
description: State uses this multiplier of the federal poverty guideline for program income limits.
|
||||
values:
|
||||
2024-01-01: 1.85 # 185% FPL
|
||||
|
||||
metadata:
|
||||
unit: /1
|
||||
period: year
|
||||
label: State PROGRAM income limit multiplier
|
||||
```
|
||||
|
||||
### Benefit Amounts
|
||||
```yaml
|
||||
# payment_standard/amount.yaml
|
||||
description: State provides this amount as the monthly program benefit.
|
||||
values:
|
||||
2024-01-01: 500
|
||||
|
||||
metadata:
|
||||
unit: currency-USD
|
||||
period: month
|
||||
label: State PROGRAM payment standard amount
|
||||
```
|
||||
|
||||
### Age Thresholds
|
||||
```yaml
|
||||
# age_threshold/minor_child.yaml
|
||||
description: State defines minor children as under this age for program eligibility.
|
||||
values:
|
||||
2024-01-01: 18
|
||||
|
||||
metadata:
|
||||
unit: year
|
||||
period: eternity
|
||||
label: State PROGRAM minor child age threshold
|
||||
```
|
||||
|
||||
### Disregard Percentages
|
||||
```yaml
|
||||
# income/disregard/percentage.yaml
|
||||
description: State excludes this share of earned income from program calculations.
|
||||
values:
|
||||
2024-01-01: 0.67 # 67%
|
||||
|
||||
metadata:
|
||||
unit: /1
|
||||
period: eternity
|
||||
label: State PROGRAM earned income disregard percentage
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 7. Validation Checklist
|
||||
|
||||
Before creating parameters:
|
||||
- [ ] Studied reference implementations (DC, IL, TX)
|
||||
- [ ] All four metadata fields present
|
||||
- [ ] Description is one complete sentence
|
||||
- [ ] Values use underscore separators
|
||||
- [ ] Trailing zeros removed from decimals
|
||||
- [ ] References include subsections and page numbers
|
||||
- [ ] Label follows naming pattern
|
||||
- [ ] Effective date matches source document
|
||||
|
||||
---
|
||||
|
||||
## 8. Common Mistakes to Avoid
|
||||
|
||||
### Missing Metadata
|
||||
```yaml
|
||||
❌ WRONG - Missing required fields:
|
||||
metadata:
|
||||
unit: currency-USD
|
||||
label: Benefit amount
|
||||
# Missing: period, reference
|
||||
```
|
||||
|
||||
### Generic References
|
||||
```yaml
|
||||
❌ WRONG:
|
||||
reference:
|
||||
- title: State TANF Manual
|
||||
href: https://state.gov/tanf
|
||||
|
||||
✅ CORRECT:
|
||||
reference:
|
||||
- title: State TANF Manual Section 5.2, page 15
|
||||
href: https://state.gov/tanf-manual.pdf#page=15
|
||||
```
|
||||
|
||||
### Arbitrary Dates
|
||||
```yaml
|
||||
❌ WRONG:
|
||||
values:
|
||||
2000-01-01: 500 # Lazy default
|
||||
|
||||
✅ CORRECT:
|
||||
values:
|
||||
2023-07-01: 500 # From source: "effective July 1, 2023"
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Real-World Examples from Production Code
|
||||
|
||||
**CRITICAL: Study actual parameter files, not just examples!**
|
||||
|
||||
Before writing ANY parameter:
|
||||
1. Open and READ 3+ similar parameter files from TX/IL/DC
|
||||
2. COPY their exact description pattern
|
||||
3. Replace state name and specific details only
|
||||
|
||||
### Payment Standards
|
||||
```yaml
|
||||
# Texas (actual production)
|
||||
description: Texas provides this amount as the payment standard under the Temporary Assistance for Needy Families program.
|
||||
|
||||
# Pennsylvania (actual production)
|
||||
description: Pennsylvania limits TANF benefits to households with resources at or below this amount.
|
||||
```
|
||||
|
||||
### Income Limits
|
||||
```yaml
|
||||
# Indiana (should be)
|
||||
description: Indiana limits gross income to this amount under the Temporary Assistance for Needy Families program.
|
||||
|
||||
# Texas (actual production)
|
||||
description: Texas limits countable resources to this amount under the Temporary Assistance for Needy Families program.
|
||||
```
|
||||
|
||||
### Disregards
|
||||
```yaml
|
||||
# Indiana (should be)
|
||||
description: Indiana excludes this share of earnings from countable income under the Temporary Assistance for Needy Families program.
|
||||
|
||||
# Texas (actual production)
|
||||
description: Texas deducts this standard work expense amount from gross earned income for Temporary Assistance for Needy Families program calculations.
|
||||
```
|
||||
|
||||
### Pattern Analysis
|
||||
- **ALWAYS** spell out full program name
|
||||
- Use "under the [Program] program" or "for [Program] program calculations"
|
||||
- One simple verb (limits, provides, excludes, deducts)
|
||||
- One "this X" placeholder
|
||||
- NO extra explanation ("based on X", "This is Y")
|
||||
|
||||
### Common Description Mistakes to AVOID
|
||||
|
||||
**❌ WRONG - Using acronyms:**
|
||||
```yaml
|
||||
description: Indiana sets this gross income limit for TANF eligibility by household size.
|
||||
# Problems: "TANF" not spelled out, unnecessary "by household size"
|
||||
```
|
||||
|
||||
**✅ CORRECT:**
|
||||
```yaml
|
||||
description: Indiana limits gross income to this amount under the Temporary Assistance for Needy Families program.
|
||||
```
|
||||
|
||||
**❌ WRONG - Adding explanatory text:**
|
||||
```yaml
|
||||
description: Indiana provides this payment standard amount based on household size.
|
||||
# Problem: "based on household size" is unnecessary (evident from breakdown)
|
||||
```
|
||||
|
||||
**✅ CORRECT:**
|
||||
```yaml
|
||||
description: Indiana provides this amount as the payment standard under the Temporary Assistance for Needy Families program.
|
||||
```
|
||||
|
||||
**❌ WRONG - Missing program context:**
|
||||
```yaml
|
||||
description: Indiana sets the gross income limit.
|
||||
# Problem: No program name, no "this amount"
|
||||
```
|
||||
|
||||
**✅ CORRECT:**
|
||||
```yaml
|
||||
description: Indiana limits gross income to this amount under the Temporary Assistance for Needy Families program.
|
||||
```
|
||||
|
||||
### Authoritative Source Requirements
|
||||
|
||||
**ONLY use official government sources:**
|
||||
- ✅ State codes and administrative regulations
|
||||
- ✅ Official state agency websites (.gov domains)
|
||||
- ✅ Federal regulations (CFR, USC)
|
||||
- ✅ State plans and official manuals (.gov PDFs)
|
||||
|
||||
**NEVER use:**
|
||||
- ❌ Third-party guides (singlemotherguide.com, benefits.gov descriptions)
|
||||
- ❌ Wikipedia
|
||||
- ❌ Nonprofit summaries (unless no official source exists)
|
||||
- ❌ News articles
|
||||
|
||||
---
|
||||
|
||||
## For Agents
|
||||
|
||||
When creating parameters:
|
||||
1. **READ ACTUAL FILES** - Study TX/IL/DC parameter files, not just skill examples
|
||||
2. **Include ALL metadata fields** - missing any causes errors
|
||||
3. **Use exact effective dates** from sources
|
||||
4. **Follow naming conventions** (amount/rate/threshold)
|
||||
5. **Write simple descriptions** with "this" placeholders and full program names
|
||||
6. **Include ONLY official government references** with subsections and pages
|
||||
7. **Format values properly** (underscores, no trailing zeros)
|
||||
478
skills/policyengine-period-patterns-skill/SKILL.md
Normal file
478
skills/policyengine-period-patterns-skill/SKILL.md
Normal file
@@ -0,0 +1,478 @@
|
||||
---
|
||||
name: policyengine-period-patterns
|
||||
description: PolicyEngine period handling - converting between YEAR, MONTH definition periods and testing patterns
|
||||
---
|
||||
|
||||
# PolicyEngine Period Patterns
|
||||
|
||||
Essential patterns for handling different definition periods (YEAR, MONTH) in PolicyEngine.
|
||||
|
||||
## Quick Reference
|
||||
|
||||
| From | To | Method | Example |
|
||||
|------|-----|--------|---------|
|
||||
| MONTH formula | YEAR variable | `period.this_year` | `age = person("age", period.this_year)` |
|
||||
| YEAR formula | MONTH variable | `period.first_month` | `person("monthly_rent", period.first_month)` |
|
||||
| Any | Year integer | `period.start.year` | `year = period.start.year` |
|
||||
| Any | Month integer | `period.start.month` | `month = period.start.month` |
|
||||
| Annual → Monthly | Divide by 12 | `/ MONTHS_IN_YEAR` | `monthly = annual / 12` |
|
||||
| Monthly → Annual | Multiply by 12 | `* MONTHS_IN_YEAR` | `annual = monthly * 12` |
|
||||
|
||||
---
|
||||
|
||||
## 1. Definition Periods in PolicyEngine US
|
||||
|
||||
### Available Periods
|
||||
- **YEAR**: Annual values (most common - 2,883 variables)
|
||||
- **MONTH**: Monthly values (395 variables)
|
||||
- **ETERNITY**: Never changes (1 variable - structural relationships)
|
||||
|
||||
**Note:** QUARTER is NOT used in PolicyEngine US
|
||||
|
||||
### Examples
|
||||
```python
|
||||
from policyengine_us.model_api import *
|
||||
|
||||
class annual_income(Variable):
|
||||
definition_period = YEAR # Annual amount
|
||||
|
||||
class monthly_benefit(Variable):
|
||||
definition_period = MONTH # Monthly amount
|
||||
|
||||
class is_head(Variable):
|
||||
definition_period = ETERNITY # Never changes
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2. The Golden Rule
|
||||
|
||||
**When accessing a variable with a different definition period than your formula, you must specify the target period explicitly.**
|
||||
|
||||
```python
|
||||
# ✅ CORRECT - MONTH formula accessing YEAR variable
|
||||
def formula(person, period, parameters):
|
||||
age = person("age", period.this_year) # Gets actual age
|
||||
|
||||
# ❌ WRONG - Would get age/12
|
||||
def formula(person, period, parameters):
|
||||
age = person("age", period) # BAD: gives age divided by 12!
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 3. Common Patterns
|
||||
|
||||
### Pattern 1: MONTH Formula Accessing YEAR Variable
|
||||
|
||||
**Use Case**: Monthly benefits need annual demographic data
|
||||
|
||||
```python
|
||||
class monthly_benefit_eligible(Variable):
|
||||
value_type = bool
|
||||
entity = Person
|
||||
definition_period = MONTH # Monthly eligibility
|
||||
|
||||
def formula(person, period, parameters):
|
||||
# Age is YEAR-defined, use period.this_year
|
||||
age = person("age", period.this_year) # ✅ Gets full age
|
||||
|
||||
# is_pregnant is MONTH-defined, just use period
|
||||
is_pregnant = person("is_pregnant", period) # ✅ Same period
|
||||
|
||||
return (age < 18) | is_pregnant
|
||||
```
|
||||
|
||||
### Pattern 2: Accessing Stock Variables (Assets)
|
||||
|
||||
**Stock variables** (point-in-time values like assets) are typically YEAR-defined
|
||||
|
||||
```python
|
||||
class tanf_countable_resources(Variable):
|
||||
value_type = float
|
||||
entity = SPMUnit
|
||||
definition_period = MONTH # Monthly check
|
||||
|
||||
def formula(spm_unit, period, parameters):
|
||||
# Assets are stocks (YEAR-defined)
|
||||
cash = spm_unit("cash_assets", period.this_year) # ✅
|
||||
vehicles = spm_unit("vehicles_value", period.this_year) # ✅
|
||||
|
||||
p = parameters(period).gov.tanf.resources
|
||||
return cash + max_(0, vehicles - p.vehicle_exemption)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 4. Understanding Auto-Conversion: When to Use `period` vs `period.this_year`
|
||||
|
||||
### The Key Question
|
||||
|
||||
**When accessing a YEAR variable from a MONTH formula, should the value be divided by 12?**
|
||||
|
||||
- **If YES** → Use `period` (let auto-conversion happen)
|
||||
- **If NO** → Use `period.this_year` (prevent auto-conversion)
|
||||
|
||||
### When Auto-Conversion Makes Sense (Use `period`)
|
||||
|
||||
**Flow variables** where you want the monthly portion:
|
||||
|
||||
```python
|
||||
class monthly_benefit(Variable):
|
||||
definition_period = MONTH
|
||||
|
||||
def formula(person, period, parameters):
|
||||
# ✅ Use period - want $2,000/month from $24,000/year
|
||||
monthly_income = person("employment_income", period)
|
||||
|
||||
# Compare to monthly threshold
|
||||
p = parameters(period).gov.program
|
||||
return monthly_income < p.monthly_threshold
|
||||
```
|
||||
|
||||
Why: If annual income is $24,000, you want $2,000/month for monthly eligibility checks.
|
||||
|
||||
### When Auto-Conversion Breaks Things (Use `period.this_year`)
|
||||
|
||||
**Stock variables and counts** where division by 12 is nonsensical:
|
||||
|
||||
**1. Age**
|
||||
```python
|
||||
# ❌ WRONG - gives age/12
|
||||
age = person("age", period) # 30 years → 2.5 "monthly age" ???
|
||||
|
||||
# ✅ CORRECT - gives actual age
|
||||
age = person("age", period.this_year) # 30 years
|
||||
```
|
||||
|
||||
**2. Assets/Resources (Stocks)**
|
||||
```python
|
||||
# ❌ WRONG - gives assets/12
|
||||
assets = spm_unit("spm_unit_assets", period) # $12,000 → $1,000 ???
|
||||
|
||||
# ✅ CORRECT - gives point-in-time value
|
||||
assets = spm_unit("spm_unit_assets", period.this_year) # $12,000
|
||||
```
|
||||
|
||||
**3. Counts (Household Size, Number of Children)**
|
||||
```python
|
||||
# ❌ WRONG - gives count/12
|
||||
size = spm_unit("household_size", period) # 4 people → 0.33 people ???
|
||||
|
||||
# ✅ CORRECT - gives actual count
|
||||
size = spm_unit("household_size", period.this_year) # 4 people
|
||||
```
|
||||
|
||||
**4. Boolean/Enum Variables**
|
||||
```python
|
||||
# ❌ WRONG - weird fractional conversion
|
||||
status = person("is_disabled", period)
|
||||
|
||||
# ✅ CORRECT - actual status
|
||||
status = person("is_disabled", period.this_year)
|
||||
```
|
||||
|
||||
### Decision Tree
|
||||
|
||||
```
|
||||
Accessing YEAR variable from MONTH formula?
|
||||
│
|
||||
├─ Is it an INCOME or FLOW variable?
|
||||
│ └─ YES → Use period (auto-convert to monthly) ✅
|
||||
│ Example: employment_income, self_employment_income
|
||||
│
|
||||
└─ Is it AGE, ASSET, COUNT, or BOOLEAN?
|
||||
└─ YES → Use period.this_year (prevent conversion) ✅
|
||||
Examples: age, assets, household_size, is_disabled
|
||||
```
|
||||
|
||||
### Complete Example
|
||||
|
||||
```python
|
||||
class monthly_tanf_eligible(Variable):
|
||||
value_type = bool
|
||||
entity = Person
|
||||
definition_period = MONTH
|
||||
|
||||
def formula(person, period, parameters):
|
||||
# Age: Use period.this_year (don't want age/12)
|
||||
age = person("age", period.this_year) # ✅
|
||||
|
||||
# Assets: Use period.this_year (don't want assets/12)
|
||||
assets = person("assets", period.this_year) # ✅
|
||||
|
||||
# Income: Use period (DO want monthly income from annual)
|
||||
monthly_income = person("employment_income", period) # ✅
|
||||
|
||||
p = parameters(period).gov.tanf.eligibility
|
||||
|
||||
age_eligible = (age >= 18) & (age <= 64)
|
||||
asset_eligible = assets <= p.asset_limit
|
||||
income_eligible = monthly_income <= p.monthly_income_limit
|
||||
|
||||
return age_eligible & asset_eligible & income_eligible
|
||||
```
|
||||
|
||||
### Quick Reference for Auto-Conversion
|
||||
|
||||
| Variable Type | Use `period` | Use `period.this_year` | Why |
|
||||
|--------------|-------------|----------------------|-----|
|
||||
| Income (flow) | ✅ | ❌ | Want monthly portion |
|
||||
| Age | ❌ | ✅ | Age/12 is meaningless |
|
||||
| Assets/Resources (stock) | ❌ | ✅ | Point-in-time value |
|
||||
| Household size/counts | ❌ | ✅ | Can't divide people |
|
||||
| Boolean/status flags | ❌ | ✅ | True/12 is nonsense |
|
||||
| Demographic attributes | ❌ | ✅ | Properties don't divide |
|
||||
|
||||
**Rule of thumb:** If dividing by 12 makes the value meaningless → use `period.this_year`
|
||||
|
||||
### Pattern 3: Converting Annual to Monthly
|
||||
|
||||
```python
|
||||
class monthly_income_limit(Variable):
|
||||
definition_period = MONTH
|
||||
|
||||
def formula(household, period, parameters):
|
||||
# Get annual parameter
|
||||
annual_limit = parameters(period).gov.program.annual_limit
|
||||
|
||||
# Convert to monthly
|
||||
monthly_limit = annual_limit / MONTHS_IN_YEAR # ✅
|
||||
|
||||
return monthly_limit
|
||||
```
|
||||
|
||||
### Pattern 4: Getting Period Components
|
||||
|
||||
```python
|
||||
class federal_poverty_guideline(Variable):
|
||||
definition_period = MONTH
|
||||
|
||||
def formula(entity, period, parameters):
|
||||
# Get year and month as integers
|
||||
year = period.start.year # e.g., 2024
|
||||
month = period.start.month # e.g., 1-12
|
||||
|
||||
# FPG updates October 1st
|
||||
if month >= 10:
|
||||
instant_str = f"{year}-10-01"
|
||||
else:
|
||||
instant_str = f"{year - 1}-10-01"
|
||||
|
||||
# Access parameters at specific date
|
||||
p_fpg = parameters(instant_str).gov.hhs.fpg
|
||||
return p_fpg.first_person / MONTHS_IN_YEAR
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 5. Parameter Access
|
||||
|
||||
### Standard Access
|
||||
```python
|
||||
def formula(entity, period, parameters):
|
||||
# Parameters use current period
|
||||
p = parameters(period).gov.program.benefit
|
||||
return p.amount
|
||||
```
|
||||
|
||||
### Specific Date Access
|
||||
```python
|
||||
def formula(entity, period, parameters):
|
||||
# Access parameters at specific instant
|
||||
p = parameters("2024-10-01").gov.hhs.fpg
|
||||
return p.amount
|
||||
```
|
||||
|
||||
**Important**: Never use `parameters(period.this_year)` - parameters always use the formula's period
|
||||
|
||||
---
|
||||
|
||||
## 6. Testing with Different Periods
|
||||
|
||||
### Critical Testing Rules
|
||||
|
||||
**For MONTH period tests** (`period: 2025-01`):
|
||||
- **Input** YEAR variables as **annual amounts**
|
||||
- **Output** YEAR variables show **monthly values** (÷12)
|
||||
|
||||
### Test Examples
|
||||
|
||||
**Example 1: Basic MONTH Test**
|
||||
```yaml
|
||||
- name: Monthly income test
|
||||
period: 2025-01 # MONTH period
|
||||
input:
|
||||
people:
|
||||
person1:
|
||||
employment_income: 12_000 # Input: Annual
|
||||
output:
|
||||
employment_income: 1_000 # Output: Monthly (12_000/12)
|
||||
```
|
||||
|
||||
**Example 2: Mixed Variables**
|
||||
```yaml
|
||||
- name: Eligibility with age and income
|
||||
period: 2024-01 # MONTH period
|
||||
input:
|
||||
age: 30 # Age doesn't convert
|
||||
employment_income: 24_000 # Annual input
|
||||
output:
|
||||
age: 30 # Age stays same
|
||||
employment_income: 2_000 # Monthly output
|
||||
monthly_eligible: true
|
||||
```
|
||||
|
||||
**Example 3: YEAR Period Test**
|
||||
```yaml
|
||||
- name: Annual calculation
|
||||
period: 2024 # YEAR period
|
||||
input:
|
||||
employment_income: 18_000 # Annual
|
||||
output:
|
||||
employment_income: 18_000 # Annual output
|
||||
annual_tax: 2_000
|
||||
```
|
||||
|
||||
### Testing Best Practices
|
||||
|
||||
1. **Always specify period explicitly**
|
||||
2. **Input YEAR variables as annual amounts**
|
||||
3. **Expect monthly output for YEAR variables in MONTH tests**
|
||||
4. **Use underscore separators**: `12_000` not `12000`
|
||||
5. **Add calculation comments** in integration tests
|
||||
|
||||
---
|
||||
|
||||
## 7. Common Mistakes and Solutions
|
||||
|
||||
### ❌ Mistake 1: Not Using period.this_year
|
||||
```python
|
||||
# WRONG - From MONTH formula
|
||||
def formula(person, period, parameters):
|
||||
age = person("age", period) # Gets age/12!
|
||||
|
||||
# CORRECT
|
||||
def formula(person, period, parameters):
|
||||
age = person("age", period.this_year) # Gets actual age
|
||||
```
|
||||
|
||||
### ❌ Mistake 2: Mixing Annual and Monthly
|
||||
```python
|
||||
# WRONG - Comparing different units
|
||||
monthly_income = person("monthly_income", period)
|
||||
annual_limit = parameters(period).gov.limit
|
||||
if monthly_income < annual_limit: # BAD comparison
|
||||
|
||||
# CORRECT - Convert to same units
|
||||
monthly_income = person("monthly_income", period)
|
||||
annual_limit = parameters(period).gov.limit
|
||||
monthly_limit = annual_limit / MONTHS_IN_YEAR
|
||||
if monthly_income < monthly_limit: # Good comparison
|
||||
```
|
||||
|
||||
### ❌ Mistake 3: Wrong Test Expectations
|
||||
```yaml
|
||||
# WRONG - Expecting annual in MONTH test
|
||||
period: 2024-01
|
||||
input:
|
||||
employment_income: 12_000
|
||||
output:
|
||||
employment_income: 12_000 # Wrong!
|
||||
|
||||
# CORRECT
|
||||
period: 2024-01
|
||||
input:
|
||||
employment_income: 12_000 # Annual input
|
||||
output:
|
||||
employment_income: 1_000 # Monthly output
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 8. Quick Patterns Cheat Sheet
|
||||
|
||||
### Accessing Variables
|
||||
| Your Formula | Target Variable | Use |
|
||||
|--------------|-----------------|-----|
|
||||
| MONTH | YEAR | `period.this_year` |
|
||||
| YEAR | MONTH | `period.first_month` |
|
||||
| Any | ETERNITY | `period` |
|
||||
|
||||
### Common Variables That Need period.this_year
|
||||
- `age`
|
||||
- `household_size`, `spm_unit_size`
|
||||
- `cash_assets`, `vehicles_value`
|
||||
- `state_name`, `state_code`
|
||||
- Any demographic variable
|
||||
|
||||
### Period Conversion
|
||||
```python
|
||||
# Annual to monthly
|
||||
monthly = annual / MONTHS_IN_YEAR
|
||||
|
||||
# Monthly to annual
|
||||
annual = monthly * MONTHS_IN_YEAR
|
||||
|
||||
# Get year/month numbers
|
||||
year = period.start.year # 2024
|
||||
month = period.start.month # 1-12
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 9. Real-World Example
|
||||
|
||||
```python
|
||||
class tanf_income_eligible(Variable):
|
||||
value_type = bool
|
||||
entity = SPMUnit
|
||||
definition_period = MONTH # Monthly eligibility
|
||||
|
||||
def formula(spm_unit, period, parameters):
|
||||
# YEAR variables need period.this_year
|
||||
household_size = spm_unit("spm_unit_size", period.this_year)
|
||||
state = spm_unit.household("state_code", period.this_year)
|
||||
|
||||
# MONTH variables use period
|
||||
gross_income = spm_unit("tanf_gross_income", period)
|
||||
|
||||
# Parameters use period
|
||||
p = parameters(period).gov.states[state].tanf
|
||||
|
||||
# Convert annual limit to monthly
|
||||
annual_limit = p.income_limit[household_size]
|
||||
monthly_limit = annual_limit / MONTHS_IN_YEAR
|
||||
|
||||
return gross_income <= monthly_limit
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 10. Checklist for Period Handling
|
||||
|
||||
When writing a formula:
|
||||
|
||||
- [ ] Identify your formula's `definition_period`
|
||||
- [ ] Check `definition_period` of accessed variables
|
||||
- [ ] Use `period.this_year` for YEAR variables from MONTH formulas
|
||||
- [ ] Use `period` for parameters (not `period.this_year`)
|
||||
- [ ] Convert units when comparing (annual ↔ monthly)
|
||||
- [ ] Test with appropriate period values
|
||||
|
||||
---
|
||||
|
||||
## Related Skills
|
||||
|
||||
- **policyengine-aggregation-skill**: For summing across entities with period handling
|
||||
- **policyengine-core-skill**: For understanding variable and parameter systems
|
||||
|
||||
---
|
||||
|
||||
## For Agents
|
||||
|
||||
1. **Always check definition_period** before accessing variables
|
||||
2. **Default to period.this_year** for demographic/stock variables from MONTH formulas
|
||||
3. **Test thoroughly** - period mismatches cause subtle bugs
|
||||
4. **Document period conversions** in comments
|
||||
5. **Follow existing patterns** in similar variables
|
||||
356
skills/policyengine-python-client-skill/SKILL.md
Normal file
356
skills/policyengine-python-client-skill/SKILL.md
Normal file
@@ -0,0 +1,356 @@
|
||||
---
|
||||
name: policyengine-python-client
|
||||
description: Using PolicyEngine programmatically via Python client or REST API
|
||||
---
|
||||
|
||||
# PolicyEngine Python Client
|
||||
|
||||
This skill covers programmatic access to PolicyEngine for analysts and researchers.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
# Install the Python client
|
||||
pip install policyengine
|
||||
|
||||
# Or for local development
|
||||
pip install policyengine-us # Just the US model (offline)
|
||||
```
|
||||
|
||||
## Quick Start: Python Client
|
||||
|
||||
```python
|
||||
from policyengine import Simulation
|
||||
|
||||
# Create a household
|
||||
household = {
|
||||
"people": {
|
||||
"you": {
|
||||
"age": {"2024": 30},
|
||||
"employment_income": {"2024": 50000}
|
||||
}
|
||||
},
|
||||
"households": {
|
||||
"your household": {
|
||||
"members": ["you"],
|
||||
"state_name": {"2024": "CA"}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Run simulation
|
||||
sim = Simulation(situation=household, country_id="us")
|
||||
income_tax = sim.calculate("income_tax", "2024")
|
||||
```
|
||||
|
||||
## For Users: Why Use Python?
|
||||
|
||||
**Web app limitations:**
|
||||
- ✅ Great for exploring policies interactively
|
||||
- ❌ Can't analyze many households at once
|
||||
- ❌ Can't automate repetitive analyses
|
||||
- ❌ Limited customization of charts
|
||||
|
||||
**Python benefits:**
|
||||
- ✅ Analyze thousands of households in batch
|
||||
- ✅ Automate regular policy analysis
|
||||
- ✅ Create custom visualizations
|
||||
- ✅ Integrate with other data sources
|
||||
- ✅ Reproducible research
|
||||
|
||||
## For Analysts: Common Workflows
|
||||
|
||||
### Workflow 1: Calculate Your Own Taxes
|
||||
|
||||
```python
|
||||
from policyengine import Simulation
|
||||
|
||||
# Your household (more complex than web app)
|
||||
household = {
|
||||
"people": {
|
||||
"you": {
|
||||
"age": {"2024": 35},
|
||||
"employment_income": {"2024": 75000},
|
||||
"qualified_dividend_income": {"2024": 5000},
|
||||
"charitable_cash_donations": {"2024": 3000}
|
||||
},
|
||||
"spouse": {
|
||||
"age": {"2024": 33},
|
||||
"employment_income": {"2024": 60000}
|
||||
},
|
||||
"child1": {"age": {"2024": 8}},
|
||||
"child2": {"age": {"2024": 5}}
|
||||
},
|
||||
# ... entities setup (see policyengine-us-skill)
|
||||
}
|
||||
|
||||
sim = Simulation(situation=household, country_id="us")
|
||||
|
||||
# Calculate specific values
|
||||
federal_income_tax = sim.calculate("income_tax", "2024")
|
||||
state_income_tax = sim.calculate("state_income_tax", "2024")
|
||||
ctc = sim.calculate("ctc", "2024")
|
||||
eitc = sim.calculate("eitc", "2024")
|
||||
|
||||
print(f"Federal income tax: ${federal_income_tax:,.0f}")
|
||||
print(f"State income tax: ${state_income_tax:,.0f}")
|
||||
print(f"Child Tax Credit: ${ctc:,.0f}")
|
||||
print(f"EITC: ${eitc:,.0f}")
|
||||
```
|
||||
|
||||
### Workflow 2: Analyze a Policy Reform
|
||||
|
||||
```python
|
||||
from policyengine import Simulation
|
||||
|
||||
# Define reform (increase CTC to $5,000)
|
||||
reform = {
|
||||
"gov.irs.credits.ctc.amount.base_amount": {
|
||||
"2024-01-01.2100-12-31": 5000
|
||||
}
|
||||
}
|
||||
|
||||
# Compare baseline vs reform
|
||||
household = create_household() # Your household definition
|
||||
|
||||
sim_baseline = Simulation(situation=household, country_id="us")
|
||||
sim_reform = Simulation(situation=household, country_id="us", reform=reform)
|
||||
|
||||
ctc_baseline = sim_baseline.calculate("ctc", "2024")
|
||||
ctc_reform = sim_reform.calculate("ctc", "2024")
|
||||
|
||||
print(f"CTC baseline: ${ctc_baseline:,.0f}")
|
||||
print(f"CTC reform: ${ctc_reform:,.0f}")
|
||||
print(f"Increase: ${ctc_reform - ctc_baseline:,.0f}")
|
||||
```
|
||||
|
||||
### Workflow 3: Batch Analysis
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
from policyengine import Simulation
|
||||
|
||||
# Analyze multiple households
|
||||
households = [
|
||||
{"income": 30000, "children": 0},
|
||||
{"income": 50000, "children": 2},
|
||||
{"income": 100000, "children": 3},
|
||||
]
|
||||
|
||||
results = []
|
||||
for h in households:
|
||||
situation = create_household(income=h["income"], num_children=h["children"])
|
||||
sim = Simulation(situation=situation, country_id="us")
|
||||
|
||||
results.append({
|
||||
"income": h["income"],
|
||||
"children": h["children"],
|
||||
"income_tax": sim.calculate("income_tax", "2024"),
|
||||
"ctc": sim.calculate("ctc", "2024"),
|
||||
"eitc": sim.calculate("eitc", "2024")
|
||||
})
|
||||
|
||||
df = pd.DataFrame(results)
|
||||
print(df)
|
||||
```
|
||||
|
||||
## Using the REST API Directly
|
||||
|
||||
### Authentication
|
||||
|
||||
**Public access:**
|
||||
- 100 requests per minute (unauthenticated)
|
||||
- No API key needed for basic use
|
||||
|
||||
**Authenticated access:**
|
||||
- 1,000 requests per minute
|
||||
- Contact hello@policyengine.org for API key
|
||||
|
||||
### Key Endpoints
|
||||
|
||||
**Calculate household impact:**
|
||||
```python
|
||||
import requests
|
||||
|
||||
url = "https://api.policyengine.org/us/calculate"
|
||||
payload = {
|
||||
"household": household_dict,
|
||||
"policy_id": reform_id # or None for baseline
|
||||
}
|
||||
|
||||
response = requests.post(url, json=payload)
|
||||
result = response.json()
|
||||
```
|
||||
|
||||
**Get policy details:**
|
||||
```python
|
||||
# Get policy metadata
|
||||
response = requests.get("https://api.policyengine.org/us/policy/12345")
|
||||
policy = response.json()
|
||||
```
|
||||
|
||||
**Get parameter values:**
|
||||
```python
|
||||
# Get current parameter value
|
||||
response = requests.get(
|
||||
"https://api.policyengine.org/us/parameter/gov.irs.credits.ctc.amount.base_amount"
|
||||
)
|
||||
parameter = response.json()
|
||||
```
|
||||
|
||||
### For Full API Documentation
|
||||
|
||||
**OpenAPI spec:** https://api.policyengine.org/docs
|
||||
|
||||
**To explore:**
|
||||
```bash
|
||||
# View all endpoints
|
||||
curl https://api.policyengine.org/docs
|
||||
|
||||
# Test calculate endpoint
|
||||
curl -X POST https://api.policyengine.org/us/calculate \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"household": {...}}'
|
||||
```
|
||||
|
||||
## Limitations and Considerations
|
||||
|
||||
### Rate Limits
|
||||
|
||||
**Unauthenticated:**
|
||||
- 100 requests/minute
|
||||
- Good for exploratory analysis
|
||||
|
||||
**Authenticated:**
|
||||
- 1,000 requests/minute
|
||||
- Required for production use
|
||||
|
||||
### Data Privacy
|
||||
|
||||
- PolicyEngine does not store household data
|
||||
- All calculations happen server-side and are not logged
|
||||
- Reform URLs are public (don't include personal info in reforms)
|
||||
|
||||
### Performance
|
||||
|
||||
**API calls:**
|
||||
- Simple household: ~200-500ms
|
||||
- Population impact: ~5-30 seconds (varies by reform)
|
||||
- Use caching for repeated calculations
|
||||
|
||||
**Local simulation (policyengine-us):**
|
||||
- Faster for batch analysis
|
||||
- No rate limits
|
||||
- No network dependency
|
||||
- Limited to one country per package
|
||||
|
||||
## Choosing Local vs API
|
||||
|
||||
### Use Local (policyengine-us package)
|
||||
|
||||
**When:**
|
||||
- Batch analysis of many households
|
||||
- Need offline capability
|
||||
- Analyzing parameter sweeps (axes)
|
||||
- Development/testing
|
||||
|
||||
**Install:**
|
||||
```bash
|
||||
pip install policyengine-us # US only
|
||||
pip install policyengine-uk # UK only
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
from policyengine_us import Simulation
|
||||
|
||||
# Works offline
|
||||
sim = Simulation(situation=household)
|
||||
```
|
||||
|
||||
### Use API (policyengine or requests)
|
||||
|
||||
**When:**
|
||||
- Multi-country analysis
|
||||
- Using latest model version
|
||||
- Don't want to manage dependencies
|
||||
- Integration with web services
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
import requests
|
||||
|
||||
# Requires internet
|
||||
response = requests.post("https://api.policyengine.org/us/calculate", ...)
|
||||
```
|
||||
|
||||
## For Contributors: Understanding the Client
|
||||
|
||||
**Repository:** PolicyEngine/policyengine.py
|
||||
|
||||
**To see implementation:**
|
||||
```bash
|
||||
# Clone the client
|
||||
git clone https://github.com/PolicyEngine/policyengine.py
|
||||
|
||||
# See the Simulation class
|
||||
cat policyengine/simulation.py
|
||||
|
||||
# See API integration
|
||||
cat policyengine/api.py
|
||||
```
|
||||
|
||||
**Architecture:**
|
||||
- `Simulation` class wraps API calls
|
||||
- `calculate()` method handles caching
|
||||
- Transparent fallback between API and local
|
||||
|
||||
## Advanced: Direct Country Package Usage
|
||||
|
||||
For maximum control and performance, use country packages directly:
|
||||
|
||||
```python
|
||||
from policyengine_us import Simulation
|
||||
|
||||
# Full control over situation structure
|
||||
situation = {
|
||||
# Complete situation dictionary
|
||||
# See policyengine-us-skill for patterns
|
||||
}
|
||||
|
||||
sim = Simulation(situation=situation)
|
||||
result = sim.calculate("variable_name", 2024)
|
||||
```
|
||||
|
||||
**Benefits:**
|
||||
- No API dependency
|
||||
- Faster (no network)
|
||||
- Full access to all variables
|
||||
- Use axes for parameter sweeps
|
||||
|
||||
**See policyengine-us-skill for detailed patterns.**
|
||||
|
||||
## Examples and Tutorials
|
||||
|
||||
**PolicyEngine documentation:**
|
||||
- US: https://policyengine.org/us/docs
|
||||
- UK: https://policyengine.org/uk/docs
|
||||
|
||||
**Example notebooks:**
|
||||
- Repository: PolicyEngine/analysis-notebooks
|
||||
- See policyengine-analysis-skill for analysis patterns
|
||||
|
||||
**Community examples:**
|
||||
- Blog posts: policyengine.org/us/research
|
||||
- GitHub discussions: github.com/PolicyEngine discussions
|
||||
|
||||
## Getting Help
|
||||
|
||||
**For usage questions:**
|
||||
- GitHub Discussions: https://github.com/PolicyEngine/policyengine-us/discussions
|
||||
|
||||
**For bugs:**
|
||||
- File issues in appropriate repo (policyengine-us, policyengine.py, etc.)
|
||||
|
||||
**For collaboration:**
|
||||
- Email: hello@policyengine.org
|
||||
376
skills/policyengine-review-patterns-skill/SKILL.md
Normal file
376
skills/policyengine-review-patterns-skill/SKILL.md
Normal file
@@ -0,0 +1,376 @@
|
||||
---
|
||||
name: policyengine-review-patterns
|
||||
description: PolicyEngine code review patterns - validation checklist, common issues, review standards
|
||||
---
|
||||
|
||||
# PolicyEngine Review Patterns
|
||||
|
||||
Comprehensive patterns for reviewing PolicyEngine implementations.
|
||||
|
||||
## Understanding WHY, Not Just WHAT
|
||||
|
||||
### Pattern Analysis Before Review
|
||||
|
||||
When reviewing implementations that reference other states:
|
||||
|
||||
**🔴 CRITICAL: Check WHY Variables Exist**
|
||||
|
||||
Before approving any state-specific variable, verify:
|
||||
1. **Does it have state-specific logic?** - Read the formula
|
||||
2. **Are state parameters used?** - Check for `parameters(period).gov.states.XX`
|
||||
3. **Is there transformation beyond aggregation?** - Look for calculations
|
||||
4. **Would removing it break functionality?** - Test dependencies
|
||||
|
||||
**Example Analysis:**
|
||||
```python
|
||||
# IL TANF has this variable:
|
||||
class il_tanf_assistance_unit_size(Variable):
|
||||
adds = ["il_tanf_payment_eligible_child", "il_tanf_payment_eligible_parent"]
|
||||
# ✅ VALID: IL-specific eligibility rules
|
||||
|
||||
# But IN TANF shouldn't copy it blindly:
|
||||
class in_tanf_assistance_unit_size(Variable):
|
||||
def formula(spm_unit, period):
|
||||
return spm_unit("spm_unit_size", period)
|
||||
# ❌ INVALID: No IN-specific logic, just wrapper
|
||||
```
|
||||
|
||||
### Wrapper Variable Detection
|
||||
|
||||
**Red Flags - Variables that shouldn't exist:**
|
||||
- Formula is just `return entity("federal_variable", period)`
|
||||
- Aggregates federal baseline with no transformation
|
||||
- No state parameters accessed
|
||||
- Comment says "use federal" but creates variable anyway
|
||||
|
||||
**Action:** Request deletion of unnecessary wrapper variables
|
||||
|
||||
---
|
||||
|
||||
## Priority Review Checklist
|
||||
|
||||
### 🔴 CRITICAL - Automatic Failures
|
||||
|
||||
These issues will cause crashes or incorrect results:
|
||||
|
||||
#### 1. Vectorization Violations
|
||||
```python
|
||||
❌ FAILS:
|
||||
if household("income") > 1000: # Will crash with arrays
|
||||
return 500
|
||||
|
||||
✅ PASSES:
|
||||
return where(household("income") > 1000, 500, 100)
|
||||
```
|
||||
|
||||
#### 2. Hard-Coded Values
|
||||
```python
|
||||
❌ FAILS:
|
||||
benefit = min_(income * 0.33, 500) # Hard-coded 0.33 and 500
|
||||
|
||||
✅ PASSES:
|
||||
benefit = min_(income * p.rate, p.maximum)
|
||||
```
|
||||
|
||||
#### 3. Missing Parameter Sources
|
||||
```yaml
|
||||
❌ FAILS:
|
||||
reference:
|
||||
- title: State website
|
||||
href: https://state.gov
|
||||
|
||||
✅ PASSES:
|
||||
reference:
|
||||
- title: Idaho Admin Code 16.05.03.205(3)
|
||||
href: https://adminrules.idaho.gov/rules/current/16/160503.pdf#page=14
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 🟡 MAJOR - Must Fix
|
||||
|
||||
These affect accuracy or maintainability:
|
||||
|
||||
#### 4. Test Quality Issues
|
||||
```yaml
|
||||
❌ FAILS:
|
||||
income: 50000 # No separator
|
||||
|
||||
✅ PASSES:
|
||||
income: 50_000 # Proper formatting
|
||||
```
|
||||
|
||||
#### 5. Calculation Accuracy
|
||||
- Order of operations matches regulations
|
||||
- Deductions applied in correct sequence
|
||||
- Edge cases handled (negatives, zeros)
|
||||
|
||||
#### 6. Description Style
|
||||
```yaml
|
||||
❌ FAILS:
|
||||
description: The amount of SNAP benefits # Passive voice
|
||||
|
||||
✅ PASSES:
|
||||
description: SNAP benefits # Active voice
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 🟢 MINOR - Should Fix
|
||||
|
||||
These improve code quality:
|
||||
|
||||
#### 7. Code Organization
|
||||
- One variable per file
|
||||
- Proper use of `defined_for`
|
||||
- Use of `adds` for simple sums
|
||||
|
||||
#### 8. Documentation
|
||||
- Clear references to regulation sections
|
||||
- Changelog entry present
|
||||
|
||||
---
|
||||
|
||||
## Common Issues Reference
|
||||
|
||||
### Documentation Issues
|
||||
|
||||
| Issue | Example | Fix |
|
||||
|-------|---------|-----|
|
||||
| No primary source | "See SNAP website" | Add USC/CFR citation |
|
||||
| Wrong value | $198 vs $200 in source | Update parameter |
|
||||
| Generic link | dol.gov | Link to specific regulation |
|
||||
| Missing subsection | "7 CFR 273" | "7 CFR 273.9(d)(3)" |
|
||||
|
||||
### Code Issues
|
||||
|
||||
| Issue | Impact | Fix |
|
||||
|-------|--------|-----|
|
||||
| if-elif-else with data | Crashes microsim | Use where/select |
|
||||
| Hard-coded values | Inflexible | Move to parameters |
|
||||
| Missing defined_for | Inefficient | Add eligibility condition |
|
||||
| Manual summing | Wrong pattern | Use adds attribute |
|
||||
|
||||
### Test Issues
|
||||
|
||||
| Issue | Example | Fix |
|
||||
|-------|---------|-----|
|
||||
| No separators | 100000 | 100_000 |
|
||||
| No documentation | output: 500 | Add calculation comment |
|
||||
| Wrong period | 2024-04 | Use 2024-01 or 2024 |
|
||||
| Made-up variables | heating_expense | Use existing variables |
|
||||
|
||||
---
|
||||
|
||||
## Source Verification Process
|
||||
|
||||
### Step 1: Check Parameter Values
|
||||
|
||||
For each parameter file:
|
||||
```python
|
||||
✓ Value matches source document
|
||||
✓ Source is primary (statute > regulation > website)
|
||||
✓ URL links to exact section with page anchor
|
||||
✓ Effective dates correct
|
||||
```
|
||||
|
||||
### Step 2: Validate References
|
||||
|
||||
**Primary sources (preferred):**
|
||||
- USC (United States Code)
|
||||
- CFR (Code of Federal Regulations)
|
||||
- State statutes
|
||||
- State admin codes
|
||||
|
||||
**Secondary sources (acceptable):**
|
||||
- Official policy manuals
|
||||
- State plan documents
|
||||
|
||||
**Not acceptable alone:**
|
||||
- Websites without specific sections
|
||||
- Summaries or fact sheets
|
||||
- News articles
|
||||
|
||||
---
|
||||
|
||||
## Code Quality Checks
|
||||
|
||||
### Vectorization Scan
|
||||
|
||||
Search for these patterns:
|
||||
```python
|
||||
# Red flags that indicate scalar logic:
|
||||
"if household"
|
||||
"if person"
|
||||
"elif"
|
||||
"else:"
|
||||
"and " (should be &)
|
||||
"or " (should be |)
|
||||
"not " (should be ~)
|
||||
```
|
||||
|
||||
### Hard-Coding Scan
|
||||
|
||||
Search for numeric literals:
|
||||
```python
|
||||
# Check for any number except:
|
||||
# 0, 1, -1 (basic math)
|
||||
# 12 (month conversion)
|
||||
# Small indices (2, 3 for known structures)
|
||||
|
||||
# Flag anything like:
|
||||
"0.5"
|
||||
"100"
|
||||
"0.33"
|
||||
"65" (unless it's a standard age)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Review Response Templates
|
||||
|
||||
### For Approval
|
||||
|
||||
```markdown
|
||||
## PolicyEngine Review: APPROVED ✅
|
||||
|
||||
### Verification Summary
|
||||
- ✅ All parameters trace to primary sources
|
||||
- ✅ Code is properly vectorized
|
||||
- ✅ Tests document calculations
|
||||
- ✅ No hard-coded values
|
||||
|
||||
### Strengths
|
||||
- Excellent USC/CFR citations
|
||||
- Comprehensive test coverage
|
||||
- Clear calculation logic
|
||||
|
||||
### Minor Suggestions (optional)
|
||||
- Consider adding edge case for zero income
|
||||
```
|
||||
|
||||
### For Changes Required
|
||||
|
||||
```markdown
|
||||
## PolicyEngine Review: CHANGES REQUIRED ❌
|
||||
|
||||
### Critical Issues (Must Fix)
|
||||
|
||||
1. **Non-vectorized code** - lines 45-50
|
||||
```python
|
||||
# Replace this:
|
||||
if income > threshold:
|
||||
benefit = high_amount
|
||||
|
||||
# With this:
|
||||
benefit = where(income > threshold, high_amount, low_amount)
|
||||
```
|
||||
|
||||
2. **Parameter value mismatch** - standard_deduction.yaml
|
||||
- Source shows $200, parameter has $198
|
||||
- Reference: 7 CFR 273.9(d)(1), page 5
|
||||
|
||||
### Major Issues (Should Fix)
|
||||
|
||||
3. **Missing primary source** - income_limit.yaml
|
||||
- Add statute/regulation citation
|
||||
- Current website link insufficient
|
||||
|
||||
Please address these issues and re-request review.
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Test Validation
|
||||
|
||||
### Check Test Structure
|
||||
|
||||
```yaml
|
||||
# Verify proper format:
|
||||
- name: Case 1, description. # Numbered case with period
|
||||
period: 2024-01 # Valid period (2024-01 or 2024)
|
||||
input:
|
||||
people:
|
||||
person1: # Generic names
|
||||
employment_income: 50_000 # Underscores
|
||||
output:
|
||||
# Calculation documented
|
||||
# Income: $50,000/year = $4,167/month
|
||||
program_benefit: 250
|
||||
```
|
||||
|
||||
### Run Test Commands
|
||||
|
||||
```bash
|
||||
# Unit tests
|
||||
pytest policyengine_us/tests/policy/baseline/gov/
|
||||
|
||||
# Integration tests
|
||||
policyengine-core test <path> -c policyengine_us
|
||||
|
||||
# Microsimulation
|
||||
pytest policyengine_us/tests/microsimulation/
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Review Priorities by Context
|
||||
|
||||
### New Program Implementation
|
||||
1. Parameter completeness
|
||||
2. All documented scenarios tested
|
||||
3. Eligibility paths covered
|
||||
4. No hard-coded values
|
||||
|
||||
### Bug Fixes
|
||||
1. Root cause addressed
|
||||
2. No regression potential
|
||||
3. Tests prevent recurrence
|
||||
4. Vectorization maintained
|
||||
|
||||
### Refactoring
|
||||
1. Functionality preserved
|
||||
2. Tests still pass
|
||||
3. Performance maintained
|
||||
4. Code clarity improved
|
||||
|
||||
---
|
||||
|
||||
## Quick Review Checklist
|
||||
|
||||
**Parameters:**
|
||||
- [ ] Values match sources
|
||||
- [ ] References include subsections
|
||||
- [ ] All metadata fields present
|
||||
- [ ] Effective dates correct
|
||||
|
||||
**Variables:**
|
||||
- [ ] Properly vectorized (no if-elif-else)
|
||||
- [ ] No hard-coded values
|
||||
- [ ] Uses existing variables
|
||||
- [ ] Includes proper metadata
|
||||
|
||||
**Tests:**
|
||||
- [ ] Proper period format
|
||||
- [ ] Underscore separators
|
||||
- [ ] Calculation comments
|
||||
- [ ] Realistic scenarios
|
||||
|
||||
**Overall:**
|
||||
- [ ] Changelog entry
|
||||
- [ ] Code formatted
|
||||
- [ ] Tests pass
|
||||
- [ ] Documentation complete
|
||||
|
||||
---
|
||||
|
||||
## For Agents
|
||||
|
||||
When reviewing code:
|
||||
1. **Check vectorization first** - crashes are worst
|
||||
2. **Verify parameter sources** - accuracy critical
|
||||
3. **Scan for hard-coding** - maintainability issue
|
||||
4. **Validate test quality** - ensures correctness
|
||||
5. **Run all tests** - catch integration issues
|
||||
6. **Document issues clearly** - help fixes
|
||||
7. **Provide fix examples** - speed resolution
|
||||
768
skills/policyengine-standards-skill/SKILL.md
Normal file
768
skills/policyengine-standards-skill/SKILL.md
Normal file
@@ -0,0 +1,768 @@
|
||||
---
|
||||
name: policyengine-standards
|
||||
description: PolicyEngine coding standards, formatters, CI requirements, and development best practices
|
||||
---
|
||||
|
||||
# PolicyEngine Standards Skill
|
||||
|
||||
Use this skill to ensure code meets PolicyEngine's development standards and passes CI checks.
|
||||
|
||||
## When to Use This Skill
|
||||
|
||||
- Before committing code to any PolicyEngine repository
|
||||
- When CI checks fail with linting/formatting errors
|
||||
- Setting up a new PolicyEngine repository
|
||||
- Reviewing PRs for standard compliance
|
||||
- When AI tools generate code that needs standardization
|
||||
|
||||
## Critical Requirements
|
||||
|
||||
### Python Version
|
||||
⚠️ **MUST USE Python 3.13** - Do NOT downgrade to older versions
|
||||
- Check version: `python --version`
|
||||
- Use `pyproject.toml` to specify version requirements
|
||||
|
||||
### Command Execution
|
||||
⚠️ **ALWAYS use `uv run` for Python commands** - Never use bare `python` or `pytest`
|
||||
- ✅ Correct: `uv run python script.py`, `uv run pytest tests/`
|
||||
- ❌ Wrong: `python script.py`, `pytest tests/`
|
||||
- This ensures correct virtual environment and dependencies
|
||||
|
||||
### Documentation (Python Projects)
|
||||
⚠️ **MUST USE Jupyter Book 2.0 (MyST-NB)** - NOT Jupyter Book 1.x
|
||||
- Build docs: `myst build docs` (NOT `jb build`)
|
||||
- Use MyST markdown syntax
|
||||
|
||||
## Before Committing - Checklist
|
||||
|
||||
1. **Write tests first** (TDD - see below)
|
||||
2. **Format code**: `make format` or language-specific formatter
|
||||
3. **Run tests**: `make test` to ensure all tests pass
|
||||
4. **Check linting**: Ensure no linting errors
|
||||
5. **Use config files**: Prefer config files over environment variables
|
||||
6. **Reference issues**: Include "Fixes #123" in commit message
|
||||
|
||||
## Creating Pull Requests
|
||||
|
||||
### The CI Waiting Problem
|
||||
|
||||
**Common failure pattern:**
|
||||
```
|
||||
User: "Create a PR and mark it ready when CI passes"
|
||||
Claude: "I've created the PR as draft. CI will take a while, I'll check back later..."
|
||||
[Chat ends - Claude never checks back]
|
||||
Result: PR stays in draft, user has to manually check CI and mark ready
|
||||
```
|
||||
|
||||
### Solution: Use /create-pr Command
|
||||
|
||||
**When creating PRs, use the /create-pr command:**
|
||||
|
||||
```bash
|
||||
/create-pr
|
||||
```
|
||||
|
||||
**This command:**
|
||||
- ✅ Creates PR as draft
|
||||
- ✅ Actually waits for CI (polls every 15 seconds)
|
||||
- ✅ Marks ready when CI passes
|
||||
- ✅ Reports failures with details
|
||||
- ✅ Handles timeouts gracefully
|
||||
|
||||
**Why this works:**
|
||||
The command contains explicit polling logic that Claude executes, so it actually waits instead of giving up.
|
||||
|
||||
### If /create-pr is Not Available
|
||||
|
||||
**If the command isn't installed, implement the pattern directly:**
|
||||
|
||||
```bash
|
||||
# 1. Create PR as draft
|
||||
gh pr create --draft --title "Title" --body "Body"
|
||||
PR_NUMBER=$(gh pr view --json number --jq '.number')
|
||||
|
||||
# 2. Wait for CI (ACTUALLY WAIT - don't give up!)
|
||||
POLL_INTERVAL=15
|
||||
ELAPSED=0
|
||||
|
||||
while true; do # No timeout - wait as long as needed
|
||||
CHECKS=$(gh pr checks $PR_NUMBER --json status,conclusion)
|
||||
TOTAL=$(echo "$CHECKS" | jq '. | length')
|
||||
COMPLETED=$(echo "$CHECKS" | jq '[.[] | select(.status == "COMPLETED")] | length')
|
||||
|
||||
echo "[$ELAPSED s] CI: $COMPLETED/$TOTAL completed"
|
||||
|
||||
if [ "$COMPLETED" -eq "$TOTAL" ] && [ "$TOTAL" -gt 0 ]; then
|
||||
FAILED=$(echo "$CHECKS" | jq '[.[] | select(.conclusion == "FAILURE")] | length')
|
||||
if [ "$FAILED" -eq 0 ]; then
|
||||
echo "✅ All CI passed! Marking ready..."
|
||||
gh pr ready $PR_NUMBER
|
||||
break
|
||||
else
|
||||
echo "❌ CI failed. PR remains draft."
|
||||
gh pr checks $PR_NUMBER
|
||||
break
|
||||
fi
|
||||
fi
|
||||
|
||||
sleep $POLL_INTERVAL
|
||||
ELAPSED=$((ELAPSED + POLL_INTERVAL))
|
||||
done
|
||||
|
||||
# Important: No timeout! Population simulations can take 30+ minutes.
|
||||
```
|
||||
|
||||
### DO NOT Say "I'll Check Back Later"
|
||||
|
||||
**❌ WRONG:**
|
||||
```
|
||||
"I've created the PR as draft. CI checks will take a few minutes.
|
||||
I'll check back later once they complete."
|
||||
```
|
||||
|
||||
**Why wrong:** You cannot check back later. The chat session ends.
|
||||
|
||||
**✅ CORRECT:**
|
||||
```
|
||||
"I've created the PR as draft. Now polling CI status every 15 seconds..."
|
||||
[Actually polls using while loop]
|
||||
"CI checks completed. All passed! Marking PR as ready for review."
|
||||
```
|
||||
|
||||
### When to Create Draft vs Ready
|
||||
|
||||
**Always create as draft when:**
|
||||
- CI checks are configured
|
||||
- User asks to wait for CI
|
||||
- Making automated changes
|
||||
- Unsure if CI will pass
|
||||
|
||||
**Create as ready only when:**
|
||||
- User explicitly requests ready PR
|
||||
- No CI configured
|
||||
- CI already verified locally
|
||||
|
||||
### PR Workflow Standards
|
||||
|
||||
**Standard flow:**
|
||||
```bash
|
||||
# 1. Ensure branch is pushed
|
||||
git push -u origin feature-branch
|
||||
|
||||
# 2. Create PR as draft
|
||||
gh pr create --draft --title "..." --body "..."
|
||||
|
||||
# 3. Wait for CI (use polling loop - see pattern above)
|
||||
|
||||
# 4. If CI passes:
|
||||
gh pr ready $PR_NUMBER
|
||||
|
||||
# 5. If CI fails:
|
||||
echo "CI failed. PR remains draft. Fix issues and push again."
|
||||
```
|
||||
|
||||
## Test-Driven Development (TDD)
|
||||
|
||||
PolicyEngine follows Test-Driven Development practices across all repositories.
|
||||
|
||||
### TDD Workflow
|
||||
|
||||
**1. Write test first (RED):**
|
||||
```python
|
||||
# tests/test_new_feature.py
|
||||
def test_california_eitc_calculation():
|
||||
"""Test California EITC for family with 2 children earning $30,000."""
|
||||
situation = create_family(income=30000, num_children=2, state="CA")
|
||||
sim = Simulation(situation=situation)
|
||||
ca_eitc = sim.calculate("ca_eitc", 2024)[0]
|
||||
|
||||
# Test fails initially (feature not implemented yet)
|
||||
assert ca_eitc == 3000, "CA EITC should be $3,000 for this household"
|
||||
```
|
||||
|
||||
**2. Implement feature (GREEN):**
|
||||
```python
|
||||
# policyengine_us/variables/gov/states/ca/tax/income/credits/ca_eitc.py
|
||||
class ca_eitc(Variable):
|
||||
value_type = float
|
||||
entity = TaxUnit
|
||||
definition_period = YEAR
|
||||
|
||||
def formula(tax_unit, period, parameters):
|
||||
# Implementation to make test pass
|
||||
federal_eitc = tax_unit("eitc", period)
|
||||
return federal_eitc * parameters(period).gov.states.ca.tax.eitc.match
|
||||
```
|
||||
|
||||
**3. Refactor (REFACTOR):**
|
||||
```python
|
||||
# Clean up, optimize, add documentation
|
||||
# All while tests continue to pass
|
||||
```
|
||||
|
||||
### TDD Benefits
|
||||
|
||||
**Why PolicyEngine uses TDD:**
|
||||
- ✅ **Accuracy** - Tests verify implementation matches regulations
|
||||
- ✅ **Documentation** - Tests show expected behavior
|
||||
- ✅ **Regression prevention** - Changes don't break existing features
|
||||
- ✅ **Confidence** - Safe to refactor
|
||||
- ✅ **Isolation** - Multi-agent workflow (test-creator and rules-engineer work separately)
|
||||
|
||||
### TDD in Multi-Agent Workflow
|
||||
|
||||
**Country model development:**
|
||||
1. **@document-collector** gathers regulations
|
||||
2. **@test-creator** writes tests from regulations (isolated, no implementation access)
|
||||
3. **@rules-engineer** implements from regulations (isolated, no test access)
|
||||
4. Both work from same source → tests verify implementation accuracy
|
||||
|
||||
**See policyengine-core-skill and country-models agents for details.**
|
||||
|
||||
### Test Examples
|
||||
|
||||
**Python (pytest):**
|
||||
```python
|
||||
def test_ctc_for_two_children():
|
||||
"""Test CTC calculation for married couple with 2 children."""
|
||||
situation = create_married_couple(
|
||||
income_1=75000,
|
||||
income_2=50000,
|
||||
num_children=2,
|
||||
child_ages=[5, 8]
|
||||
)
|
||||
|
||||
sim = Simulation(situation=situation)
|
||||
ctc = sim.calculate("ctc", 2024)[0]
|
||||
|
||||
assert ctc == 4000, "CTC should be $2,000 per child"
|
||||
```
|
||||
|
||||
**React (Jest + RTL):**
|
||||
```javascript
|
||||
import { render, screen } from '@testing-library/react';
|
||||
import TaxCalculator from './TaxCalculator';
|
||||
|
||||
test('displays calculated tax', () => {
|
||||
render(<TaxCalculator income={50000} />);
|
||||
|
||||
// Test what user sees, not implementation
|
||||
expect(screen.getByText(/\$5,000/)).toBeInTheDocument();
|
||||
});
|
||||
```
|
||||
|
||||
### Test Organization
|
||||
|
||||
**Python:**
|
||||
```
|
||||
tests/
|
||||
├── test_variables/
|
||||
│ ├── test_income.py
|
||||
│ ├── test_deductions.py
|
||||
│ └── test_credits.py
|
||||
├── test_parameters/
|
||||
└── test_simulations/
|
||||
```
|
||||
|
||||
**React:**
|
||||
```
|
||||
src/
|
||||
├── components/
|
||||
│ └── TaxCalculator/
|
||||
│ ├── TaxCalculator.jsx
|
||||
│ └── TaxCalculator.test.jsx
|
||||
```
|
||||
|
||||
### Running Tests
|
||||
|
||||
**Python:**
|
||||
```bash
|
||||
# All tests
|
||||
make test
|
||||
|
||||
# With uv
|
||||
uv run pytest tests/ -v
|
||||
|
||||
# Specific test
|
||||
uv run pytest tests/test_credits.py::test_ctc_for_two_children -v
|
||||
|
||||
# With coverage
|
||||
uv run pytest tests/ --cov=policyengine_us --cov-report=html
|
||||
```
|
||||
|
||||
**React:**
|
||||
```bash
|
||||
# All tests
|
||||
make test
|
||||
|
||||
# Watch mode
|
||||
npm test -- --watch
|
||||
|
||||
# Specific test
|
||||
npm test -- TaxCalculator.test.jsx
|
||||
|
||||
# Coverage
|
||||
npm test -- --coverage
|
||||
```
|
||||
|
||||
### Test Quality Standards
|
||||
|
||||
**Good tests:**
|
||||
- ✅ Test behavior, not implementation
|
||||
- ✅ Clear, descriptive names
|
||||
- ✅ Single assertion per test (when possible)
|
||||
- ✅ Include documentation (docstrings)
|
||||
- ✅ Based on official regulations with citations
|
||||
|
||||
**Bad tests:**
|
||||
- ❌ Testing private methods
|
||||
- ❌ Mocking everything
|
||||
- ❌ No assertion messages
|
||||
- ❌ Magic numbers without explanation
|
||||
|
||||
### Example: TDD for New Feature
|
||||
|
||||
```python
|
||||
# Step 1: Write test (RED)
|
||||
def test_new_york_empire_state_child_credit():
|
||||
"""Test NY Empire State Child Credit for family with 1 child.
|
||||
|
||||
Based on NY Tax Law Section 606(c-1).
|
||||
Family earning $50,000 with 1 child under 4 should receive $330.
|
||||
"""
|
||||
situation = create_family(
|
||||
income=50000,
|
||||
num_children=1,
|
||||
child_ages=[2],
|
||||
state="NY"
|
||||
)
|
||||
|
||||
sim = Simulation(situation=situation)
|
||||
credit = sim.calculate("ny_empire_state_child_credit", 2024)[0]
|
||||
|
||||
assert credit == 330, "Should receive $330 for child under 4"
|
||||
|
||||
# Test fails - feature doesn't exist yet
|
||||
|
||||
# Step 2: Implement (GREEN)
|
||||
# Create variable in policyengine_us/variables/gov/states/ny/...
|
||||
# Test passes
|
||||
|
||||
# Step 3: Refactor
|
||||
# Optimize, add documentation, maintain passing tests
|
||||
```
|
||||
|
||||
## Python Standards
|
||||
|
||||
### Formatting
|
||||
- **Formatter**: Black with 79-character line length
|
||||
- **Command**: `make format` or `black . -l 79`
|
||||
- **Check without changes**: `black . -l 79 --check`
|
||||
|
||||
```bash
|
||||
# Format all Python files
|
||||
make format
|
||||
|
||||
# Check if formatting is needed (CI-style)
|
||||
black . -l 79 --check
|
||||
```
|
||||
|
||||
### Code Style
|
||||
```python
|
||||
# Imports: Grouped and alphabetized
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path # stdlib
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd # third-party
|
||||
|
||||
from policyengine_us import Simulation # local
|
||||
|
||||
# Naming conventions
|
||||
class TaxCalculator: # CamelCase for classes
|
||||
pass
|
||||
|
||||
def calculate_income_tax(income): # snake_case for functions
|
||||
annual_income = income * 12 # snake_case for variables
|
||||
return annual_income
|
||||
|
||||
# Type hints (recommended)
|
||||
def calculate_tax(income: float, state: str) -> float:
|
||||
"""Calculate state income tax.
|
||||
|
||||
Args:
|
||||
income: Annual income in dollars
|
||||
state: Two-letter state code
|
||||
|
||||
Returns:
|
||||
Tax liability in dollars
|
||||
"""
|
||||
pass
|
||||
|
||||
# Error handling - catch specific exceptions
|
||||
try:
|
||||
result = simulation.calculate("income_tax", 2024)
|
||||
except KeyError as e:
|
||||
raise ValueError(f"Invalid variable name: {e}")
|
||||
```
|
||||
|
||||
### Testing
|
||||
```python
|
||||
import pytest
|
||||
|
||||
def test_ctc_calculation():
|
||||
"""Test Child Tax Credit calculation for family with 2 children."""
|
||||
situation = create_family(income=50000, num_children=2)
|
||||
sim = Simulation(situation=situation)
|
||||
ctc = sim.calculate("ctc", 2024)[0]
|
||||
|
||||
assert ctc == 4000, "CTC should be $2000 per child"
|
||||
```
|
||||
|
||||
**Run tests:**
|
||||
```bash
|
||||
# All tests
|
||||
make test
|
||||
|
||||
# Or with uv
|
||||
uv run pytest tests/ -v
|
||||
|
||||
# Specific test
|
||||
uv run pytest tests/test_tax.py::test_ctc_calculation -v
|
||||
|
||||
# With coverage
|
||||
uv run pytest tests/ --cov=policyengine_us --cov-report=html
|
||||
```
|
||||
|
||||
## JavaScript/React Standards
|
||||
|
||||
### Formatting
|
||||
- **Formatters**: Prettier + ESLint
|
||||
- **Command**: `npm run lint -- --fix && npx prettier --write .`
|
||||
- **CI Check**: `npm run lint -- --max-warnings=0`
|
||||
|
||||
```bash
|
||||
# Format all files
|
||||
make format
|
||||
|
||||
# Or manually
|
||||
npm run lint -- --fix
|
||||
npx prettier --write .
|
||||
|
||||
# Check if formatting is needed (CI-style)
|
||||
npm run lint -- --max-warnings=0
|
||||
```
|
||||
|
||||
### Code Style
|
||||
```javascript
|
||||
// Use functional components only (no class components)
|
||||
import { useState, useEffect } from "react";
|
||||
|
||||
function TaxCalculator({ income, state }) {
|
||||
const [tax, setTax] = useState(0);
|
||||
|
||||
useEffect(() => {
|
||||
// Calculate tax when inputs change
|
||||
calculateTax(income, state).then(setTax);
|
||||
}, [income, state]);
|
||||
|
||||
return (
|
||||
<div>
|
||||
<p>Tax: ${tax.toLocaleString()}</p>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
// File naming
|
||||
// - Components: PascalCase.jsx (TaxCalculator.jsx)
|
||||
// - Utilities: camelCase.js (formatCurrency.js)
|
||||
|
||||
// Environment config - use config file pattern
|
||||
// src/config/environment.js
|
||||
const config = {
|
||||
API_URL: process.env.NODE_ENV === 'production'
|
||||
? 'https://api.policyengine.org'
|
||||
: 'http://localhost:5000'
|
||||
};
|
||||
export default config;
|
||||
```
|
||||
|
||||
### React Component Size
|
||||
- Keep components under 150 lines after formatting
|
||||
- Extract complex logic into custom hooks
|
||||
- Split large components into smaller ones
|
||||
|
||||
## Version Control Standards
|
||||
|
||||
### Changelog Management
|
||||
|
||||
**CRITICAL**: For PRs, ONLY modify `changelog_entry.yaml`. NEVER manually update `CHANGELOG.md` or `changelog.yaml`.
|
||||
|
||||
**Correct Workflow:**
|
||||
1. Create `changelog_entry.yaml` at repository root:
|
||||
```yaml
|
||||
- bump: patch # or minor, major
|
||||
changes:
|
||||
added:
|
||||
- Description of new feature
|
||||
fixed:
|
||||
- Description of bug fix
|
||||
changed:
|
||||
- Description of change
|
||||
```
|
||||
|
||||
2. Commit ONLY `changelog_entry.yaml` with your code changes
|
||||
|
||||
3. GitHub Actions automatically updates `CHANGELOG.md` and `changelog.yaml` on merge
|
||||
|
||||
**DO NOT:**
|
||||
- ❌ Run `make changelog` manually during PR creation
|
||||
- ❌ Commit `CHANGELOG.md` or `changelog.yaml` in your PR
|
||||
- ❌ Modify main changelog files directly
|
||||
|
||||
### Git Workflow
|
||||
|
||||
1. **Create branches on PolicyEngine repos, NOT forks**
|
||||
- Forks cause CI failures due to missing secrets
|
||||
- Request write access if needed
|
||||
|
||||
2. **Branch naming**: `feature-name` or `fix-issue-123`
|
||||
|
||||
3. **Commit messages**:
|
||||
```
|
||||
Add CTC reform analysis for CRFB report
|
||||
|
||||
- Implement household-level calculations
|
||||
- Add state-by-state comparison
|
||||
- Create visualizations
|
||||
|
||||
Fixes #123
|
||||
```
|
||||
|
||||
4. **PR description**: Include "Fixes #123" to auto-close issues
|
||||
|
||||
### Common Git Pitfalls
|
||||
|
||||
**Never do these:**
|
||||
- ❌ Force push to main/master
|
||||
- ❌ Commit secrets or `.env` files
|
||||
- ❌ Skip hooks with `--no-verify`
|
||||
- ❌ Create versioned files (app_v2.py, component_new.jsx)
|
||||
|
||||
**Always do:**
|
||||
- ✅ Fix original files in place
|
||||
- ✅ Run formatters before pushing
|
||||
- ✅ Reference issue numbers in commits
|
||||
- ✅ Watch CI after filing PR
|
||||
|
||||
## Common AI Pitfalls
|
||||
|
||||
Since many PRs are AI-generated, watch for these common mistakes:
|
||||
|
||||
### 1. File Versioning
|
||||
**❌ Wrong:**
|
||||
```bash
|
||||
# Creating new versions instead of fixing originals
|
||||
app_new.py
|
||||
app_v2.py
|
||||
component_refactored.jsx
|
||||
```
|
||||
|
||||
**✅ Correct:**
|
||||
```bash
|
||||
# Always modify the original file
|
||||
app.py # Fixed in place
|
||||
```
|
||||
|
||||
### 2. Formatter Not Run
|
||||
**❌ Wrong:** Committing without formatting (main cause of CI failures)
|
||||
|
||||
**✅ Correct:**
|
||||
```bash
|
||||
# Python
|
||||
make format
|
||||
black . -l 79
|
||||
|
||||
# React
|
||||
npm run lint -- --fix
|
||||
npx prettier --write .
|
||||
```
|
||||
|
||||
### 3. Environment Variables
|
||||
**❌ Wrong:**
|
||||
```javascript
|
||||
// React env vars without REACT_APP_ prefix
|
||||
const API_URL = process.env.API_URL; // Won't work!
|
||||
```
|
||||
|
||||
**✅ Correct:**
|
||||
```javascript
|
||||
// Use config file pattern instead
|
||||
import config from './config/environment';
|
||||
const API_URL = config.API_URL;
|
||||
```
|
||||
|
||||
### 4. Using Wrong Python Version
|
||||
**❌ Wrong:** Downgrading to Python 3.10 or older
|
||||
|
||||
**✅ Correct:** Use Python 3.13 as specified in project requirements
|
||||
|
||||
### 5. Manual Changelog Updates
|
||||
**❌ Wrong:** Running `make changelog` and committing `CHANGELOG.md`
|
||||
|
||||
**✅ Correct:** Only create `changelog_entry.yaml` in PR
|
||||
|
||||
## Repository Setup Patterns
|
||||
|
||||
### Python Package Structure
|
||||
```
|
||||
policyengine-package/
|
||||
├── policyengine_package/
|
||||
│ ├── __init__.py
|
||||
│ ├── core/
|
||||
│ ├── calculations/
|
||||
│ └── utils/
|
||||
├── tests/
|
||||
│ ├── test_calculations.py
|
||||
│ └── test_core.py
|
||||
├── pyproject.toml
|
||||
├── Makefile
|
||||
├── CLAUDE.md
|
||||
├── CHANGELOG.md
|
||||
└── README.md
|
||||
```
|
||||
|
||||
### React App Structure
|
||||
```
|
||||
policyengine-app/
|
||||
├── src/
|
||||
│ ├── components/
|
||||
│ ├── pages/
|
||||
│ ├── config/
|
||||
│ │ └── environment.js
|
||||
│ └── App.jsx
|
||||
├── public/
|
||||
├── package.json
|
||||
├── .eslintrc.json
|
||||
├── .prettierrc
|
||||
└── README.md
|
||||
```
|
||||
|
||||
## Makefile Commands
|
||||
|
||||
Standard commands across PolicyEngine repos:
|
||||
|
||||
```bash
|
||||
make install # Install dependencies
|
||||
make test # Run tests
|
||||
make format # Format code
|
||||
make changelog # Update changelog (automation only, not manual)
|
||||
make debug # Start dev server (apps)
|
||||
make build # Production build (apps)
|
||||
```
|
||||
|
||||
## CI Stability
|
||||
|
||||
### Common CI Issues
|
||||
|
||||
**1. Fork PRs Fail**
|
||||
- **Problem**: PRs from forks don't have access to repository secrets
|
||||
- **Solution**: Create branches directly on PolicyEngine repos
|
||||
|
||||
**2. GitHub API Rate Limits**
|
||||
- **Problem**: Smoke tests fail with 403 errors
|
||||
- **Solution**: Re-run failed jobs (different runners have different limits)
|
||||
|
||||
**3. Linting Failures**
|
||||
- **Problem**: Code not formatted before commit
|
||||
- **Solution**: Always run `make format` before committing
|
||||
|
||||
**4. Test Failures in CI but Pass Locally**
|
||||
- **Problem**: Missing `uv run` prefix
|
||||
- **Solution**: Use `uv run pytest` instead of `pytest`
|
||||
|
||||
## Best Practices Checklist
|
||||
|
||||
### Code Quality
|
||||
- [ ] Code formatted with Black (Python) or Prettier (JS)
|
||||
- [ ] No linting errors
|
||||
- [ ] All tests pass
|
||||
- [ ] Type hints added (Python, where applicable)
|
||||
- [ ] Docstrings for public functions/classes
|
||||
- [ ] Error handling with specific exceptions
|
||||
|
||||
### Version Control
|
||||
- [ ] Only `changelog_entry.yaml` created (not CHANGELOG.md)
|
||||
- [ ] Commit message references issue number
|
||||
- [ ] Branch created on PolicyEngine repo (not fork)
|
||||
- [ ] No secrets or .env files committed
|
||||
- [ ] Original files modified (no _v2 or _new files)
|
||||
|
||||
### Testing
|
||||
- [ ] Tests written for new functionality
|
||||
- [ ] Tests pass locally with `make test`
|
||||
- [ ] Coverage maintained or improved
|
||||
- [ ] Edge cases handled
|
||||
|
||||
### Documentation
|
||||
- [ ] README updated if needed
|
||||
- [ ] Code comments for complex logic
|
||||
- [ ] API documentation updated if needed
|
||||
- [ ] Examples provided for new features
|
||||
|
||||
## Quick Reference
|
||||
|
||||
### Format Commands by Language
|
||||
|
||||
**Python:**
|
||||
```bash
|
||||
make format # Format code
|
||||
black . -l 79 --check # Check formatting
|
||||
uv run pytest tests/ -v # Run tests
|
||||
```
|
||||
|
||||
**React:**
|
||||
```bash
|
||||
make format # Format code
|
||||
npm run lint -- --max-warnings=0 # Check linting
|
||||
npm test # Run tests
|
||||
```
|
||||
|
||||
### Pre-Commit Checklist
|
||||
```bash
|
||||
# 1. Format
|
||||
make format
|
||||
|
||||
# 2. Test
|
||||
make test
|
||||
|
||||
# 3. Check linting
|
||||
# Python: black . -l 79 --check
|
||||
# React: npm run lint -- --max-warnings=0
|
||||
|
||||
# 4. Stage and commit
|
||||
git add .
|
||||
git commit -m "Description
|
||||
|
||||
Fixes #123"
|
||||
|
||||
# 5. Push and watch CI
|
||||
git push
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
- **Main CLAUDE.md**: `/PolicyEngine/CLAUDE.md`
|
||||
- **Python Style**: PEP 8, Black documentation
|
||||
- **React Style**: Airbnb React/JSX Style Guide
|
||||
- **Testing**: pytest documentation, Jest/RTL documentation
|
||||
- **Writing Style**: See policyengine-writing-skill for blog posts, PR descriptions, and documentation
|
||||
|
||||
## Examples
|
||||
|
||||
See PolicyEngine repositories for examples of standard-compliant code:
|
||||
- **policyengine-us**: Python package standards
|
||||
- **policyengine-app**: React app standards
|
||||
- **givecalc**: Streamlit app standards
|
||||
- **crfb-tob-impacts**: Analysis repository standards
|
||||
412
skills/policyengine-testing-patterns-skill/SKILL.md
Normal file
412
skills/policyengine-testing-patterns-skill/SKILL.md
Normal file
@@ -0,0 +1,412 @@
|
||||
---
|
||||
name: policyengine-testing-patterns
|
||||
description: PolicyEngine testing patterns - YAML test structure, naming conventions, period handling, and quality standards
|
||||
---
|
||||
|
||||
# PolicyEngine Testing Patterns
|
||||
|
||||
Comprehensive patterns and standards for creating PolicyEngine tests.
|
||||
|
||||
## Quick Reference
|
||||
|
||||
### File Structure
|
||||
```
|
||||
policyengine_us/tests/policy/baseline/gov/states/[state]/[agency]/[program]/
|
||||
├── [variable_name].yaml # Unit test for specific variable
|
||||
├── [another_variable].yaml # Another unit test
|
||||
└── integration.yaml # Integration test (NEVER prefixed)
|
||||
```
|
||||
|
||||
### Period Restrictions
|
||||
- ✅ `2024-01` - First month only
|
||||
- ✅ `2024` - Whole year
|
||||
- ❌ `2024-04` - Other months NOT supported
|
||||
- ❌ `2024-01-01` - Full dates NOT supported
|
||||
|
||||
### Naming Convention
|
||||
- Files: `variable_name.yaml` (matches variable exactly)
|
||||
- Integration: Always `integration.yaml` (never prefixed)
|
||||
- Cases: `Case 1, description.` (numbered, comma, period)
|
||||
- People: `person1`, `person2` (never descriptive names)
|
||||
|
||||
---
|
||||
|
||||
## 1. Test File Organization
|
||||
|
||||
### File Naming Rules
|
||||
|
||||
**Unit tests** - Named after the variable they test:
|
||||
```
|
||||
✅ CORRECT:
|
||||
az_liheap_eligible.yaml # Tests az_liheap_eligible variable
|
||||
az_liheap_benefit.yaml # Tests az_liheap_benefit variable
|
||||
|
||||
❌ WRONG:
|
||||
test_az_liheap.yaml # Wrong prefix
|
||||
liheap_tests.yaml # Wrong pattern
|
||||
```
|
||||
|
||||
**Integration tests** - Always named `integration.yaml`:
|
||||
```
|
||||
✅ CORRECT:
|
||||
integration.yaml # Standard name
|
||||
|
||||
❌ WRONG:
|
||||
az_liheap_integration.yaml # Never prefix integration
|
||||
program_integration.yaml # Never prefix integration
|
||||
```
|
||||
|
||||
### Folder Structure
|
||||
|
||||
Follow state/agency/program hierarchy:
|
||||
```
|
||||
gov/
|
||||
└── states/
|
||||
└── [state_code]/
|
||||
└── [agency]/
|
||||
└── [program]/
|
||||
├── eligibility/
|
||||
│ └── income_eligible.yaml
|
||||
├── income/
|
||||
│ └── countable_income.yaml
|
||||
└── integration.yaml
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2. Period Format Restrictions
|
||||
|
||||
### Critical: Only Two Formats Supported
|
||||
|
||||
PolicyEngine test system ONLY supports:
|
||||
- `2024-01` - First month of year
|
||||
- `2024` - Whole year
|
||||
|
||||
**Never use:**
|
||||
- `2024-04` - April (will fail)
|
||||
- `2024-10` - October (will fail)
|
||||
- `2024-01-01` - Full date (will fail)
|
||||
|
||||
### Handling Mid-Year Policy Changes
|
||||
|
||||
If policy changes April 1, 2024:
|
||||
```yaml
|
||||
# Option 1: Test with first month
|
||||
period: 2024-01 # Tests January with new policy
|
||||
|
||||
# Option 2: Test next year
|
||||
period: 2025-01 # When policy definitely active
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 3. Test Naming Conventions
|
||||
|
||||
### Case Names
|
||||
|
||||
Use numbered cases with descriptions:
|
||||
```yaml
|
||||
✅ CORRECT:
|
||||
- name: Case 1, single parent with one child.
|
||||
- name: Case 2, two parents with two children.
|
||||
- name: Case 3, income at threshold.
|
||||
|
||||
❌ WRONG:
|
||||
- name: Single parent test
|
||||
- name: Test case for family
|
||||
- name: Case 1 - single parent # Wrong punctuation
|
||||
```
|
||||
|
||||
### Person Names
|
||||
|
||||
Use generic sequential names:
|
||||
```yaml
|
||||
✅ CORRECT:
|
||||
people:
|
||||
person1:
|
||||
age: 30
|
||||
person2:
|
||||
age: 10
|
||||
person3:
|
||||
age: 8
|
||||
|
||||
❌ WRONG:
|
||||
people:
|
||||
parent:
|
||||
age: 30
|
||||
child1:
|
||||
age: 10
|
||||
```
|
||||
|
||||
### Output Format
|
||||
|
||||
Use simplified format without entity key:
|
||||
```yaml
|
||||
✅ CORRECT:
|
||||
output:
|
||||
tx_tanf_eligible: true
|
||||
tx_tanf_benefit: 250
|
||||
|
||||
❌ WRONG:
|
||||
output:
|
||||
tx_tanf_eligible:
|
||||
spm_unit: true # Don't nest under entity
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 4. Which Variables Need Tests
|
||||
|
||||
### Variables That DON'T Need Tests
|
||||
|
||||
Skip tests for simple composition variables using only `adds` or `subtracts`:
|
||||
```python
|
||||
# NO TEST NEEDED - just summing
|
||||
class tx_tanf_countable_income(Variable):
|
||||
adds = ["earned_income", "unearned_income"]
|
||||
|
||||
# NO TEST NEEDED - simple arithmetic
|
||||
class net_income(Variable):
|
||||
adds = ["gross_income"]
|
||||
subtracts = ["deductions"]
|
||||
```
|
||||
|
||||
### Variables That NEED Tests
|
||||
|
||||
Create tests for variables with:
|
||||
- Conditional logic (`where`, `select`, `if`)
|
||||
- Calculations/transformations
|
||||
- Business logic
|
||||
- Deductions/disregards
|
||||
- Eligibility determinations
|
||||
|
||||
```python
|
||||
# NEEDS TEST - has logic
|
||||
class tx_tanf_income_eligible(Variable):
|
||||
def formula(spm_unit, period, parameters):
|
||||
return where(enrolled, passes_test, other_test)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 5. Period Conversion in Tests
|
||||
|
||||
### Critical Rule for MONTH Tests
|
||||
|
||||
When `period: 2025-01`:
|
||||
- **Input**: YEAR variables as annual amounts
|
||||
- **Output**: YEAR variables show monthly values (÷12)
|
||||
|
||||
```yaml
|
||||
- name: Case 1, income conversion.
|
||||
period: 2025-01 # MONTH period
|
||||
input:
|
||||
people:
|
||||
person1:
|
||||
employment_income: 12_000 # Input: Annual
|
||||
output:
|
||||
employment_income: 1_000 # Output: Monthly (12_000/12)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 6. Numeric Formatting
|
||||
|
||||
### Always Use Underscore Separators
|
||||
|
||||
```yaml
|
||||
✅ CORRECT:
|
||||
employment_income: 50_000
|
||||
cash_assets: 1_500
|
||||
|
||||
❌ WRONG:
|
||||
employment_income: 50000
|
||||
cash_assets: 1500
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 7. Integration Test Quality Standards
|
||||
|
||||
### Inline Calculation Comments
|
||||
|
||||
Document every calculation step:
|
||||
```yaml
|
||||
- name: Case 2, earnings with deductions.
|
||||
period: 2025-01
|
||||
input:
|
||||
people:
|
||||
person1:
|
||||
employment_income: 3_000 # $250/month
|
||||
output:
|
||||
# Person-level arrays
|
||||
tx_tanf_gross_earned_income: [250, 0]
|
||||
# Person1: 3,000/12 = 250
|
||||
|
||||
tx_tanf_earned_after_disregard: [87.1, 0]
|
||||
# Person1: 250 - 120 = 130
|
||||
# Disregard: 130/3 = 43.33
|
||||
# After: 130 - 43.33 = 86.67 ≈ 87.1
|
||||
```
|
||||
|
||||
### Comprehensive Scenarios
|
||||
|
||||
Include 5-7 scenarios covering:
|
||||
1. Basic eligible case
|
||||
2. Earnings with deductions
|
||||
3. Edge case at threshold
|
||||
4. Mixed enrollment status
|
||||
5. Special circumstances (SSI, immigration)
|
||||
6. Ineligible case
|
||||
|
||||
### Verify Intermediate Values
|
||||
|
||||
Check 8-10 values per test:
|
||||
```yaml
|
||||
output:
|
||||
# Income calculation chain
|
||||
program_gross_income: 250
|
||||
program_earned_after_disregard: 87.1
|
||||
program_deductions: 200
|
||||
program_countable_income: 0
|
||||
|
||||
# Eligibility chain
|
||||
program_income_eligible: true
|
||||
program_resources_eligible: true
|
||||
program_eligible: true
|
||||
|
||||
# Final benefit
|
||||
program_benefit: 320
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 8. Common Variables to Use
|
||||
|
||||
### Always Available
|
||||
```yaml
|
||||
# Demographics
|
||||
age: 30
|
||||
is_disabled: false
|
||||
is_pregnant: false
|
||||
|
||||
# Income
|
||||
employment_income: 50_000
|
||||
self_employment_income: 10_000
|
||||
social_security: 12_000
|
||||
ssi: 9_000
|
||||
|
||||
# Benefits
|
||||
snap: 200
|
||||
tanf: 150
|
||||
medicaid: true
|
||||
|
||||
# Location
|
||||
state_code: CA
|
||||
county_code: "06037" # String for FIPS
|
||||
```
|
||||
|
||||
### Variables That DON'T Exist
|
||||
|
||||
Never use these (not in PolicyEngine):
|
||||
- `heating_expense`
|
||||
- `utility_expense`
|
||||
- `utility_shut_off_notice`
|
||||
- `past_due_balance`
|
||||
- `bulk_fuel_amount`
|
||||
- `weatherization_needed`
|
||||
|
||||
---
|
||||
|
||||
## 9. Enum Verification
|
||||
|
||||
### Always Check Actual Enum Values
|
||||
|
||||
Before using enums in tests:
|
||||
```bash
|
||||
# Find enum definition
|
||||
grep -r "class ImmigrationStatus" --include="*.py"
|
||||
```
|
||||
|
||||
```python
|
||||
# Check actual values
|
||||
class ImmigrationStatus(Enum):
|
||||
CITIZEN = "Citizen"
|
||||
LEGAL_PERMANENT_RESIDENT = "Legal Permanent Resident" # NOT "PERMANENT_RESIDENT"
|
||||
REFUGEE = "Refugee"
|
||||
```
|
||||
|
||||
```yaml
|
||||
✅ CORRECT:
|
||||
immigration_status: LEGAL_PERMANENT_RESIDENT
|
||||
|
||||
❌ WRONG:
|
||||
immigration_status: PERMANENT_RESIDENT # Doesn't exist
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 10. Test Quality Checklist
|
||||
|
||||
Before submitting tests:
|
||||
- [ ] All variables exist in PolicyEngine
|
||||
- [ ] Period format is `2024-01` or `2024` only
|
||||
- [ ] Numbers use underscore separators
|
||||
- [ ] Integration tests have calculation comments
|
||||
- [ ] 5-7 comprehensive scenarios in integration.yaml
|
||||
- [ ] Enum values verified against actual definitions
|
||||
- [ ] Output values realistic, not placeholders
|
||||
- [ ] File names match variable names exactly
|
||||
|
||||
---
|
||||
|
||||
## Common Test Patterns
|
||||
|
||||
### Income Eligibility
|
||||
```yaml
|
||||
- name: Case 1, income exactly at threshold.
|
||||
period: 2024-01
|
||||
input:
|
||||
people:
|
||||
person1:
|
||||
employment_income: 30_360 # Annual limit
|
||||
output:
|
||||
program_income_eligible: true # At threshold = eligible
|
||||
```
|
||||
|
||||
### Priority Groups
|
||||
```yaml
|
||||
- name: Case 2, elderly priority.
|
||||
period: 2024-01
|
||||
input:
|
||||
people:
|
||||
person1:
|
||||
age: 65
|
||||
output:
|
||||
program_priority_group: true
|
||||
```
|
||||
|
||||
### Categorical Eligibility
|
||||
```yaml
|
||||
- name: Case 3, SNAP categorical.
|
||||
period: 2024-01
|
||||
input:
|
||||
spm_units:
|
||||
spm_unit:
|
||||
snap: 200 # Receives SNAP
|
||||
output:
|
||||
program_categorical_eligible: true
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## For Agents
|
||||
|
||||
When creating tests:
|
||||
1. **Check existing variables** before using any in tests
|
||||
2. **Use only supported periods** (2024-01 or 2024)
|
||||
3. **Document calculations** in integration tests
|
||||
4. **Verify enum values** against actual code
|
||||
5. **Follow naming conventions** exactly
|
||||
6. **Include edge cases** at thresholds
|
||||
7. **Test realistic scenarios** not placeholders
|
||||
660
skills/policyengine-uk-skill/SKILL.md
Normal file
660
skills/policyengine-uk-skill/SKILL.md
Normal file
@@ -0,0 +1,660 @@
|
||||
---
|
||||
name: policyengine-uk
|
||||
description: PolicyEngine-UK tax and benefit microsimulation patterns, situation creation, and common workflows
|
||||
---
|
||||
|
||||
# PolicyEngine-UK
|
||||
|
||||
PolicyEngine-UK models the UK tax and benefit system, including devolved variations for Scotland and Wales.
|
||||
|
||||
## For Users 👥
|
||||
|
||||
### What is PolicyEngine-UK?
|
||||
|
||||
PolicyEngine-UK is the "calculator" for UK taxes and benefits. When you use policyengine.org/uk, PolicyEngine-UK runs behind the scenes.
|
||||
|
||||
**What it models:**
|
||||
|
||||
**Direct taxes:**
|
||||
- Income tax (UK-wide, Scottish, and Welsh variations)
|
||||
- National Insurance (Classes 1, 2, 4)
|
||||
- Capital gains tax
|
||||
- Dividend tax
|
||||
|
||||
**Property and transaction taxes:**
|
||||
- Council Tax
|
||||
- Stamp Duty Land Tax (England/NI)
|
||||
- Land and Buildings Transaction Tax (Scotland)
|
||||
- Land Transaction Tax (Wales)
|
||||
|
||||
**Universal Credit:**
|
||||
- Standard allowance
|
||||
- Child elements
|
||||
- Housing cost element
|
||||
- Childcare costs element
|
||||
- Carer element
|
||||
- Work capability elements
|
||||
|
||||
**Legacy benefits (being phased out):**
|
||||
- Working Tax Credit
|
||||
- Child Tax Credit
|
||||
- Income Support
|
||||
- Income-based JSA/ESA
|
||||
- Housing Benefit
|
||||
|
||||
**Other benefits:**
|
||||
- Child Benefit
|
||||
- Pension Credit
|
||||
- Personal Independence Payment (PIP)
|
||||
- Disability Living Allowance (DLA)
|
||||
- Attendance Allowance
|
||||
- State Pension
|
||||
|
||||
**See full list:** https://policyengine.org/uk/parameters
|
||||
|
||||
### Understanding Variables
|
||||
|
||||
When you see results in PolicyEngine, these are variables:
|
||||
|
||||
**Income variables:**
|
||||
- `employment_income` - Gross employment earnings/salary
|
||||
- `self_employment_income` - Self-employment profits
|
||||
- `pension_income` - Private pension income
|
||||
- `property_income` - Rental income
|
||||
- `savings_interest_income` - Interest from savings
|
||||
- `dividend_income` - Dividend income
|
||||
|
||||
**Tax variables:**
|
||||
- `income_tax` - Total income tax liability
|
||||
- `national_insurance` - Total NI contributions
|
||||
- `council_tax` - Council tax liability
|
||||
|
||||
**Benefit variables:**
|
||||
- `universal_credit` - Universal Credit amount
|
||||
- `child_benefit` - Child Benefit amount
|
||||
- `pension_credit` - Pension Credit amount
|
||||
- `working_tax_credit` - Working Tax Credit (legacy)
|
||||
- `child_tax_credit` - Child Tax Credit (legacy)
|
||||
|
||||
**Summary variables:**
|
||||
- `household_net_income` - Income after taxes and benefits
|
||||
- `disposable_income` - Income after taxes
|
||||
- `equivalised_household_net_income` - Adjusted for household size
|
||||
|
||||
## For Analysts 📊
|
||||
|
||||
### Installation and Setup
|
||||
|
||||
```bash
|
||||
# Install PolicyEngine-UK
|
||||
pip install policyengine-uk
|
||||
|
||||
# Or with uv (recommended)
|
||||
uv pip install policyengine-uk
|
||||
```
|
||||
|
||||
### Quick Start
|
||||
|
||||
```python
|
||||
from policyengine_uk import Simulation
|
||||
|
||||
# Create a household
|
||||
situation = {
|
||||
"people": {
|
||||
"person": {
|
||||
"age": {2025: 30},
|
||||
"employment_income": {2025: 30000}
|
||||
}
|
||||
},
|
||||
"benunits": {
|
||||
"benunit": {
|
||||
"members": ["person"]
|
||||
}
|
||||
},
|
||||
"households": {
|
||||
"household": {
|
||||
"members": ["person"],
|
||||
"region": {2025: "LONDON"}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Calculate taxes and benefits
|
||||
sim = Simulation(situation=situation)
|
||||
income_tax = sim.calculate("income_tax", 2025)[0]
|
||||
universal_credit = sim.calculate("universal_credit", 2025)[0]
|
||||
|
||||
print(f"Income tax: £{income_tax:,.0f}")
|
||||
print(f"Universal Credit: £{universal_credit:,.0f}")
|
||||
```
|
||||
|
||||
### Web App to Python
|
||||
|
||||
**Web app URL:**
|
||||
```
|
||||
policyengine.org/uk/household?household=12345
|
||||
```
|
||||
|
||||
**Equivalent Python (conceptually):**
|
||||
The household ID represents a situation dictionary. To replicate in Python, you'd create a similar situation.
|
||||
|
||||
### When to Use This Skill
|
||||
|
||||
- Creating household situations for tax/benefit calculations
|
||||
- Running microsimulations with PolicyEngine-UK
|
||||
- Analyzing policy reforms and their impacts
|
||||
- Building tools that use PolicyEngine-UK (calculators, analysis notebooks)
|
||||
- Debugging PolicyEngine-UK calculations
|
||||
|
||||
## For Contributors 💻
|
||||
|
||||
### Repository
|
||||
|
||||
**Location:** PolicyEngine/policyengine-uk
|
||||
|
||||
**To see current implementation:**
|
||||
```bash
|
||||
git clone https://github.com/PolicyEngine/policyengine-uk
|
||||
cd policyengine-uk
|
||||
|
||||
# Explore structure
|
||||
tree policyengine_uk/
|
||||
```
|
||||
|
||||
**Key directories:**
|
||||
```bash
|
||||
ls policyengine_uk/
|
||||
# - variables/ - Tax and benefit calculations
|
||||
# - parameters/ - Policy rules (YAML)
|
||||
# - reforms/ - Pre-defined reforms
|
||||
# - tests/ - Test cases
|
||||
```
|
||||
|
||||
## Core Concepts
|
||||
|
||||
### 1. Situation Dictionary Structure
|
||||
|
||||
PolicyEngine UK requires a nested dictionary defining household composition:
|
||||
|
||||
```python
|
||||
situation = {
|
||||
"people": {
|
||||
"person_id": {
|
||||
"age": {2025: 35},
|
||||
"employment_income": {2025: 30000},
|
||||
# ... other person attributes
|
||||
}
|
||||
},
|
||||
"benunits": {
|
||||
"benunit_id": {
|
||||
"members": ["person_id", ...]
|
||||
}
|
||||
},
|
||||
"households": {
|
||||
"household_id": {
|
||||
"members": ["person_id", ...],
|
||||
"region": {2025: "SOUTH_EAST"}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Key Rules:**
|
||||
- All entities must have consistent member lists
|
||||
- Use year keys for all values: `{2025: value}`
|
||||
- Region must be one of the ITL 1 regions (see below)
|
||||
- All monetary values in pounds (not pence)
|
||||
- UK tax year runs April 6 to April 5 (but use calendar year in code)
|
||||
|
||||
**Important Entity Difference:**
|
||||
- UK uses **benunits** (benefit units): a single adult OR couple + dependent children
|
||||
- This is the assessment unit for most means-tested benefits
|
||||
- Unlike US which uses families/marital_units/tax_units/spm_units
|
||||
|
||||
### 2. Creating Simulations
|
||||
|
||||
```python
|
||||
from policyengine_uk import Simulation
|
||||
|
||||
# Create simulation from situation
|
||||
simulation = Simulation(situation=situation)
|
||||
|
||||
# Calculate variables
|
||||
income_tax = simulation.calculate("income_tax", 2025)
|
||||
universal_credit = simulation.calculate("universal_credit", 2025)
|
||||
household_net_income = simulation.calculate("household_net_income", 2025)
|
||||
```
|
||||
|
||||
**Common Variables:**
|
||||
|
||||
**Income:**
|
||||
- `employment_income` - Gross employment earnings
|
||||
- `self_employment_income` - Self-employment profits
|
||||
- `pension_income` - Private pension income
|
||||
- `property_income` - Rental income
|
||||
- `savings_interest_income` - Interest income
|
||||
- `dividend_income` - Dividend income
|
||||
- `miscellaneous_income` - Other income sources
|
||||
|
||||
**Tax Outputs:**
|
||||
- `income_tax` - Total income tax liability
|
||||
- `national_insurance` - Total NI contributions
|
||||
- `council_tax` - Council tax liability
|
||||
- `VAT` - Value Added Tax paid
|
||||
|
||||
**Benefits:**
|
||||
- `universal_credit` - Universal Credit
|
||||
- `child_benefit` - Child Benefit
|
||||
- `pension_credit` - Pension Credit
|
||||
- `working_tax_credit` - Working Tax Credit (legacy)
|
||||
- `child_tax_credit` - Child Tax Credit (legacy)
|
||||
- `personal_independence_payment` - PIP
|
||||
- `attendance_allowance` - Attendance Allowance
|
||||
- `state_pension` - State Pension
|
||||
|
||||
**Summary:**
|
||||
- `household_net_income` - Income after taxes and benefits
|
||||
- `disposable_income` - Income after taxes
|
||||
- `equivalised_household_net_income` - Adjusted for household size
|
||||
|
||||
### 3. Using Axes for Parameter Sweeps
|
||||
|
||||
To vary a parameter across multiple values:
|
||||
|
||||
```python
|
||||
situation = {
|
||||
# ... normal situation setup ...
|
||||
"axes": [[{
|
||||
"name": "employment_income",
|
||||
"count": 1001,
|
||||
"min": 0,
|
||||
"max": 100000,
|
||||
"period": 2025
|
||||
}]]
|
||||
}
|
||||
|
||||
simulation = Simulation(situation=situation)
|
||||
# Now calculate() returns arrays of 1001 values
|
||||
incomes = simulation.calculate("employment_income", 2025) # Array of 1001 values
|
||||
taxes = simulation.calculate("income_tax", 2025) # Array of 1001 values
|
||||
```
|
||||
|
||||
**Important:** Remove axes before creating single-point simulations:
|
||||
```python
|
||||
situation_single = situation.copy()
|
||||
situation_single.pop("axes", None)
|
||||
simulation = Simulation(situation=situation_single)
|
||||
```
|
||||
|
||||
### 4. Policy Reforms
|
||||
|
||||
```python
|
||||
from policyengine_uk import Simulation
|
||||
|
||||
# Define a reform (modifies parameters)
|
||||
reform = {
|
||||
"gov.hmrc.income_tax.rates.uk.brackets[0].rate": {
|
||||
"2025-01-01.2100-12-31": 0.25 # Increase basic rate to 25%
|
||||
}
|
||||
}
|
||||
|
||||
# Create simulation with reform
|
||||
simulation = Simulation(situation=situation, reform=reform)
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Pattern 1: Single Person Household Calculation
|
||||
|
||||
```python
|
||||
from policyengine_uk import Simulation
|
||||
|
||||
situation = {
|
||||
"people": {
|
||||
"person": {
|
||||
"age": {2025: 30},
|
||||
"employment_income": {2025: 30000}
|
||||
}
|
||||
},
|
||||
"benunits": {
|
||||
"benunit": {
|
||||
"members": ["person"]
|
||||
}
|
||||
},
|
||||
"households": {
|
||||
"household": {
|
||||
"members": ["person"],
|
||||
"region": {2025: "LONDON"}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sim = Simulation(situation=situation)
|
||||
income_tax = sim.calculate("income_tax", 2025)[0]
|
||||
national_insurance = sim.calculate("national_insurance", 2025)[0]
|
||||
universal_credit = sim.calculate("universal_credit", 2025)[0]
|
||||
```
|
||||
|
||||
### Pattern 2: Couple with Children
|
||||
|
||||
```python
|
||||
situation = {
|
||||
"people": {
|
||||
"parent_1": {
|
||||
"age": {2025: 35},
|
||||
"employment_income": {2025: 35000}
|
||||
},
|
||||
"parent_2": {
|
||||
"age": {2025: 33},
|
||||
"employment_income": {2025: 25000}
|
||||
},
|
||||
"child_1": {
|
||||
"age": {2025: 8}
|
||||
},
|
||||
"child_2": {
|
||||
"age": {2025: 5}
|
||||
}
|
||||
},
|
||||
"benunits": {
|
||||
"benunit": {
|
||||
"members": ["parent_1", "parent_2", "child_1", "child_2"]
|
||||
}
|
||||
},
|
||||
"households": {
|
||||
"household": {
|
||||
"members": ["parent_1", "parent_2", "child_1", "child_2"],
|
||||
"region": {2025: "NORTH_WEST"}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sim = Simulation(situation=situation)
|
||||
child_benefit = sim.calculate("child_benefit", 2025)[0]
|
||||
universal_credit = sim.calculate("universal_credit", 2025)[0]
|
||||
```
|
||||
|
||||
### Pattern 3: Marginal Tax Rate Analysis
|
||||
|
||||
```python
|
||||
# Create baseline with axes varying income
|
||||
situation_with_axes = {
|
||||
"people": {
|
||||
"person": {
|
||||
"age": {2025: 30}
|
||||
}
|
||||
},
|
||||
"benunits": {"benunit": {"members": ["person"]}},
|
||||
"households": {
|
||||
"household": {
|
||||
"members": ["person"],
|
||||
"region": {2025: "LONDON"}
|
||||
}
|
||||
},
|
||||
"axes": [[{
|
||||
"name": "employment_income",
|
||||
"count": 1001,
|
||||
"min": 0,
|
||||
"max": 100000,
|
||||
"period": 2025
|
||||
}]]
|
||||
}
|
||||
|
||||
sim = Simulation(situation=situation_with_axes)
|
||||
incomes = sim.calculate("employment_income", 2025)
|
||||
net_incomes = sim.calculate("household_net_income", 2025)
|
||||
|
||||
# Calculate marginal tax rate
|
||||
import numpy as np
|
||||
mtr = 1 - (np.gradient(net_incomes) / np.gradient(incomes))
|
||||
```
|
||||
|
||||
### Pattern 4: Regional Comparison
|
||||
|
||||
```python
|
||||
regions = ["LONDON", "SCOTLAND", "WALES", "NORTH_EAST"]
|
||||
results = {}
|
||||
|
||||
for region in regions:
|
||||
situation = create_situation(region=region, income=30000)
|
||||
sim = Simulation(situation=situation)
|
||||
results[region] = {
|
||||
"income_tax": sim.calculate("income_tax", 2025)[0],
|
||||
"national_insurance": sim.calculate("national_insurance", 2025)[0],
|
||||
"total_tax": sim.calculate("income_tax", 2025)[0] +
|
||||
sim.calculate("national_insurance", 2025)[0]
|
||||
}
|
||||
```
|
||||
|
||||
### Pattern 5: Policy Reform Impact
|
||||
|
||||
```python
|
||||
from policyengine_uk import Microsimulation, Reform
|
||||
|
||||
# Define reform: Increase basic rate to 25%
|
||||
class IncreaseBasicRate(Reform):
|
||||
def apply(self):
|
||||
def modify_parameters(parameters):
|
||||
parameters.gov.hmrc.income_tax.rates.uk.brackets[0].rate.update(
|
||||
period="year:2025:10", value=0.25
|
||||
)
|
||||
return parameters
|
||||
self.modify_parameters(modify_parameters)
|
||||
|
||||
# Run microsimulation
|
||||
baseline = Microsimulation()
|
||||
reformed = Microsimulation(reform=IncreaseBasicRate)
|
||||
|
||||
# Calculate revenue impact
|
||||
baseline_revenue = baseline.calc("income_tax", 2025).sum()
|
||||
reformed_revenue = reformed.calc("income_tax", 2025).sum()
|
||||
revenue_change = (reformed_revenue - baseline_revenue) / 1e9 # in billions
|
||||
|
||||
# Calculate household impact
|
||||
baseline_net_income = baseline.calc("household_net_income", 2025)
|
||||
reformed_net_income = reformed.calc("household_net_income", 2025)
|
||||
```
|
||||
|
||||
## Helper Scripts
|
||||
|
||||
This skill includes helper scripts in the `scripts/` directory:
|
||||
|
||||
```python
|
||||
from policyengine_uk_skills.situation_helpers import (
|
||||
create_single_person,
|
||||
create_couple,
|
||||
create_family_with_children,
|
||||
add_region
|
||||
)
|
||||
|
||||
# Quick situation creation
|
||||
situation = create_single_person(
|
||||
income=30000,
|
||||
region="LONDON",
|
||||
age=30
|
||||
)
|
||||
|
||||
# Create couple
|
||||
situation = create_couple(
|
||||
income_1=35000,
|
||||
income_2=25000,
|
||||
region="SCOTLAND"
|
||||
)
|
||||
```
|
||||
|
||||
## Common Pitfalls and Solutions
|
||||
|
||||
### Pitfall 1: Member Lists Out of Sync
|
||||
|
||||
**Problem:** Different entities have different members
|
||||
```python
|
||||
# WRONG
|
||||
"benunits": {"benunit": {"members": ["parent"]}},
|
||||
"households": {"household": {"members": ["parent", "child"]}}
|
||||
```
|
||||
|
||||
**Solution:** Keep all entity member lists consistent:
|
||||
```python
|
||||
# CORRECT
|
||||
all_members = ["parent", "child"]
|
||||
"benunits": {"benunit": {"members": all_members}},
|
||||
"households": {"household": {"members": all_members}}
|
||||
```
|
||||
|
||||
### Pitfall 2: Forgetting Year Keys
|
||||
|
||||
**Problem:** `"age": 35` instead of `"age": {2025: 35}`
|
||||
|
||||
**Solution:** Always use year dictionary:
|
||||
```python
|
||||
"age": {2025: 35},
|
||||
"employment_income": {2025: 30000}
|
||||
```
|
||||
|
||||
### Pitfall 3: Wrong Region Format
|
||||
|
||||
**Problem:** Using lowercase or incorrect region names
|
||||
|
||||
**Solution:** Use uppercase ITL 1 region codes:
|
||||
```python
|
||||
# CORRECT regions:
|
||||
"region": {2025: "LONDON"}
|
||||
"region": {2025: "SCOTLAND"}
|
||||
"region": {2025: "WALES"}
|
||||
"region": {2025: "NORTH_EAST"}
|
||||
"region": {2025: "SOUTH_EAST"}
|
||||
```
|
||||
|
||||
### Pitfall 4: Axes Persistence
|
||||
|
||||
**Problem:** Axes remain in situation when creating single-point simulation
|
||||
|
||||
**Solution:** Remove axes before single-point simulation:
|
||||
```python
|
||||
situation_single = situation.copy()
|
||||
situation_single.pop("axes", None)
|
||||
```
|
||||
|
||||
### Pitfall 5: Missing Benunits
|
||||
|
||||
**Problem:** Forgetting to include benunits (benefit units)
|
||||
|
||||
**Solution:** Always include benunits in UK simulations:
|
||||
```python
|
||||
# UK requires benunits
|
||||
situation = {
|
||||
"people": {...},
|
||||
"benunits": {"benunit": {"members": [...]}}, # Required!
|
||||
"households": {...}
|
||||
}
|
||||
```
|
||||
|
||||
## Regions in PolicyEngine UK
|
||||
|
||||
UK uses ITL 1 (International Territorial Level 1, formerly NUTS 1) regions:
|
||||
|
||||
**Regions:**
|
||||
- `NORTH_EAST` - North East England
|
||||
- `NORTH_WEST` - North West England
|
||||
- `YORKSHIRE` - Yorkshire and the Humber
|
||||
- `EAST_MIDLANDS` - East Midlands
|
||||
- `WEST_MIDLANDS` - West Midlands
|
||||
- `EAST_OF_ENGLAND` - East of England
|
||||
- `LONDON` - London
|
||||
- `SOUTH_EAST` - South East England
|
||||
- `SOUTH_WEST` - South West England
|
||||
- `WALES` - Wales
|
||||
- `SCOTLAND` - Scotland
|
||||
- `NORTHERN_IRELAND` - Northern Ireland
|
||||
|
||||
**Regional Tax Variations:**
|
||||
|
||||
**Scotland:**
|
||||
- Has devolved income tax with 6 bands (starter 19%, basic 20%, intermediate 21%, higher 42%, advanced 45%, top 47%)
|
||||
- Scottish residents automatically calculated with Scottish rates
|
||||
|
||||
**Wales:**
|
||||
- Has Welsh Rate of Income Tax (WRIT)
|
||||
- Currently maintains parity with England/NI rates
|
||||
|
||||
**England/Northern Ireland:**
|
||||
- Standard UK rates: basic 20%, higher 40%, additional 45%
|
||||
|
||||
## Key Parameters and Values (2025/26)
|
||||
|
||||
### Income Tax
|
||||
- **Personal Allowance:** £12,570
|
||||
- **Basic rate threshold:** £50,270
|
||||
- **Higher rate threshold:** £125,140
|
||||
- **Rates:** 20% (basic), 40% (higher), 45% (additional)
|
||||
- **Personal allowance tapering:** £1 reduction for every £2 over £100,000
|
||||
|
||||
### National Insurance (Class 1)
|
||||
- **Lower Earnings Limit:** £6,396/year
|
||||
- **Primary Threshold:** £12,570/year
|
||||
- **Upper Earnings Limit:** £50,270/year
|
||||
- **Rates:** 12% (between primary and upper), 2% (above upper)
|
||||
|
||||
### Universal Credit
|
||||
- **Standard allowance:** Varies by single/couple and age
|
||||
- **Taper rate:** 55% (rate at which UC reduced as income increases)
|
||||
- **Work allowance:** Amount you can earn before UC reduced
|
||||
|
||||
### Child Benefit
|
||||
- **First child:** Higher rate
|
||||
- **Subsequent children:** Lower rate
|
||||
- **High Income Charge:** Tapered withdrawal starting at £60,000
|
||||
|
||||
## Version Compatibility
|
||||
|
||||
- Use `policyengine-uk>=1.0.0` for 2025 calculations
|
||||
- Check version: `import policyengine_uk; print(policyengine_uk.__version__)`
|
||||
- Different years may require different package versions
|
||||
|
||||
## Debugging Tips
|
||||
|
||||
1. **Enable tracing:**
|
||||
```python
|
||||
simulation.trace = True
|
||||
result = simulation.calculate("variable_name", 2025)
|
||||
```
|
||||
|
||||
2. **Check intermediate calculations:**
|
||||
```python
|
||||
gross_income = simulation.calculate("gross_income", 2025)
|
||||
disposable_income = simulation.calculate("disposable_income", 2025)
|
||||
```
|
||||
|
||||
3. **Verify situation structure:**
|
||||
```python
|
||||
import json
|
||||
print(json.dumps(situation, indent=2))
|
||||
```
|
||||
|
||||
4. **Test with PolicyEngine web app:**
|
||||
- Go to policyengine.org/uk/household
|
||||
- Enter same inputs
|
||||
- Compare results
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- **Documentation:** https://policyengine.org/uk/docs
|
||||
- **API Reference:** https://github.com/PolicyEngine/policyengine-uk
|
||||
- **Variable Explorer:** https://policyengine.org/uk/variables
|
||||
- **Parameter Explorer:** https://policyengine.org/uk/parameters
|
||||
|
||||
## Examples Directory
|
||||
|
||||
See `examples/` for complete working examples:
|
||||
- `single_person.yaml` - Single person household
|
||||
- `couple.yaml` - Couple without children
|
||||
- `family_with_children.yaml` - Family with dependents
|
||||
- `universal_credit_sweep.yaml` - Analyzing UC with axes
|
||||
|
||||
## Key Differences from US System
|
||||
|
||||
1. **Benefit Units:** UK uses `benunits` (single/couple + children) instead of US multiple entity types
|
||||
2. **Universal Credit:** Consolidated means-tested benefit (vs separate SNAP, TANF, etc. in US)
|
||||
3. **National Insurance:** Separate from income tax with own thresholds (vs US Social Security tax)
|
||||
4. **Devolved Taxes:** Scotland and Wales have different income tax rates
|
||||
5. **Tax Year:** April 6 to April 5 (vs calendar year in US)
|
||||
6. **No State Variation:** Council Tax is local, but most taxes/benefits are national (vs 50 US states)
|
||||
29
skills/policyengine-uk-skill/examples/couple.yaml
Normal file
29
skills/policyengine-uk-skill/examples/couple.yaml
Normal file
@@ -0,0 +1,29 @@
|
||||
# Example: Couple without children in Scotland
|
||||
# Person 1: £35,000, Age: 35
|
||||
# Person 2: £25,000, Age: 33
|
||||
|
||||
people:
|
||||
person_1:
|
||||
age:
|
||||
2025: 35
|
||||
employment_income:
|
||||
2025: 35000
|
||||
person_2:
|
||||
age:
|
||||
2025: 33
|
||||
employment_income:
|
||||
2025: 25000
|
||||
|
||||
benunits:
|
||||
benunit:
|
||||
members:
|
||||
- person_1
|
||||
- person_2
|
||||
|
||||
households:
|
||||
household:
|
||||
members:
|
||||
- person_1
|
||||
- person_2
|
||||
region:
|
||||
2025: SCOTLAND
|
||||
@@ -0,0 +1,41 @@
|
||||
# Example: Family with children in Wales
|
||||
# Parent 1: £35,000, Age: 35
|
||||
# Parent 2: £25,000, Age: 33
|
||||
# Child 1: Age 8
|
||||
# Child 2: Age 5
|
||||
|
||||
people:
|
||||
parent_1:
|
||||
age:
|
||||
2025: 35
|
||||
employment_income:
|
||||
2025: 35000
|
||||
parent_2:
|
||||
age:
|
||||
2025: 33
|
||||
employment_income:
|
||||
2025: 25000
|
||||
child_1:
|
||||
age:
|
||||
2025: 8
|
||||
child_2:
|
||||
age:
|
||||
2025: 5
|
||||
|
||||
benunits:
|
||||
benunit:
|
||||
members:
|
||||
- parent_1
|
||||
- parent_2
|
||||
- child_1
|
||||
- child_2
|
||||
|
||||
households:
|
||||
household:
|
||||
members:
|
||||
- parent_1
|
||||
- parent_2
|
||||
- child_1
|
||||
- child_2
|
||||
region:
|
||||
2025: WALES
|
||||
21
skills/policyengine-uk-skill/examples/single_person.yaml
Normal file
21
skills/policyengine-uk-skill/examples/single_person.yaml
Normal file
@@ -0,0 +1,21 @@
|
||||
# Example: Single person household in London
|
||||
# Income: £30,000, Age: 30
|
||||
|
||||
people:
|
||||
person:
|
||||
age:
|
||||
2025: 30
|
||||
employment_income:
|
||||
2025: 30000
|
||||
|
||||
benunits:
|
||||
benunit:
|
||||
members:
|
||||
- person
|
||||
|
||||
households:
|
||||
household:
|
||||
members:
|
||||
- person
|
||||
region:
|
||||
2025: LONDON
|
||||
@@ -0,0 +1,38 @@
|
||||
# Example: Analyzing Universal Credit with income variation
|
||||
# Single parent with 2 children in North West
|
||||
# Sweeps employment income from £0 to £50,000
|
||||
|
||||
people:
|
||||
parent:
|
||||
age:
|
||||
2025: 30
|
||||
child_1:
|
||||
age:
|
||||
2025: 8
|
||||
child_2:
|
||||
age:
|
||||
2025: 5
|
||||
|
||||
benunits:
|
||||
benunit:
|
||||
members:
|
||||
- parent
|
||||
- child_1
|
||||
- child_2
|
||||
|
||||
households:
|
||||
household:
|
||||
members:
|
||||
- parent
|
||||
- child_1
|
||||
- child_2
|
||||
region:
|
||||
2025: NORTH_WEST
|
||||
|
||||
# Axes: Vary employment income from £0 to £50,000
|
||||
axes:
|
||||
- - name: employment_income
|
||||
count: 1001
|
||||
min: 0
|
||||
max: 50000
|
||||
period: 2025
|
||||
339
skills/policyengine-uk-skill/scripts/situation_helpers.py
Normal file
339
skills/policyengine-uk-skill/scripts/situation_helpers.py
Normal file
@@ -0,0 +1,339 @@
|
||||
"""
|
||||
Helper functions for creating PolicyEngine-UK situations.
|
||||
|
||||
These utilities simplify the creation of situation dictionaries
|
||||
for common household configurations.
|
||||
"""
|
||||
|
||||
CURRENT_YEAR = 2025
|
||||
|
||||
# UK ITL 1 regions
|
||||
VALID_REGIONS = [
|
||||
"NORTH_EAST",
|
||||
"NORTH_WEST",
|
||||
"YORKSHIRE",
|
||||
"EAST_MIDLANDS",
|
||||
"WEST_MIDLANDS",
|
||||
"EAST_OF_ENGLAND",
|
||||
"LONDON",
|
||||
"SOUTH_EAST",
|
||||
"SOUTH_WEST",
|
||||
"WALES",
|
||||
"SCOTLAND",
|
||||
"NORTHERN_IRELAND"
|
||||
]
|
||||
|
||||
|
||||
def create_single_person(income, region="LONDON", age=30, **kwargs):
|
||||
"""
|
||||
Create a situation for a single person household.
|
||||
|
||||
Args:
|
||||
income (float): Employment income
|
||||
region (str): ITL 1 region (e.g., "LONDON", "SCOTLAND")
|
||||
age (int): Person's age
|
||||
**kwargs: Additional person attributes (e.g., self_employment_income)
|
||||
|
||||
Returns:
|
||||
dict: PolicyEngine situation dictionary
|
||||
"""
|
||||
if region not in VALID_REGIONS:
|
||||
raise ValueError(f"Invalid region. Must be one of: {', '.join(VALID_REGIONS)}")
|
||||
|
||||
person_attrs = {
|
||||
"age": {CURRENT_YEAR: age},
|
||||
"employment_income": {CURRENT_YEAR: income},
|
||||
}
|
||||
person_attrs.update({k: {CURRENT_YEAR: v} for k, v in kwargs.items()})
|
||||
|
||||
return {
|
||||
"people": {"person": person_attrs},
|
||||
"benunits": {"benunit": {"members": ["person"]}},
|
||||
"households": {
|
||||
"household": {
|
||||
"members": ["person"],
|
||||
"region": {CURRENT_YEAR: region}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def create_couple(
|
||||
income_1, income_2=0, region="LONDON", age_1=35, age_2=35, **kwargs
|
||||
):
|
||||
"""
|
||||
Create a situation for a couple without children.
|
||||
|
||||
Args:
|
||||
income_1 (float): First person's employment income
|
||||
income_2 (float): Second person's employment income
|
||||
region (str): ITL 1 region
|
||||
age_1 (int): First person's age
|
||||
age_2 (int): Second person's age
|
||||
**kwargs: Additional household attributes
|
||||
|
||||
Returns:
|
||||
dict: PolicyEngine situation dictionary
|
||||
"""
|
||||
if region not in VALID_REGIONS:
|
||||
raise ValueError(f"Invalid region. Must be one of: {', '.join(VALID_REGIONS)}")
|
||||
|
||||
members = ["person_1", "person_2"]
|
||||
|
||||
household_attrs = {
|
||||
"members": members,
|
||||
"region": {CURRENT_YEAR: region}
|
||||
}
|
||||
household_attrs.update({k: {CURRENT_YEAR: v} for k, v in kwargs.items()})
|
||||
|
||||
return {
|
||||
"people": {
|
||||
"person_1": {
|
||||
"age": {CURRENT_YEAR: age_1},
|
||||
"employment_income": {CURRENT_YEAR: income_1}
|
||||
},
|
||||
"person_2": {
|
||||
"age": {CURRENT_YEAR: age_2},
|
||||
"employment_income": {CURRENT_YEAR: income_2}
|
||||
}
|
||||
},
|
||||
"benunits": {"benunit": {"members": members}},
|
||||
"households": {"household": household_attrs}
|
||||
}
|
||||
|
||||
|
||||
def create_family_with_children(
|
||||
parent_income,
|
||||
num_children=1,
|
||||
child_ages=None,
|
||||
region="LONDON",
|
||||
parent_age=35,
|
||||
couple=False,
|
||||
partner_income=0,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Create a situation for a family with children.
|
||||
|
||||
Args:
|
||||
parent_income (float): Primary parent's employment income
|
||||
num_children (int): Number of children
|
||||
child_ages (list): List of child ages (defaults to [5, 8, 12, ...])
|
||||
region (str): ITL 1 region
|
||||
parent_age (int): Parent's age
|
||||
couple (bool): Whether this is a couple household
|
||||
partner_income (float): Partner's income if couple
|
||||
**kwargs: Additional household attributes
|
||||
|
||||
Returns:
|
||||
dict: PolicyEngine situation dictionary
|
||||
"""
|
||||
if region not in VALID_REGIONS:
|
||||
raise ValueError(f"Invalid region. Must be one of: {', '.join(VALID_REGIONS)}")
|
||||
|
||||
if child_ages is None:
|
||||
child_ages = [5 + i * 3 for i in range(num_children)]
|
||||
elif len(child_ages) != num_children:
|
||||
raise ValueError("Length of child_ages must match num_children")
|
||||
|
||||
people = {
|
||||
"parent": {
|
||||
"age": {CURRENT_YEAR: parent_age},
|
||||
"employment_income": {CURRENT_YEAR: parent_income}
|
||||
}
|
||||
}
|
||||
|
||||
members = ["parent"]
|
||||
|
||||
if couple:
|
||||
people["partner"] = {
|
||||
"age": {CURRENT_YEAR: parent_age},
|
||||
"employment_income": {CURRENT_YEAR: partner_income}
|
||||
}
|
||||
members.append("partner")
|
||||
|
||||
for i, age in enumerate(child_ages):
|
||||
child_id = f"child_{i+1}"
|
||||
people[child_id] = {"age": {CURRENT_YEAR: age}}
|
||||
members.append(child_id)
|
||||
|
||||
household_attrs = {
|
||||
"members": members,
|
||||
"region": {CURRENT_YEAR: region}
|
||||
}
|
||||
household_attrs.update({k: {CURRENT_YEAR: v} for k, v in kwargs.items()})
|
||||
|
||||
return {
|
||||
"people": people,
|
||||
"benunits": {"benunit": {"members": members}},
|
||||
"households": {"household": household_attrs}
|
||||
}
|
||||
|
||||
|
||||
def add_income_sources(
|
||||
situation,
|
||||
person_id=None,
|
||||
self_employment_income=0,
|
||||
pension_income=0,
|
||||
property_income=0,
|
||||
savings_interest_income=0,
|
||||
dividend_income=0,
|
||||
miscellaneous_income=0
|
||||
):
|
||||
"""
|
||||
Add additional income sources to a person in an existing situation.
|
||||
|
||||
Args:
|
||||
situation (dict): Existing PolicyEngine situation
|
||||
person_id (str): Person ID to add income to (defaults to first person)
|
||||
self_employment_income (float): Self-employment income
|
||||
pension_income (float): Private pension income
|
||||
property_income (float): Rental income
|
||||
savings_interest_income (float): Interest income
|
||||
dividend_income (float): Dividend income
|
||||
miscellaneous_income (float): Other income
|
||||
|
||||
Returns:
|
||||
dict: Updated situation with additional income
|
||||
"""
|
||||
# Get person ID
|
||||
if person_id is None:
|
||||
person_id = list(situation["people"].keys())[0]
|
||||
|
||||
# Add income sources
|
||||
if self_employment_income > 0:
|
||||
situation["people"][person_id]["self_employment_income"] = {
|
||||
CURRENT_YEAR: self_employment_income
|
||||
}
|
||||
|
||||
if pension_income > 0:
|
||||
situation["people"][person_id]["pension_income"] = {
|
||||
CURRENT_YEAR: pension_income
|
||||
}
|
||||
|
||||
if property_income > 0:
|
||||
situation["people"][person_id]["property_income"] = {
|
||||
CURRENT_YEAR: property_income
|
||||
}
|
||||
|
||||
if savings_interest_income > 0:
|
||||
situation["people"][person_id]["savings_interest_income"] = {
|
||||
CURRENT_YEAR: savings_interest_income
|
||||
}
|
||||
|
||||
if dividend_income > 0:
|
||||
situation["people"][person_id]["dividend_income"] = {
|
||||
CURRENT_YEAR: dividend_income
|
||||
}
|
||||
|
||||
if miscellaneous_income > 0:
|
||||
situation["people"][person_id]["miscellaneous_income"] = {
|
||||
CURRENT_YEAR: miscellaneous_income
|
||||
}
|
||||
|
||||
return situation
|
||||
|
||||
|
||||
def add_axes(situation, variable_name, min_val, max_val, count=1001):
|
||||
"""
|
||||
Add axes to a situation for parameter sweeps.
|
||||
|
||||
Args:
|
||||
situation (dict): Existing PolicyEngine situation
|
||||
variable_name (str): Variable to vary (e.g., "employment_income")
|
||||
min_val (float): Minimum value
|
||||
max_val (float): Maximum value
|
||||
count (int): Number of points (default: 1001)
|
||||
|
||||
Returns:
|
||||
dict: Updated situation with axes
|
||||
"""
|
||||
situation["axes"] = [[{
|
||||
"name": variable_name,
|
||||
"count": count,
|
||||
"min": min_val,
|
||||
"max": max_val,
|
||||
"period": CURRENT_YEAR
|
||||
}]]
|
||||
|
||||
return situation
|
||||
|
||||
|
||||
def set_region(situation, region):
|
||||
"""
|
||||
Set or change the region for a household.
|
||||
|
||||
Args:
|
||||
situation (dict): Existing PolicyEngine situation
|
||||
region (str): ITL 1 region (e.g., "LONDON", "SCOTLAND")
|
||||
|
||||
Returns:
|
||||
dict: Updated situation
|
||||
"""
|
||||
if region not in VALID_REGIONS:
|
||||
raise ValueError(f"Invalid region. Must be one of: {', '.join(VALID_REGIONS)}")
|
||||
|
||||
household_id = list(situation["households"].keys())[0]
|
||||
situation["households"][household_id]["region"] = {CURRENT_YEAR: region}
|
||||
|
||||
return situation
|
||||
|
||||
|
||||
def create_pensioner_household(
|
||||
pension_income,
|
||||
state_pension_income=0,
|
||||
region="LONDON",
|
||||
age=70,
|
||||
couple=False,
|
||||
partner_pension_income=0,
|
||||
partner_age=68,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Create a situation for a pensioner household.
|
||||
|
||||
Args:
|
||||
pension_income (float): Private pension income
|
||||
state_pension_income (float): State pension income
|
||||
region (str): ITL 1 region
|
||||
age (int): Pensioner's age
|
||||
couple (bool): Whether this is a couple household
|
||||
partner_pension_income (float): Partner's pension income if couple
|
||||
partner_age (int): Partner's age if couple
|
||||
**kwargs: Additional household attributes
|
||||
|
||||
Returns:
|
||||
dict: PolicyEngine situation dictionary
|
||||
"""
|
||||
if region not in VALID_REGIONS:
|
||||
raise ValueError(f"Invalid region. Must be one of: {', '.join(VALID_REGIONS)}")
|
||||
|
||||
people = {
|
||||
"pensioner": {
|
||||
"age": {CURRENT_YEAR: age},
|
||||
"pension_income": {CURRENT_YEAR: pension_income},
|
||||
"state_pension": {CURRENT_YEAR: state_pension_income}
|
||||
}
|
||||
}
|
||||
|
||||
members = ["pensioner"]
|
||||
|
||||
if couple:
|
||||
people["partner"] = {
|
||||
"age": {CURRENT_YEAR: partner_age},
|
||||
"pension_income": {CURRENT_YEAR: partner_pension_income},
|
||||
"state_pension": {CURRENT_YEAR: 0}
|
||||
}
|
||||
members.append("partner")
|
||||
|
||||
household_attrs = {
|
||||
"members": members,
|
||||
"region": {CURRENT_YEAR: region}
|
||||
}
|
||||
household_attrs.update({k: {CURRENT_YEAR: v} for k, v in kwargs.items()})
|
||||
|
||||
return {
|
||||
"people": people,
|
||||
"benunits": {"benunit": {"members": members}},
|
||||
"households": {"household": household_attrs}
|
||||
}
|
||||
524
skills/policyengine-us-skill/SKILL.md
Normal file
524
skills/policyengine-us-skill/SKILL.md
Normal file
@@ -0,0 +1,524 @@
|
||||
---
|
||||
name: policyengine-us
|
||||
description: PolicyEngine-US tax and benefit microsimulation patterns, situation creation, and common workflows
|
||||
---
|
||||
|
||||
# PolicyEngine-US
|
||||
|
||||
PolicyEngine-US models the US federal and state tax and benefit system.
|
||||
|
||||
## For Users 👥
|
||||
|
||||
### What is PolicyEngine-US?
|
||||
|
||||
PolicyEngine-US is the "calculator" for US taxes and benefits. When you use policyengine.org/us, PolicyEngine-US runs behind the scenes.
|
||||
|
||||
**What it models:**
|
||||
|
||||
**Federal taxes:**
|
||||
- Income tax (with standard/itemized deductions)
|
||||
- Payroll tax (Social Security, Medicare)
|
||||
- Capital gains tax
|
||||
|
||||
**Federal benefits:**
|
||||
- Earned Income Tax Credit (EITC)
|
||||
- Child Tax Credit (CTC)
|
||||
- SNAP (food stamps)
|
||||
- WIC, ACA premium tax credits
|
||||
- Social Security, SSI, TANF
|
||||
|
||||
**State programs (varies by state):**
|
||||
- State income tax (all 50 states + DC)
|
||||
- State EITC, CTC
|
||||
- State-specific benefits
|
||||
|
||||
**See full list:** https://policyengine.org/us/parameters
|
||||
|
||||
### Understanding Variables
|
||||
|
||||
When you see results in PolicyEngine, these are variables:
|
||||
|
||||
**Income variables:**
|
||||
- `employment_income` - W-2 wages
|
||||
- `self_employment_income` - 1099 income
|
||||
- `qualified_dividend_income` - Dividends
|
||||
- `capital_gains` - Capital gains
|
||||
|
||||
**Tax variables:**
|
||||
- `income_tax` - Federal income tax
|
||||
- `state_income_tax` - State income tax
|
||||
- `payroll_tax` - FICA taxes
|
||||
|
||||
**Benefit variables:**
|
||||
- `eitc` - Earned Income Tax Credit
|
||||
- `ctc` - Child Tax Credit
|
||||
- `snap` - SNAP benefits
|
||||
|
||||
**Summary variables:**
|
||||
- `household_net_income` - Income after taxes and benefits
|
||||
- `household_tax` - Total taxes
|
||||
- `household_benefits` - Total benefits
|
||||
|
||||
## For Analysts 📊
|
||||
|
||||
### Installation and Setup
|
||||
|
||||
```bash
|
||||
# Install PolicyEngine-US
|
||||
pip install policyengine-us
|
||||
|
||||
# Or with uv (recommended)
|
||||
uv pip install policyengine-us
|
||||
```
|
||||
|
||||
### Quick Start
|
||||
|
||||
```python
|
||||
from policyengine_us import Simulation
|
||||
|
||||
# Create a household
|
||||
situation = {
|
||||
"people": {
|
||||
"you": {
|
||||
"age": {2024: 30},
|
||||
"employment_income": {2024: 50000}
|
||||
}
|
||||
},
|
||||
"families": {"family": {"members": ["you"]}},
|
||||
"marital_units": {"marital_unit": {"members": ["you"]}},
|
||||
"tax_units": {"tax_unit": {"members": ["you"]}},
|
||||
"spm_units": {"spm_unit": {"members": ["you"]}},
|
||||
"households": {
|
||||
"household": {
|
||||
"members": ["you"],
|
||||
"state_name": {2024: "CA"}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Calculate taxes and benefits
|
||||
sim = Simulation(situation=situation)
|
||||
income_tax = sim.calculate("income_tax", 2024)[0]
|
||||
eitc = sim.calculate("eitc", 2024)[0]
|
||||
|
||||
print(f"Income tax: ${income_tax:,.0f}")
|
||||
print(f"EITC: ${eitc:,.0f}")
|
||||
```
|
||||
|
||||
### Web App to Python
|
||||
|
||||
**Web app URL:**
|
||||
```
|
||||
policyengine.org/us/household?household=12345
|
||||
```
|
||||
|
||||
**Equivalent Python (conceptually):**
|
||||
The household ID represents a situation dictionary. To replicate in Python, you'd create a similar situation.
|
||||
|
||||
### When to Use This Skill
|
||||
|
||||
- Creating household situations for tax/benefit calculations
|
||||
- Running microsimulations with PolicyEngine-US
|
||||
- Analyzing policy reforms and their impacts
|
||||
- Building tools that use PolicyEngine-US (calculators, analysis notebooks)
|
||||
- Debugging PolicyEngine-US calculations
|
||||
|
||||
## For Contributors 💻
|
||||
|
||||
### Repository
|
||||
|
||||
**Location:** PolicyEngine/policyengine-us
|
||||
|
||||
**To see current implementation:**
|
||||
```bash
|
||||
git clone https://github.com/PolicyEngine/policyengine-us
|
||||
cd policyengine-us
|
||||
|
||||
# Explore structure
|
||||
tree policyengine_us/
|
||||
```
|
||||
|
||||
**Key directories:**
|
||||
```bash
|
||||
ls policyengine_us/
|
||||
# - variables/ - Tax and benefit calculations
|
||||
# - parameters/ - Policy rules (YAML)
|
||||
# - reforms/ - Pre-defined reforms
|
||||
# - tests/ - Test cases
|
||||
```
|
||||
|
||||
## Core Concepts
|
||||
|
||||
### 1. Situation Dictionary Structure
|
||||
|
||||
PolicyEngine requires a nested dictionary defining household composition and characteristics:
|
||||
|
||||
```python
|
||||
situation = {
|
||||
"people": {
|
||||
"person_id": {
|
||||
"age": {2024: 35},
|
||||
"employment_income": {2024: 50000},
|
||||
# ... other person attributes
|
||||
}
|
||||
},
|
||||
"families": {
|
||||
"family_id": {"members": ["person_id", ...]}
|
||||
},
|
||||
"marital_units": {
|
||||
"marital_unit_id": {"members": ["person_id", ...]}
|
||||
},
|
||||
"tax_units": {
|
||||
"tax_unit_id": {"members": ["person_id", ...]}
|
||||
},
|
||||
"spm_units": {
|
||||
"spm_unit_id": {"members": ["person_id", ...]}
|
||||
},
|
||||
"households": {
|
||||
"household_id": {
|
||||
"members": ["person_id", ...],
|
||||
"state_name": {2024: "CA"}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Key Rules:**
|
||||
- All entities must have consistent member lists
|
||||
- Use year keys for all values: `{2024: value}`
|
||||
- State must be two-letter code (e.g., "CA", "NY", "TX")
|
||||
- All monetary values in dollars (not cents)
|
||||
|
||||
### 2. Creating Simulations
|
||||
|
||||
```python
|
||||
from policyengine_us import Simulation
|
||||
|
||||
# Create simulation from situation
|
||||
simulation = Simulation(situation=situation)
|
||||
|
||||
# Calculate variables
|
||||
income_tax = simulation.calculate("income_tax", 2024)
|
||||
eitc = simulation.calculate("eitc", 2024)
|
||||
household_net_income = simulation.calculate("household_net_income", 2024)
|
||||
```
|
||||
|
||||
**Common Variables:**
|
||||
|
||||
**Income:**
|
||||
- `employment_income` - W-2 wages
|
||||
- `self_employment_income` - 1099/business income
|
||||
- `qualified_dividend_income` - Qualified dividends
|
||||
- `capital_gains` - Capital gains
|
||||
- `interest_income` - Interest income
|
||||
- `social_security` - Social Security benefits
|
||||
- `pension_income` - Pension/retirement income
|
||||
|
||||
**Deductions:**
|
||||
- `charitable_cash_donations` - Cash charitable giving
|
||||
- `real_estate_taxes` - State and local property taxes
|
||||
- `mortgage_interest` - Mortgage interest deduction
|
||||
- `medical_expense` - Medical and dental expenses
|
||||
- `casualty_loss` - Casualty and theft losses
|
||||
|
||||
**Tax Outputs:**
|
||||
- `income_tax` - Total federal income tax
|
||||
- `payroll_tax` - FICA taxes
|
||||
- `state_income_tax` - State income tax
|
||||
- `household_tax` - Total taxes (federal + state + local)
|
||||
|
||||
**Benefits:**
|
||||
- `eitc` - Earned Income Tax Credit
|
||||
- `ctc` - Child Tax Credit
|
||||
- `snap` - SNAP benefits
|
||||
- `household_benefits` - Total benefits
|
||||
|
||||
**Summary:**
|
||||
- `household_net_income` - Income minus taxes plus benefits
|
||||
|
||||
### 3. Using Axes for Parameter Sweeps
|
||||
|
||||
To vary a parameter across multiple values:
|
||||
|
||||
```python
|
||||
situation = {
|
||||
# ... normal situation setup ...
|
||||
"axes": [[{
|
||||
"name": "employment_income",
|
||||
"count": 1001,
|
||||
"min": 0,
|
||||
"max": 200000,
|
||||
"period": 2024
|
||||
}]]
|
||||
}
|
||||
|
||||
simulation = Simulation(situation=situation)
|
||||
# Now calculate() returns arrays of 1001 values
|
||||
incomes = simulation.calculate("employment_income", 2024) # Array of 1001 values
|
||||
taxes = simulation.calculate("income_tax", 2024) # Array of 1001 values
|
||||
```
|
||||
|
||||
**Important:** Remove axes before creating single-point simulations:
|
||||
```python
|
||||
situation_single = situation.copy()
|
||||
situation_single.pop("axes", None)
|
||||
simulation = Simulation(situation=situation_single)
|
||||
```
|
||||
|
||||
### 4. Policy Reforms
|
||||
|
||||
```python
|
||||
from policyengine_us import Simulation
|
||||
|
||||
# Define a reform (modifies parameters)
|
||||
reform = {
|
||||
"gov.irs.credits.ctc.amount.base_amount": {
|
||||
"2024-01-01.2100-12-31": 5000 # Increase CTC to $5000
|
||||
}
|
||||
}
|
||||
|
||||
# Create simulation with reform
|
||||
simulation = Simulation(situation=situation, reform=reform)
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Pattern 1: Single Household Calculation
|
||||
|
||||
```python
|
||||
from policyengine_us import Simulation
|
||||
|
||||
situation = {
|
||||
"people": {
|
||||
"parent": {
|
||||
"age": {2024: 35},
|
||||
"employment_income": {2024: 60000}
|
||||
},
|
||||
"child": {
|
||||
"age": {2024: 5}
|
||||
}
|
||||
},
|
||||
"families": {"family": {"members": ["parent", "child"]}},
|
||||
"marital_units": {"marital_unit": {"members": ["parent"]}},
|
||||
"tax_units": {"tax_unit": {"members": ["parent", "child"]}},
|
||||
"spm_units": {"spm_unit": {"members": ["parent", "child"]}},
|
||||
"households": {
|
||||
"household": {
|
||||
"members": ["parent", "child"],
|
||||
"state_name": {2024: "NY"}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sim = Simulation(situation=situation)
|
||||
income_tax = sim.calculate("income_tax", 2024)[0]
|
||||
ctc = sim.calculate("ctc", 2024)[0]
|
||||
```
|
||||
|
||||
### Pattern 2: Marginal Tax Rate Analysis
|
||||
|
||||
```python
|
||||
# Create baseline with axes varying income
|
||||
situation_with_axes = {
|
||||
# ... situation setup ...
|
||||
"axes": [[{
|
||||
"name": "employment_income",
|
||||
"count": 1001,
|
||||
"min": 0,
|
||||
"max": 200000,
|
||||
"period": 2024
|
||||
}]]
|
||||
}
|
||||
|
||||
sim = Simulation(situation=situation_with_axes)
|
||||
incomes = sim.calculate("employment_income", 2024)
|
||||
taxes = sim.calculate("income_tax", 2024)
|
||||
|
||||
# Calculate marginal tax rate
|
||||
import numpy as np
|
||||
mtr = np.gradient(taxes) / np.gradient(incomes)
|
||||
```
|
||||
|
||||
### Pattern 3: Charitable Donation Impact
|
||||
|
||||
```python
|
||||
# Baseline (no donation)
|
||||
situation_baseline = create_situation(income=100000, donation=0)
|
||||
sim_baseline = Simulation(situation=situation_baseline)
|
||||
tax_baseline = sim_baseline.calculate("income_tax", 2024)[0]
|
||||
|
||||
# With donation
|
||||
situation_donation = create_situation(income=100000, donation=5000)
|
||||
sim_donation = Simulation(situation=situation_donation)
|
||||
tax_donation = sim_donation.calculate("income_tax", 2024)[0]
|
||||
|
||||
# Tax savings from donation
|
||||
tax_savings = tax_baseline - tax_donation
|
||||
effective_discount = tax_savings / 5000 # e.g., 0.24 = 24% discount
|
||||
```
|
||||
|
||||
### Pattern 4: State Comparison
|
||||
|
||||
```python
|
||||
states = ["CA", "NY", "TX", "FL"]
|
||||
results = {}
|
||||
|
||||
for state in states:
|
||||
situation = create_situation(state=state, income=75000)
|
||||
sim = Simulation(situation=situation)
|
||||
results[state] = {
|
||||
"state_income_tax": sim.calculate("state_income_tax", 2024)[0],
|
||||
"total_tax": sim.calculate("household_tax", 2024)[0]
|
||||
}
|
||||
```
|
||||
|
||||
## Helper Scripts
|
||||
|
||||
This skill includes helper scripts in the `scripts/` directory:
|
||||
|
||||
```python
|
||||
from policyengine_skills.situation_helpers import (
|
||||
create_single_filer,
|
||||
create_married_couple,
|
||||
create_family_with_children,
|
||||
add_itemized_deductions
|
||||
)
|
||||
|
||||
# Quick situation creation
|
||||
situation = create_single_filer(
|
||||
income=50000,
|
||||
state="CA",
|
||||
age=30
|
||||
)
|
||||
|
||||
# Add deductions
|
||||
situation = add_itemized_deductions(
|
||||
situation,
|
||||
charitable_donations=5000,
|
||||
mortgage_interest=10000,
|
||||
real_estate_taxes=8000
|
||||
)
|
||||
```
|
||||
|
||||
## Common Pitfalls and Solutions
|
||||
|
||||
### Pitfall 1: Member Lists Out of Sync
|
||||
**Problem:** Different entities have different members
|
||||
```python
|
||||
# WRONG
|
||||
"tax_units": {"tax_unit": {"members": ["parent"]}},
|
||||
"households": {"household": {"members": ["parent", "child"]}}
|
||||
```
|
||||
|
||||
**Solution:** Keep all entity member lists consistent:
|
||||
```python
|
||||
# CORRECT
|
||||
all_members = ["parent", "child"]
|
||||
"families": {"family": {"members": all_members}},
|
||||
"tax_units": {"tax_unit": {"members": all_members}},
|
||||
"households": {"household": {"members": all_members}}
|
||||
```
|
||||
|
||||
### Pitfall 2: Forgetting Year Keys
|
||||
**Problem:** `"age": 35` instead of `"age": {2024: 35}`
|
||||
|
||||
**Solution:** Always use year dictionary:
|
||||
```python
|
||||
"age": {2024: 35},
|
||||
"employment_income": {2024: 50000}
|
||||
```
|
||||
|
||||
### Pitfall 3: Net Taxes vs Gross Taxes
|
||||
**Problem:** Forgetting to subtract benefits from taxes
|
||||
|
||||
**Solution:** Use proper calculation:
|
||||
```python
|
||||
# Net taxes (what household actually pays)
|
||||
net_tax = sim.calculate("household_tax", 2024) - \
|
||||
sim.calculate("household_benefits", 2024)
|
||||
```
|
||||
|
||||
### Pitfall 4: Axes Persistence
|
||||
**Problem:** Axes remain in situation when creating single-point simulation
|
||||
|
||||
**Solution:** Remove axes before single-point simulation:
|
||||
```python
|
||||
situation_single = situation.copy()
|
||||
situation_single.pop("axes", None)
|
||||
```
|
||||
|
||||
### Pitfall 5: State-Specific Variables
|
||||
**Problem:** Using NYC-specific variables without `in_nyc: True`
|
||||
|
||||
**Solution:** Set NYC flag for NY residents in NYC:
|
||||
```python
|
||||
"households": {
|
||||
"household": {
|
||||
"state_name": {2024: "NY"},
|
||||
"in_nyc": {2024: True} # Required for NYC taxes
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## NYC Handling
|
||||
|
||||
For New York City residents:
|
||||
```python
|
||||
situation = {
|
||||
# ... people setup ...
|
||||
"households": {
|
||||
"household": {
|
||||
"members": ["person"],
|
||||
"state_name": {2024: "NY"},
|
||||
"in_nyc": {2024: True} # Enable NYC tax calculations
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Version Compatibility
|
||||
|
||||
- Always use `policyengine-us>=1.155.0` for 2024 calculations
|
||||
- Check version: `import policyengine_us; print(policyengine_us.__version__)`
|
||||
- Different years may require different package versions
|
||||
|
||||
## Debugging Tips
|
||||
|
||||
1. **Enable tracing:**
|
||||
```python
|
||||
simulation.trace = True
|
||||
result = simulation.calculate("variable_name", 2024)
|
||||
```
|
||||
|
||||
2. **Check intermediate calculations:**
|
||||
```python
|
||||
agi = simulation.calculate("adjusted_gross_income", 2024)
|
||||
taxable_income = simulation.calculate("taxable_income", 2024)
|
||||
```
|
||||
|
||||
3. **Verify situation structure:**
|
||||
```python
|
||||
import json
|
||||
print(json.dumps(situation, indent=2))
|
||||
```
|
||||
|
||||
4. **Test with PolicyEngine web app:**
|
||||
- Go to policyengine.org/us/household
|
||||
- Enter same inputs
|
||||
- Compare results
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- **Documentation:** https://policyengine.org/us/docs
|
||||
- **API Reference:** https://github.com/PolicyEngine/policyengine-us
|
||||
- **Example Notebooks:** https://github.com/PolicyEngine/analysis-notebooks
|
||||
- **Variable Explorer:** https://policyengine.org/us/variables
|
||||
|
||||
## Examples Directory
|
||||
|
||||
See `examples/` for complete working examples:
|
||||
- `single_filer.yaml` - Single person household
|
||||
- `married_couple.yaml` - Married filing jointly
|
||||
- `family_with_children.yaml` - Family with dependents
|
||||
- `itemized_deductions.yaml` - Using itemized deductions
|
||||
- `donation_sweep.yaml` - Analyzing donation impacts with axes
|
||||
71
skills/policyengine-us-skill/examples/donation_sweep.yaml
Normal file
71
skills/policyengine-us-skill/examples/donation_sweep.yaml
Normal file
@@ -0,0 +1,71 @@
|
||||
# Example: Analyzing charitable donation impacts using axes
|
||||
# Married couple with 2 children in New York
|
||||
# Sweeps charitable donations from $0 to $50,000
|
||||
|
||||
people:
|
||||
parent_1:
|
||||
age:
|
||||
2024: 35
|
||||
employment_income:
|
||||
2024: 100000
|
||||
parent_2:
|
||||
age:
|
||||
2024: 35
|
||||
employment_income:
|
||||
2024: 50000
|
||||
child_1:
|
||||
age:
|
||||
2024: 8
|
||||
child_2:
|
||||
age:
|
||||
2024: 5
|
||||
|
||||
families:
|
||||
family:
|
||||
members:
|
||||
- parent_1
|
||||
- parent_2
|
||||
- child_1
|
||||
- child_2
|
||||
|
||||
marital_units:
|
||||
marital_unit:
|
||||
members:
|
||||
- parent_1
|
||||
- parent_2
|
||||
- child_1
|
||||
- child_2
|
||||
|
||||
tax_units:
|
||||
tax_unit:
|
||||
members:
|
||||
- parent_1
|
||||
- parent_2
|
||||
- child_1
|
||||
- child_2
|
||||
|
||||
spm_units:
|
||||
spm_unit:
|
||||
members:
|
||||
- parent_1
|
||||
- parent_2
|
||||
- child_1
|
||||
- child_2
|
||||
|
||||
households:
|
||||
household:
|
||||
members:
|
||||
- parent_1
|
||||
- parent_2
|
||||
- child_1
|
||||
- child_2
|
||||
state_name:
|
||||
2024: NY
|
||||
|
||||
# Axes: Vary charitable donations from $0 to $50,000
|
||||
axes:
|
||||
- - name: charitable_cash_donations
|
||||
count: 1001
|
||||
min: 0
|
||||
max: 50000
|
||||
period: 2024
|
||||
38
skills/policyengine-us-skill/examples/single_filer.yaml
Normal file
38
skills/policyengine-us-skill/examples/single_filer.yaml
Normal file
@@ -0,0 +1,38 @@
|
||||
# Example: Single tax filer in California
|
||||
# Income: $60,000, Age: 30, with charitable donations
|
||||
|
||||
people:
|
||||
person:
|
||||
age:
|
||||
2024: 30
|
||||
employment_income:
|
||||
2024: 60000
|
||||
charitable_cash_donations:
|
||||
2024: 5000
|
||||
|
||||
families:
|
||||
family:
|
||||
members:
|
||||
- person
|
||||
|
||||
marital_units:
|
||||
marital_unit:
|
||||
members:
|
||||
- person
|
||||
|
||||
tax_units:
|
||||
tax_unit:
|
||||
members:
|
||||
- person
|
||||
|
||||
spm_units:
|
||||
spm_unit:
|
||||
members:
|
||||
- person
|
||||
|
||||
households:
|
||||
household:
|
||||
members:
|
||||
- person
|
||||
state_name:
|
||||
2024: CA
|
||||
257
skills/policyengine-us-skill/scripts/situation_helpers.py
Normal file
257
skills/policyengine-us-skill/scripts/situation_helpers.py
Normal file
@@ -0,0 +1,257 @@
|
||||
"""
|
||||
Helper functions for creating PolicyEngine-US situations.
|
||||
|
||||
These utilities simplify the creation of situation dictionaries
|
||||
for common household configurations.
|
||||
"""
|
||||
|
||||
CURRENT_YEAR = 2024
|
||||
|
||||
|
||||
def create_single_filer(income, state="CA", age=35, **kwargs):
|
||||
"""
|
||||
Create a situation for a single tax filer.
|
||||
|
||||
Args:
|
||||
income (float): Employment income
|
||||
state (str): Two-letter state code (e.g., "CA", "NY")
|
||||
age (int): Person's age
|
||||
**kwargs: Additional person attributes (e.g., self_employment_income)
|
||||
|
||||
Returns:
|
||||
dict: PolicyEngine situation dictionary
|
||||
"""
|
||||
person_attrs = {
|
||||
"age": {CURRENT_YEAR: age},
|
||||
"employment_income": {CURRENT_YEAR: income},
|
||||
}
|
||||
person_attrs.update({k: {CURRENT_YEAR: v} for k, v in kwargs.items()})
|
||||
|
||||
return {
|
||||
"people": {"person": person_attrs},
|
||||
"families": {"family": {"members": ["person"]}},
|
||||
"marital_units": {"marital_unit": {"members": ["person"]}},
|
||||
"tax_units": {"tax_unit": {"members": ["person"]}},
|
||||
"spm_units": {"spm_unit": {"members": ["person"]}},
|
||||
"households": {
|
||||
"household": {
|
||||
"members": ["person"],
|
||||
"state_name": {CURRENT_YEAR: state}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def create_married_couple(
|
||||
income_1, income_2=0, state="CA", age_1=35, age_2=35, **kwargs
|
||||
):
|
||||
"""
|
||||
Create a situation for a married couple filing jointly.
|
||||
|
||||
Args:
|
||||
income_1 (float): First spouse's employment income
|
||||
income_2 (float): Second spouse's employment income
|
||||
state (str): Two-letter state code
|
||||
age_1 (int): First spouse's age
|
||||
age_2 (int): Second spouse's age
|
||||
**kwargs: Additional household attributes
|
||||
|
||||
Returns:
|
||||
dict: PolicyEngine situation dictionary
|
||||
"""
|
||||
members = ["spouse_1", "spouse_2"]
|
||||
|
||||
household_attrs = {
|
||||
"members": members,
|
||||
"state_name": {CURRENT_YEAR: state}
|
||||
}
|
||||
household_attrs.update({k: {CURRENT_YEAR: v} for k, v in kwargs.items()})
|
||||
|
||||
return {
|
||||
"people": {
|
||||
"spouse_1": {
|
||||
"age": {CURRENT_YEAR: age_1},
|
||||
"employment_income": {CURRENT_YEAR: income_1}
|
||||
},
|
||||
"spouse_2": {
|
||||
"age": {CURRENT_YEAR: age_2},
|
||||
"employment_income": {CURRENT_YEAR: income_2}
|
||||
}
|
||||
},
|
||||
"families": {"family": {"members": members}},
|
||||
"marital_units": {"marital_unit": {"members": members}},
|
||||
"tax_units": {"tax_unit": {"members": members}},
|
||||
"spm_units": {"spm_unit": {"members": members}},
|
||||
"households": {"household": household_attrs}
|
||||
}
|
||||
|
||||
|
||||
def create_family_with_children(
|
||||
parent_income,
|
||||
num_children=1,
|
||||
child_ages=None,
|
||||
state="CA",
|
||||
parent_age=35,
|
||||
married=False,
|
||||
spouse_income=0,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Create a situation for a family with children.
|
||||
|
||||
Args:
|
||||
parent_income (float): Primary parent's employment income
|
||||
num_children (int): Number of children
|
||||
child_ages (list): List of child ages (defaults to [5, 8, 12, ...])
|
||||
state (str): Two-letter state code
|
||||
parent_age (int): Parent's age
|
||||
married (bool): Whether parents are married
|
||||
spouse_income (float): Spouse's income if married
|
||||
**kwargs: Additional household attributes
|
||||
|
||||
Returns:
|
||||
dict: PolicyEngine situation dictionary
|
||||
"""
|
||||
if child_ages is None:
|
||||
child_ages = [5 + i * 3 for i in range(num_children)]
|
||||
elif len(child_ages) != num_children:
|
||||
raise ValueError("Length of child_ages must match num_children")
|
||||
|
||||
people = {
|
||||
"parent": {
|
||||
"age": {CURRENT_YEAR: parent_age},
|
||||
"employment_income": {CURRENT_YEAR: parent_income}
|
||||
}
|
||||
}
|
||||
|
||||
members = ["parent"]
|
||||
|
||||
if married:
|
||||
people["spouse"] = {
|
||||
"age": {CURRENT_YEAR: parent_age},
|
||||
"employment_income": {CURRENT_YEAR: spouse_income}
|
||||
}
|
||||
members.append("spouse")
|
||||
|
||||
for i, age in enumerate(child_ages):
|
||||
child_id = f"child_{i+1}"
|
||||
people[child_id] = {"age": {CURRENT_YEAR: age}}
|
||||
members.append(child_id)
|
||||
|
||||
household_attrs = {
|
||||
"members": members,
|
||||
"state_name": {CURRENT_YEAR: state}
|
||||
}
|
||||
household_attrs.update({k: {CURRENT_YEAR: v} for k, v in kwargs.items()})
|
||||
|
||||
return {
|
||||
"people": people,
|
||||
"families": {"family": {"members": members}},
|
||||
"marital_units": {
|
||||
"marital_unit": {
|
||||
"members": members if married else ["parent"]
|
||||
}
|
||||
},
|
||||
"tax_units": {"tax_unit": {"members": members}},
|
||||
"spm_units": {"spm_unit": {"members": members}},
|
||||
"households": {"household": household_attrs}
|
||||
}
|
||||
|
||||
|
||||
def add_itemized_deductions(
|
||||
situation,
|
||||
charitable_donations=0,
|
||||
mortgage_interest=0,
|
||||
real_estate_taxes=0,
|
||||
medical_expenses=0,
|
||||
casualty_losses=0
|
||||
):
|
||||
"""
|
||||
Add itemized deductions to an existing situation.
|
||||
|
||||
Adds deductions to the first person in the situation.
|
||||
|
||||
Args:
|
||||
situation (dict): Existing PolicyEngine situation
|
||||
charitable_donations (float): Cash charitable contributions
|
||||
mortgage_interest (float): Mortgage interest paid
|
||||
real_estate_taxes (float): State and local property taxes
|
||||
medical_expenses (float): Medical and dental expenses
|
||||
casualty_losses (float): Casualty and theft losses
|
||||
|
||||
Returns:
|
||||
dict: Updated situation with deductions
|
||||
"""
|
||||
# Get first person ID
|
||||
first_person = list(situation["people"].keys())[0]
|
||||
|
||||
# Add deductions
|
||||
if charitable_donations > 0:
|
||||
situation["people"][first_person]["charitable_cash_donations"] = {
|
||||
CURRENT_YEAR: charitable_donations
|
||||
}
|
||||
|
||||
if mortgage_interest > 0:
|
||||
situation["people"][first_person]["mortgage_interest"] = {
|
||||
CURRENT_YEAR: mortgage_interest
|
||||
}
|
||||
|
||||
if real_estate_taxes > 0:
|
||||
situation["people"][first_person]["real_estate_taxes"] = {
|
||||
CURRENT_YEAR: real_estate_taxes
|
||||
}
|
||||
|
||||
if medical_expenses > 0:
|
||||
situation["people"][first_person]["medical_expense"] = {
|
||||
CURRENT_YEAR: medical_expenses
|
||||
}
|
||||
|
||||
if casualty_losses > 0:
|
||||
situation["people"][first_person]["casualty_loss"] = {
|
||||
CURRENT_YEAR: casualty_losses
|
||||
}
|
||||
|
||||
return situation
|
||||
|
||||
|
||||
def add_axes(situation, variable_name, min_val, max_val, count=1001):
|
||||
"""
|
||||
Add axes to a situation for parameter sweeps.
|
||||
|
||||
Args:
|
||||
situation (dict): Existing PolicyEngine situation
|
||||
variable_name (str): Variable to vary (e.g., "employment_income")
|
||||
min_val (float): Minimum value
|
||||
max_val (float): Maximum value
|
||||
count (int): Number of points (default: 1001)
|
||||
|
||||
Returns:
|
||||
dict: Updated situation with axes
|
||||
"""
|
||||
situation["axes"] = [[{
|
||||
"name": variable_name,
|
||||
"count": count,
|
||||
"min": min_val,
|
||||
"max": max_val,
|
||||
"period": CURRENT_YEAR
|
||||
}]]
|
||||
|
||||
return situation
|
||||
|
||||
|
||||
def set_state_nyc(situation, in_nyc=True):
|
||||
"""
|
||||
Set state to NY and configure NYC residence.
|
||||
|
||||
Args:
|
||||
situation (dict): Existing PolicyEngine situation
|
||||
in_nyc (bool): Whether household is in NYC
|
||||
|
||||
Returns:
|
||||
dict: Updated situation
|
||||
"""
|
||||
household_id = list(situation["households"].keys())[0]
|
||||
situation["households"][household_id]["state_name"] = {CURRENT_YEAR: "NY"}
|
||||
situation["households"][household_id]["in_nyc"] = {CURRENT_YEAR: in_nyc}
|
||||
|
||||
return situation
|
||||
295
skills/policyengine-user-guide-skill/SKILL.md
Normal file
295
skills/policyengine-user-guide-skill/SKILL.md
Normal file
@@ -0,0 +1,295 @@
|
||||
---
|
||||
name: policyengine-user-guide
|
||||
description: Using PolicyEngine web apps to analyze tax and benefit policy impacts - for users of policyengine.org
|
||||
---
|
||||
|
||||
# PolicyEngine User Guide
|
||||
|
||||
This skill helps you use PolicyEngine to analyze how tax and benefit policies affect households and populations.
|
||||
|
||||
## For Users: Getting Started
|
||||
|
||||
### What is PolicyEngine?
|
||||
|
||||
PolicyEngine computes the impact of public policy on households and society. You can:
|
||||
- Calculate how policies affect your household
|
||||
- Analyze population-wide impacts of reforms
|
||||
- Create and share custom policy proposals
|
||||
- Compare different policy options
|
||||
|
||||
### Web App: policyengine.org
|
||||
|
||||
**Main features:**
|
||||
1. **Your household** - Calculate your taxes and benefits
|
||||
2. **Policy** - Design custom reforms and see impacts
|
||||
3. **Research** - Read policy analysis and blog posts
|
||||
|
||||
### Available Countries
|
||||
|
||||
- **United States** - policyengine.org/us
|
||||
- **United Kingdom** - policyengine.org/uk
|
||||
- **Canada** - policyengine.org/ca (beta)
|
||||
|
||||
## Using the Household Calculator
|
||||
|
||||
### Step 1: Navigate to Household Page
|
||||
|
||||
**US:** https://policyengine.org/us/household
|
||||
**UK:** https://policyengine.org/uk/household
|
||||
|
||||
### Step 2: Enter Your Information
|
||||
|
||||
**Income:**
|
||||
- Employment income (W-2 wages)
|
||||
- Self-employment income
|
||||
- Capital gains and dividends
|
||||
- Social Security, pensions, etc.
|
||||
|
||||
**Household composition:**
|
||||
- Adults and dependents
|
||||
- Ages
|
||||
- Marital status
|
||||
|
||||
**Location:**
|
||||
- State (US) or region (UK)
|
||||
- NYC checkbox for New York City residents
|
||||
|
||||
**Deductions (US):**
|
||||
- Charitable donations
|
||||
- Mortgage interest
|
||||
- State and local taxes (SALT)
|
||||
- Medical expenses
|
||||
|
||||
### Step 3: View Results
|
||||
|
||||
**Net income** - Your income after taxes and benefits
|
||||
|
||||
**Breakdown:**
|
||||
- Total taxes (federal + state + local)
|
||||
- Total benefits (EITC, CTC, SNAP, etc.)
|
||||
- Effective tax rate
|
||||
- Marginal tax rate
|
||||
|
||||
**Charts:**
|
||||
- Net income by earnings
|
||||
- Marginal tax rate by earnings
|
||||
|
||||
## Creating a Policy Reform
|
||||
|
||||
### Step 1: Navigate to Policy Page
|
||||
|
||||
**US:** https://policyengine.org/us/policy
|
||||
**UK:** https://policyengine.org/uk/policy
|
||||
|
||||
### Step 2: Select Parameters to Change
|
||||
|
||||
**Browse parameters by:**
|
||||
- Government department (IRS, SSA, etc.)
|
||||
- Program (EITC, CTC, SNAP)
|
||||
- Type (tax rates, benefit amounts, thresholds)
|
||||
|
||||
**Example: Increase Child Tax Credit**
|
||||
1. Navigate to gov.irs.credits.ctc.amount.base_amount
|
||||
2. Change from $2,000 to $5,000
|
||||
3. Click "Calculate economic impact"
|
||||
|
||||
### Step 3: View Population Impacts
|
||||
|
||||
**Budgetary impact:**
|
||||
- Total cost or revenue raised
|
||||
- Breakdown by program
|
||||
|
||||
**Poverty impact:**
|
||||
- Change in poverty rates
|
||||
- By age group (children, adults, seniors)
|
||||
- Deep poverty (income < 50% of threshold)
|
||||
|
||||
**Distributional impact:**
|
||||
- Average impact by income decile
|
||||
- Winners and losers by decile
|
||||
- Relative vs absolute changes
|
||||
|
||||
**Inequality impact:**
|
||||
- Gini index change
|
||||
- Top 10% and top 1% income share
|
||||
|
||||
### Step 4: Share Your Reform
|
||||
|
||||
**Share URL:**
|
||||
Every reform has a unique URL you can share:
|
||||
```
|
||||
policyengine.org/us/policy?reform=12345®ion=enhanced_us&timePeriod=2025
|
||||
```
|
||||
|
||||
**Parameters in URL:**
|
||||
- `reform=12345` - Your custom reform ID
|
||||
- `region=enhanced_us` - Geography (US, state, or congressional district)
|
||||
- `timePeriod=2025` - Year of analysis
|
||||
|
||||
## Understanding Results
|
||||
|
||||
### Metrics Explained
|
||||
|
||||
**Supplemental Poverty Measure (SPM):**
|
||||
- Accounts for taxes, benefits, and living costs
|
||||
- US Census Bureau's official alternative poverty measure
|
||||
- More comprehensive than Official Poverty Measure
|
||||
|
||||
**Gini coefficient:**
|
||||
- Measures income inequality (0 = perfect equality, 1 = perfect inequality)
|
||||
- US Gini is typically around 0.48
|
||||
- Lower values = more equal income distribution
|
||||
|
||||
**Income deciles:**
|
||||
- Population divided into 10 equal groups by income
|
||||
- Decile 1 = bottom 10% of earners
|
||||
- Decile 10 = top 10% of earners
|
||||
|
||||
**Winners and losers:**
|
||||
- Winners: Net income increases by 5% or more
|
||||
- Losers: Net income decreases by 5% or more
|
||||
- Neutral: Net income change less than 5%
|
||||
|
||||
### Reading Charts
|
||||
|
||||
**Household impact charts:**
|
||||
- X-axis: Usually income or earnings
|
||||
- Y-axis: Net income, taxes, or benefits
|
||||
- Hover to see exact values
|
||||
|
||||
**Population impact charts:**
|
||||
- Bar charts: Compare across groups (deciles, states)
|
||||
- Line charts: Show relationships (income vs impact)
|
||||
- Waterfall charts: Show components of budgetary impact
|
||||
|
||||
## Common Use Cases
|
||||
|
||||
### Use Case 1: How Does Policy X Affect My Household?
|
||||
|
||||
1. Go to household calculator
|
||||
2. Enter your information
|
||||
3. Select "Reform" and choose the policy
|
||||
4. Compare baseline vs reform results
|
||||
|
||||
### Use Case 2: How Much Would Policy X Cost?
|
||||
|
||||
1. Go to policy page
|
||||
2. Create or select the reform
|
||||
3. View "Budgetary impact" section
|
||||
4. See total cost and breakdown
|
||||
|
||||
### Use Case 3: Would Policy X Reduce Poverty?
|
||||
|
||||
1. Go to policy page
|
||||
2. Create or select the reform
|
||||
3. View "Poverty impact" section
|
||||
4. See change in poverty rate by age group
|
||||
|
||||
### Use Case 4: Who Benefits from Policy X?
|
||||
|
||||
1. Go to policy page
|
||||
2. Create or select the reform
|
||||
3. View "Distributional impact" section
|
||||
4. See winners and losers by income decile
|
||||
|
||||
### Use Case 5: Compare Two Policy Proposals
|
||||
|
||||
1. Create Reform A (e.g., expand EITC)
|
||||
2. Note the URL or reform ID
|
||||
3. Create Reform B (e.g., expand CTC)
|
||||
4. Compare budgetary, poverty, and distributional impacts
|
||||
|
||||
## For Analysts: Moving Beyond the Web App
|
||||
|
||||
Once you understand the web app, you can:
|
||||
|
||||
**Use the Python client:**
|
||||
- See `policyengine-python-client-skill` for programmatic access
|
||||
- See `policyengine-us-skill` for detailed simulation patterns
|
||||
|
||||
**Create custom analyses:**
|
||||
- See `policyengine-analysis-skill` for analysis patterns
|
||||
- See `microdf-skill` for data analysis utilities
|
||||
|
||||
**Access the API directly:**
|
||||
- See `policyengine-api-skill` for API documentation
|
||||
- REST endpoints for integration
|
||||
|
||||
## For Contributors: Building PolicyEngine
|
||||
|
||||
To contribute to PolicyEngine development:
|
||||
|
||||
**Understanding the stack:**
|
||||
- See `policyengine-core-skill` for engine architecture
|
||||
- See `policyengine-us-skill` for country model patterns
|
||||
- See `policyengine-api-skill` for API development
|
||||
- See `policyengine-app-skill` for app development
|
||||
|
||||
**Development standards:**
|
||||
- See `policyengine-standards-skill` for code quality requirements
|
||||
- See `policyengine-writing-skill` for documentation style
|
||||
|
||||
## Frequently Asked Questions
|
||||
|
||||
### How accurate is PolicyEngine?
|
||||
|
||||
PolicyEngine uses official tax and benefit rules from legislation and regulations. Calculations match official calculators (IRS, SSA, etc.) for individual households.
|
||||
|
||||
Population-level estimates use microsimulation with survey data (Current Population Survey for US, Family Resources Survey for UK).
|
||||
|
||||
### Can I use PolicyEngine for my taxes?
|
||||
|
||||
PolicyEngine is for policy analysis, not tax filing. Results are estimates based on the information you provide. For filing taxes, use IRS.gov or professional tax software.
|
||||
|
||||
### How is PolicyEngine funded?
|
||||
|
||||
PolicyEngine is a nonprofit funded by grants and donations. The platform is free to use.
|
||||
|
||||
### Can I export results?
|
||||
|
||||
Yes! Charts can be downloaded as PNG or HTML. You can also share reform URLs with others.
|
||||
|
||||
### What programs does PolicyEngine model?
|
||||
|
||||
**US (federal):**
|
||||
- Income tax, payroll tax, capital gains tax
|
||||
- EITC, CTC, ACTC
|
||||
- SNAP, WIC, ACA premium tax credits
|
||||
- Social Security, SSI, TANF
|
||||
- State income taxes (varies by state)
|
||||
|
||||
**UK:**
|
||||
- Income tax, National Insurance
|
||||
- Universal Credit, Child Benefit
|
||||
- State Pension, Pension Credit
|
||||
- Council Tax, Council Tax Support
|
||||
|
||||
For complete lists, see:
|
||||
- US: https://policyengine.org/us/parameters
|
||||
- UK: https://policyengine.org/uk/parameters
|
||||
|
||||
### How do I report a bug?
|
||||
|
||||
**If you find incorrect calculations:**
|
||||
1. Go to the household calculator
|
||||
2. Note your inputs and the incorrect result
|
||||
3. File an issue: https://github.com/PolicyEngine/policyengine-us/issues (or appropriate country repo)
|
||||
4. Include the household URL
|
||||
|
||||
**If you find app bugs:**
|
||||
1. Note what you were doing
|
||||
2. File an issue: https://github.com/PolicyEngine/policyengine-app/issues
|
||||
|
||||
## Resources
|
||||
|
||||
- **Website:** https://policyengine.org
|
||||
- **Documentation:** https://policyengine.org/us/docs
|
||||
- **Blog:** https://policyengine.org/us/research
|
||||
- **GitHub:** https://github.com/PolicyEngine
|
||||
- **Contact:** hello@policyengine.org
|
||||
|
||||
## Related Skills
|
||||
|
||||
- **policyengine-python-client-skill** - Using PolicyEngine programmatically
|
||||
- **policyengine-us-skill** - Understanding US tax/benefit calculations
|
||||
- **policyengine-analysis-skill** - Creating custom policy analyses
|
||||
303
skills/policyengine-vectorization-skill/SKILL.md
Normal file
303
skills/policyengine-vectorization-skill/SKILL.md
Normal file
@@ -0,0 +1,303 @@
|
||||
---
|
||||
name: policyengine-vectorization
|
||||
description: PolicyEngine vectorization patterns - NumPy operations, where/select usage, avoiding scalar logic with arrays
|
||||
---
|
||||
|
||||
# PolicyEngine Vectorization Patterns
|
||||
|
||||
Critical patterns for vectorized operations in PolicyEngine. Scalar logic with arrays will crash the microsimulation.
|
||||
|
||||
## The Golden Rule
|
||||
|
||||
**PolicyEngine processes multiple households simultaneously using NumPy arrays. NEVER use if-elif-else with entity data.**
|
||||
|
||||
---
|
||||
|
||||
## 1. Critical: What Will Crash
|
||||
|
||||
### ❌ NEVER: if-elif-else with Arrays
|
||||
|
||||
```python
|
||||
# THIS WILL CRASH - household data is an array
|
||||
def formula(household, period, parameters):
|
||||
income = household("income", period)
|
||||
if income > 1000: # ❌ CRASH: "truth value of array is ambiguous"
|
||||
return 500
|
||||
else:
|
||||
return 100
|
||||
```
|
||||
|
||||
### ✅ ALWAYS: Vectorized Operations
|
||||
|
||||
```python
|
||||
# CORRECT - works with arrays
|
||||
def formula(household, period, parameters):
|
||||
income = household("income", period)
|
||||
return where(income > 1000, 500, 100) # ✅ Vectorized
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2. Common Vectorization Patterns
|
||||
|
||||
### Pattern 1: Simple Conditions → `where()`
|
||||
|
||||
```python
|
||||
# Instead of if-else
|
||||
❌ if age >= 65:
|
||||
amount = senior_amount
|
||||
else:
|
||||
amount = regular_amount
|
||||
|
||||
✅ amount = where(age >= 65, senior_amount, regular_amount)
|
||||
```
|
||||
|
||||
### Pattern 2: Multiple Conditions → `select()`
|
||||
|
||||
```python
|
||||
# Instead of if-elif-else
|
||||
❌ if age < 18:
|
||||
benefit = child_amount
|
||||
elif age >= 65:
|
||||
benefit = senior_amount
|
||||
else:
|
||||
benefit = adult_amount
|
||||
|
||||
✅ benefit = select(
|
||||
[age < 18, age >= 65],
|
||||
[child_amount, senior_amount],
|
||||
default=adult_amount
|
||||
)
|
||||
```
|
||||
|
||||
### Pattern 3: Boolean Operations
|
||||
|
||||
```python
|
||||
# Combining conditions
|
||||
eligible = (age >= 18) & (income < threshold) # Use & not 'and'
|
||||
eligible = (is_disabled | is_elderly) # Use | not 'or'
|
||||
eligible = ~is_excluded # Use ~ not 'not'
|
||||
```
|
||||
|
||||
### Pattern 4: Clipping Values
|
||||
|
||||
```python
|
||||
# Instead of if for bounds checking
|
||||
❌ if amount < 0:
|
||||
amount = 0
|
||||
elif amount > maximum:
|
||||
amount = maximum
|
||||
|
||||
✅ amount = clip(amount, 0, maximum)
|
||||
# Or: amount = max_(0, min_(amount, maximum))
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 3. When if-else IS Acceptable
|
||||
|
||||
### ✅ OK: Parameter-Only Conditions
|
||||
|
||||
```python
|
||||
# OK - parameters are scalars, not arrays
|
||||
def formula(entity, period, parameters):
|
||||
p = parameters(period).gov.program
|
||||
|
||||
# This is fine - p.enabled is a scalar boolean
|
||||
if p.enabled:
|
||||
base = p.base_amount
|
||||
else:
|
||||
base = 0
|
||||
|
||||
# But must vectorize when using entity data
|
||||
income = entity("income", period)
|
||||
return where(income < p.threshold, base, 0)
|
||||
```
|
||||
|
||||
### ✅ OK: Control Flow (Not Data)
|
||||
|
||||
```python
|
||||
# OK - controlling which calculation to use
|
||||
def formula(entity, period, parameters):
|
||||
year = period.start.year
|
||||
|
||||
if year >= 2024:
|
||||
# Use new formula (still vectorized)
|
||||
return entity("new_calculation", period)
|
||||
else:
|
||||
# Use old formula (still vectorized)
|
||||
return entity("old_calculation", period)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 4. Common Vectorization Mistakes
|
||||
|
||||
### Mistake 1: Scalar Comparison with Array
|
||||
|
||||
```python
|
||||
❌ WRONG:
|
||||
if household("income", period) > 1000:
|
||||
# Error: truth value of array is ambiguous
|
||||
|
||||
✅ CORRECT:
|
||||
income = household("income", period)
|
||||
high_income = income > 1000 # Boolean array
|
||||
benefit = where(high_income, low_benefit, high_benefit)
|
||||
```
|
||||
|
||||
### Mistake 2: Using Python's and/or/not
|
||||
|
||||
```python
|
||||
❌ WRONG:
|
||||
eligible = is_elderly or is_disabled # Python's 'or'
|
||||
|
||||
✅ CORRECT:
|
||||
eligible = is_elderly | is_disabled # NumPy's '|'
|
||||
```
|
||||
|
||||
### Mistake 3: Nested if Statements
|
||||
|
||||
```python
|
||||
❌ WRONG:
|
||||
if eligible:
|
||||
if income < threshold:
|
||||
return full_benefit
|
||||
else:
|
||||
return partial_benefit
|
||||
else:
|
||||
return 0
|
||||
|
||||
✅ CORRECT:
|
||||
return where(
|
||||
eligible,
|
||||
where(income < threshold, full_benefit, partial_benefit),
|
||||
0
|
||||
)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 5. Advanced Patterns
|
||||
|
||||
### Pattern: Vectorized Lookup Tables
|
||||
|
||||
```python
|
||||
# Instead of if-elif for ranges
|
||||
❌ if size == 1:
|
||||
amount = 100
|
||||
elif size == 2:
|
||||
amount = 150
|
||||
elif size == 3:
|
||||
amount = 190
|
||||
|
||||
✅ # Using parameter brackets
|
||||
amount = p.benefit_schedule.calc(size)
|
||||
|
||||
✅ # Or using select
|
||||
amounts = [100, 150, 190, 220, 250]
|
||||
amount = select(
|
||||
[size == i for i in range(1, 6)],
|
||||
amounts[:5],
|
||||
default=amounts[-1] # 5+ people
|
||||
)
|
||||
```
|
||||
|
||||
### Pattern: Accumulating Conditions
|
||||
|
||||
```python
|
||||
# Building complex eligibility
|
||||
income_eligible = income < p.income_threshold
|
||||
resource_eligible = resources < p.resource_limit
|
||||
demographic_eligible = (age < 18) | is_pregnant
|
||||
|
||||
# Combine with & (not 'and')
|
||||
eligible = income_eligible & resource_eligible & demographic_eligible
|
||||
```
|
||||
|
||||
### Pattern: Conditional Accumulation
|
||||
|
||||
```python
|
||||
# Sum only for eligible members
|
||||
person = household.members
|
||||
is_eligible = person("is_eligible", period)
|
||||
person_income = person("income", period)
|
||||
|
||||
# Only count income of eligible members
|
||||
eligible_income = where(is_eligible, person_income, 0)
|
||||
total = household.sum(eligible_income)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 6. Performance Implications
|
||||
|
||||
### Why Vectorization Matters
|
||||
|
||||
- **Scalar logic**: Processes 1 household at a time → SLOW
|
||||
- **Vectorized**: Processes 1000s of households simultaneously → FAST
|
||||
|
||||
```python
|
||||
# Performance comparison
|
||||
❌ SLOW (if it worked):
|
||||
for household in households:
|
||||
if household.income > 1000:
|
||||
household.benefit = 500
|
||||
|
||||
✅ FAST:
|
||||
benefits = where(incomes > 1000, 500, 100) # All at once!
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 7. Testing for Vectorization Issues
|
||||
|
||||
### Signs Your Code Isn't Vectorized
|
||||
|
||||
**Error messages:**
|
||||
- "The truth value of an array is ambiguous"
|
||||
- "ValueError: The truth value of an array with more than one element"
|
||||
|
||||
**Performance:**
|
||||
- Tests run slowly
|
||||
- Microsimulation times out
|
||||
|
||||
### How to Test
|
||||
|
||||
```python
|
||||
# Your formula should work with arrays
|
||||
def test_vectorization():
|
||||
# Create array inputs
|
||||
incomes = np.array([500, 1500, 3000])
|
||||
|
||||
# Should return array output
|
||||
benefits = formula_with_arrays(incomes)
|
||||
assert len(benefits) == 3
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Quick Reference Card
|
||||
|
||||
| Operation | Scalar (WRONG) | Vectorized (CORRECT) |
|
||||
|-----------|---------------|---------------------|
|
||||
| Simple condition | `if x > 5:` | `where(x > 5, ...)` |
|
||||
| Multiple conditions | `if-elif-else` | `select([...], [...])` |
|
||||
| Boolean AND | `and` | `&` |
|
||||
| Boolean OR | `or` | `\|` |
|
||||
| Boolean NOT | `not` | `~` |
|
||||
| Bounds checking | `if x < 0: x = 0` | `max_(0, x)` |
|
||||
| Complex logic | Nested if | Nested where/select |
|
||||
|
||||
---
|
||||
|
||||
## For Agents
|
||||
|
||||
When implementing formulas:
|
||||
1. **Never use if-elif-else** with entity data
|
||||
2. **Always use where()** for simple conditions
|
||||
3. **Use select()** for multiple conditions
|
||||
4. **Use NumPy operators** (&, |, ~) not Python (and, or, not)
|
||||
5. **Test with arrays** to ensure vectorization
|
||||
6. **Parameter conditions** can use if-else (scalars)
|
||||
7. **Entity data** must use vectorized operations
|
||||
526
skills/policyengine-writing-skill/SKILL.md
Normal file
526
skills/policyengine-writing-skill/SKILL.md
Normal file
@@ -0,0 +1,526 @@
|
||||
---
|
||||
name: policyengine-writing
|
||||
description: PolicyEngine writing style for blog posts, documentation, PR descriptions, and research reports - emphasizing active voice, quantitative precision, and neutral tone
|
||||
---
|
||||
|
||||
# PolicyEngine Writing Skill
|
||||
|
||||
Use this skill when writing blog posts, documentation, PR descriptions, research reports, or any public-facing PolicyEngine content.
|
||||
|
||||
## When to Use This Skill
|
||||
|
||||
- Writing blog posts about policy analysis
|
||||
- Creating PR descriptions
|
||||
- Drafting documentation
|
||||
- Writing research reports
|
||||
- Composing social media posts
|
||||
- Creating newsletters
|
||||
- Writing README files
|
||||
|
||||
## Core Principles
|
||||
|
||||
PolicyEngine's writing emphasizes clarity, precision, and objectivity.
|
||||
|
||||
1. **Active voice** - Prefer active constructions over passive
|
||||
2. **Direct and quantitative** - Use specific numbers, avoid vague adjectives/adverbs
|
||||
3. **Sentence case** - Use sentence case for headings, not title case
|
||||
4. **Neutral tone** - Describe what policies do, not whether they're good or bad
|
||||
5. **Precise language** - Choose exact verbs over vague modifiers
|
||||
|
||||
## Active Voice
|
||||
|
||||
Active voice makes writing clearer and more direct.
|
||||
|
||||
**✅ Correct (Active):**
|
||||
```
|
||||
Harris proposes expanding the Earned Income Tax Credit
|
||||
The reform reduces poverty by 3.2%
|
||||
PolicyEngine projects higher costs than other organizations
|
||||
We estimate the ten-year costs
|
||||
The bill lowers the state's top income tax rate
|
||||
Montana raises the EITC from 10% to 20%
|
||||
```
|
||||
|
||||
**❌ Wrong (Passive):**
|
||||
```
|
||||
The Earned Income Tax Credit is proposed to be expanded by Harris
|
||||
Poverty is reduced by 3.2% by the reform
|
||||
Higher costs are projected by PolicyEngine
|
||||
The ten-year costs are estimated
|
||||
The state's top income tax rate is lowered by the bill
|
||||
The EITC is raised from 10% to 20% by Montana
|
||||
```
|
||||
|
||||
## Quantitative and Precise
|
||||
|
||||
Replace vague modifiers with specific numbers and measurements.
|
||||
|
||||
**✅ Correct (Quantitative):**
|
||||
```
|
||||
Costs the state $245 million
|
||||
Benefits 77% of Montana residents
|
||||
Lowers the Supplemental Poverty Measure by 0.8%
|
||||
Raises net income by $252 in 2026
|
||||
The reform affects 14.3 million households
|
||||
Hours worked falls by 0.27%, or 411,000 full-time equivalent jobs
|
||||
The top decile receives an average benefit of $1,033
|
||||
PolicyEngine projects costs 40% higher than the Tax Foundation
|
||||
```
|
||||
|
||||
**❌ Wrong (Vague adjectives/adverbs):**
|
||||
```
|
||||
Significantly costs the state
|
||||
Benefits most Montana residents
|
||||
Greatly lowers poverty
|
||||
Substantially raises net income
|
||||
The reform affects many households
|
||||
Hours worked falls considerably
|
||||
High earners receive large benefits
|
||||
PolicyEngine projects much higher costs
|
||||
```
|
||||
|
||||
## Sentence Case for Headings
|
||||
|
||||
Use sentence case (capitalize only the first word and proper nouns) for all headings.
|
||||
|
||||
**✅ Correct (Sentence case):**
|
||||
```
|
||||
## The proposal
|
||||
## Nationwide impacts
|
||||
## Household impacts
|
||||
## Statewide impacts 2026
|
||||
## Case study: the End Child Poverty Act
|
||||
## Key findings
|
||||
```
|
||||
|
||||
**❌ Wrong (Title case):**
|
||||
```
|
||||
## The Proposal
|
||||
## Nationwide Impacts
|
||||
## Household Impacts
|
||||
## Statewide Impacts 2026
|
||||
## Case Study: The End Child Poverty Act
|
||||
## Key Findings
|
||||
```
|
||||
|
||||
## Neutral, Objective Tone
|
||||
|
||||
Describe what policies do without value judgments. Let readers draw their own conclusions from the data.
|
||||
|
||||
**✅ Correct (Neutral):**
|
||||
```
|
||||
The reform reduces poverty by 3.2% and raises inequality by 0.16%
|
||||
Single filers with earnings between $8,000 and $37,000 see their net incomes increase
|
||||
The tax changes raise the net income of 75.9% of residents
|
||||
PolicyEngine projects higher costs than other organizations
|
||||
The top income decile receives 42% of total benefits
|
||||
```
|
||||
|
||||
**❌ Wrong (Value judgments):**
|
||||
```
|
||||
The reform successfully reduces poverty by 3.2% but unfortunately raises inequality
|
||||
Low-income workers finally see their net incomes increase
|
||||
The tax changes benefit most residents
|
||||
PolicyEngine provides more accurate cost estimates
|
||||
The wealthiest households receive a disproportionate share of benefits
|
||||
```
|
||||
|
||||
## Precise Verbs Over Adverbs
|
||||
|
||||
Choose specific verbs instead of generic verbs modified by adverbs.
|
||||
|
||||
**✅ Correct (Precise verbs):**
|
||||
```
|
||||
The bill lowers the top rate from 5.9% to 5.4%
|
||||
The policy raises the maximum credit from $632 to $1,774
|
||||
The reform increases the phase-in rate from 7.65% to 15.3%
|
||||
This doubles Montana's EITC from 10% to 20%
|
||||
The change eliminates the age cap
|
||||
```
|
||||
|
||||
**❌ Wrong (Vague verbs + adverbs):**
|
||||
```
|
||||
The bill significantly changes the top rate
|
||||
The policy substantially increases the maximum credit
|
||||
The reform greatly boosts the phase-in rate
|
||||
This dramatically expands Montana's EITC
|
||||
The change completely removes the age cap
|
||||
```
|
||||
|
||||
## Concrete Examples
|
||||
|
||||
Always include specific household examples with precise numbers.
|
||||
|
||||
**✅ Correct:**
|
||||
```
|
||||
For a single adult with no children and $10,000 of earnings, the tax provisions
|
||||
increase their net income by $69 in 2026 and $68 in 2027, solely from the
|
||||
doubled EITC match.
|
||||
|
||||
A single parent of two kids with an annual income of $50,000 will see a $252
|
||||
increase to their net income: $179 from the expanded EITC, and $73 from the
|
||||
lower bracket threshold.
|
||||
|
||||
A married couple with no dependents and $200,000 of earnings will see their
|
||||
liability drop by $1,306 in 2027.
|
||||
```
|
||||
|
||||
**❌ Wrong:**
|
||||
```
|
||||
Low-income workers see modest increases to their net income from the
|
||||
expanded EITC.
|
||||
|
||||
Families with children benefit substantially from the tax changes.
|
||||
|
||||
High earners also see significant reductions in their tax liability.
|
||||
```
|
||||
|
||||
## Tables and Data
|
||||
|
||||
Use tables liberally to present data clearly. Always include units and context.
|
||||
|
||||
**Example 1: Tax parameters over time**
|
||||
|
||||
| Year | Phase-in rate | Max credit | Phase-out start | Phase-out rate |
|
||||
| ---- | ------------- | ---------- | --------------- | -------------- |
|
||||
| 2025 | 15.3% | $1,774 | $13,706 | 15.3% |
|
||||
| 2026 | 15.3% | $1,815 | $14,022 | 15.3% |
|
||||
| 2027 | 15.3% | $1,852 | $14,306 | 15.3% |
|
||||
|
||||
**Example 2: Household impacts**
|
||||
|
||||
| Household composition | 2026 net income change | 2027 net income change |
|
||||
| ------------------------------ | ---------------------- | ---------------------- |
|
||||
| Single, no children, $10,000 | $66 | $68 |
|
||||
| Single, two children, $50,000 | $252 | $266 |
|
||||
| Married, no children, $200,000 | $853 | $1,306 |
|
||||
|
||||
**Example 3: Ten-year costs**
|
||||
|
||||
| Year | Federal cost ($ billions) |
|
||||
| ------- | ------------------------- |
|
||||
| 2025 | 14.3 |
|
||||
| 2026 | 14.4 |
|
||||
| 2027 | 14.7 |
|
||||
| 2025-34 | 143.7 |
|
||||
|
||||
## Avoid Superlatives
|
||||
|
||||
Replace superlative claims with specific comparisons.
|
||||
|
||||
**✅ Correct:**
|
||||
```
|
||||
PolicyEngine projects costs 40% higher than the Tax Foundation
|
||||
The top decile receives an average benefit of $1,033
|
||||
The reform reduces child poverty by 3.2 percentage points
|
||||
This represents Montana's largest income tax cut since 2021
|
||||
```
|
||||
|
||||
**❌ Wrong:**
|
||||
```
|
||||
PolicyEngine provides the most accurate cost projections
|
||||
The wealthiest households receive massive benefits
|
||||
The reform dramatically slashes child poverty
|
||||
This is Montana's largest income tax cut in history
|
||||
```
|
||||
|
||||
## Structure and Organization
|
||||
|
||||
Follow a clear hierarchical structure with key findings up front.
|
||||
|
||||
**Standard blog post structure:**
|
||||
|
||||
```markdown
|
||||
# Title (H1)
|
||||
|
||||
Opening paragraph states what happened and when, with a link to PolicyEngine.
|
||||
|
||||
Key results in [year]:
|
||||
- Cost: $245 million
|
||||
- Benefits: 77% of residents
|
||||
- Poverty impact: Reduces SPM by 0.8%
|
||||
- Inequality impact: Raises Gini by 0.16%
|
||||
|
||||
## The proposal (H2)
|
||||
|
||||
Detailed description of the policy changes, often with a table showing
|
||||
the specific parameter values.
|
||||
|
||||
## Household impacts (H2)
|
||||
|
||||
Specific examples for representative household types.
|
||||
|
||||
### Example 1: Single filer (H3)
|
||||
Detailed calculation...
|
||||
|
||||
### Example 2: Family with children (H3)
|
||||
Detailed calculation...
|
||||
|
||||
## Statewide impacts (H2)
|
||||
|
||||
Population-level analysis with charts and tables.
|
||||
|
||||
### Budgetary impact (H3)
|
||||
Cost/revenue estimates...
|
||||
|
||||
### Distributional impact (H3)
|
||||
Winners/losers by income decile...
|
||||
|
||||
### Poverty and inequality (H3)
|
||||
Impact on poverty rates and inequality measures...
|
||||
|
||||
## Methodology (H2)
|
||||
|
||||
Explanation of data sources, modeling approach, and caveats.
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Opening Paragraphs
|
||||
|
||||
State the facts directly with dates, actors, and actions:
|
||||
|
||||
```
|
||||
[On April 28, 2025], Governor Greg Gianforte (R-MT) signed House Bill 337,
|
||||
a bill that amends Montana's individual income tax code.
|
||||
|
||||
Vice President Harris proposes expanding the Earned Income Tax Credit (EITC)
|
||||
for filers without qualifying dependents.
|
||||
|
||||
In her economic plan, Harris proposes to restore the expanded Earned Income
|
||||
Tax Credit for workers without children to its level under the American
|
||||
Rescue Plan Act in 2021.
|
||||
```
|
||||
|
||||
### Key Findings Format
|
||||
|
||||
Lead with bullet points of quantitative results:
|
||||
|
||||
```
|
||||
Key results in 2027:
|
||||
- Costs the state $245 million
|
||||
- Benefits 77% of Montana residents
|
||||
- Lowers the Supplemental Poverty Measure by 0.8%
|
||||
- Raises the Gini index by 0.16%
|
||||
```
|
||||
|
||||
### Methodological Transparency
|
||||
|
||||
Always specify the model, version, and assumptions:
|
||||
|
||||
```
|
||||
Based on static microsimulation modeling with PolicyEngine US (version 1.103.0),
|
||||
we project the following economic impacts for 2025.
|
||||
|
||||
Assuming no behavioral responses, we project that the EITC expansion will cost
|
||||
the federal government $14.3 billion in 2025.
|
||||
|
||||
Incorporating elasticities of labor supply used by the Congressional Budget Office
|
||||
increases the reform's cost.
|
||||
|
||||
Over the ten-year budget window, this amounts to $143.7 billion.
|
||||
```
|
||||
|
||||
### Household Examples
|
||||
|
||||
Always include the household composition, income, and specific dollar impacts:
|
||||
|
||||
```
|
||||
For a single adult with no children and $10,000 of earnings, the tax provisions
|
||||
increase their net income by $69 in 2026 and $68 in 2027.
|
||||
|
||||
A single parent of two kids with an annual income of $50,000 will see a $252
|
||||
increase to their net income due to House Bill 337: $179 from the expanded EITC,
|
||||
and $73 from the lower bracket threshold.
|
||||
```
|
||||
|
||||
## Examples in Context
|
||||
|
||||
### Blog Post Opening
|
||||
|
||||
**✅ Correct:**
|
||||
```
|
||||
On April 28, 2025, Governor Gianforte signed House Bill 337, which lowers
|
||||
Montana's top income tax rate from 5.9% to 5.4% and doubles the state EITC
|
||||
from 10% to 20% of the federal credit.
|
||||
|
||||
Key results in 2027:
|
||||
- Costs the state $245 million
|
||||
- Benefits 77% of Montana residents
|
||||
- Lowers the Supplemental Poverty Measure by 0.8%
|
||||
- Raises the Gini index by 0.16%
|
||||
|
||||
Use PolicyEngine to view the full results or calculate the effect on your
|
||||
household.
|
||||
```
|
||||
|
||||
**❌ Wrong:**
|
||||
```
|
||||
On April 28, 2025, Governor Gianforte made history by signing an amazing new
|
||||
tax cut bill that will dramatically help Montana families. House Bill 337
|
||||
significantly reduces tax rates and greatly expands the EITC.
|
||||
|
||||
This groundbreaking reform will:
|
||||
- Cost the state money
|
||||
- Help most residents
|
||||
- Reduce poverty substantially
|
||||
- Impact inequality
|
||||
|
||||
Check out PolicyEngine to see how much you could save!
|
||||
```
|
||||
|
||||
### PR Description
|
||||
|
||||
**✅ Correct:**
|
||||
```
|
||||
## Summary
|
||||
|
||||
This PR adds Claude Code plugin configuration to enable automated installation
|
||||
of agents and skills for PolicyEngine development.
|
||||
|
||||
## Changes
|
||||
|
||||
- Add plugin auto-install configuration in .claude/settings.json
|
||||
- Configure auto-install of country-models plugin from PolicyEngine/policyengine-claude
|
||||
|
||||
## Benefits
|
||||
|
||||
- Access to 15 specialized agents
|
||||
- 3 slash commands (/encode-policy, /review-pr, /fix-pr)
|
||||
- 2 skills (policyengine-us-skill, policyengine-standards-skill)
|
||||
|
||||
## Testing
|
||||
|
||||
After merging, team members trust the repo and the plugin auto-installs.
|
||||
```
|
||||
|
||||
**❌ Wrong:**
|
||||
```
|
||||
## Summary
|
||||
|
||||
This amazing PR adds incredible new Claude Code plugin support that will
|
||||
revolutionize PolicyEngine development!
|
||||
|
||||
## Changes
|
||||
|
||||
- Adds some configuration files
|
||||
- Sets up plugins and stuff
|
||||
|
||||
## Benefits
|
||||
|
||||
- Gets you lots of cool new features
|
||||
- Makes development much easier
|
||||
- Provides great new tools
|
||||
|
||||
## Testing
|
||||
|
||||
Should work great once merged!
|
||||
```
|
||||
|
||||
### Documentation
|
||||
|
||||
**✅ Correct:**
|
||||
```
|
||||
## Installation
|
||||
|
||||
Install PolicyEngine-US from PyPI:
|
||||
|
||||
```bash
|
||||
pip install policyengine-us
|
||||
```
|
||||
|
||||
This installs version 1.103.0 or later, which includes support for 2025
|
||||
tax parameters.
|
||||
```
|
||||
|
||||
**❌ Wrong:**
|
||||
```
|
||||
## Installation
|
||||
|
||||
Simply install PolicyEngine-US:
|
||||
|
||||
```bash
|
||||
pip install policyengine-us
|
||||
```
|
||||
|
||||
This will install the latest version with all the newest features!
|
||||
```
|
||||
|
||||
## Special Cases
|
||||
|
||||
### Comparisons to Other Organizations
|
||||
|
||||
State facts neutrally without claiming superiority:
|
||||
|
||||
**✅ Correct:**
|
||||
```
|
||||
PolicyEngine projects higher costs than other organizations when considering
|
||||
behavioral responses.
|
||||
|
||||
| Organization | Cost, 2025-2034 ($ billions) |
|
||||
| ------------------------- | ---------------------------- |
|
||||
| PolicyEngine (static) | 144 |
|
||||
| PolicyEngine (dynamic) | 201 |
|
||||
| Tax Foundation | 157 |
|
||||
| Penn Wharton Budget Model | 135 |
|
||||
```
|
||||
|
||||
**❌ Wrong:**
|
||||
```
|
||||
PolicyEngine provides more accurate estimates than other organizations.
|
||||
|
||||
Unlike other models that underestimate costs, PolicyEngine correctly accounts
|
||||
for behavioral responses to project a more realistic $201 billion cost.
|
||||
```
|
||||
|
||||
### Discussing Limitations
|
||||
|
||||
Acknowledge limitations directly without hedging:
|
||||
|
||||
**✅ Correct:**
|
||||
```
|
||||
## Caveats
|
||||
|
||||
The Current Population Survey has several limitations for tax microsimulation:
|
||||
|
||||
- Truncates high incomes for privacy, underestimating tax impacts on high earners
|
||||
- Underestimates benefit receipt compared to administrative totals
|
||||
- Reflects 2020 data with 2025 policy parameters
|
||||
- Lacks detail for specific income types (assumes all capital gains are long-term)
|
||||
```
|
||||
|
||||
**❌ Wrong:**
|
||||
```
|
||||
## Caveats
|
||||
|
||||
While our model is highly sophisticated, like all models it has some potential
|
||||
limitations that users should be aware of:
|
||||
|
||||
- The data might not perfectly capture high incomes
|
||||
- Benefits may be slightly underestimated
|
||||
- We do our best to extrapolate older data to current years
|
||||
```
|
||||
|
||||
## Writing Checklist
|
||||
|
||||
Before publishing, verify:
|
||||
|
||||
- [ ] Use active voice throughout
|
||||
- [ ] Include specific numbers for all claims
|
||||
- [ ] Use sentence case for all headings
|
||||
- [ ] Maintain neutral, objective tone
|
||||
- [ ] Choose precise verbs over vague adverbs
|
||||
- [ ] Include concrete household examples
|
||||
- [ ] Present data in tables
|
||||
- [ ] Avoid all superlatives
|
||||
- [ ] Structure with clear hierarchy
|
||||
- [ ] Open with key quantitative findings
|
||||
- [ ] Specify model version and assumptions
|
||||
- [ ] Link to PolicyEngine when relevant
|
||||
- [ ] Acknowledge limitations directly
|
||||
|
||||
## Resources
|
||||
|
||||
- **Example posts**: See `policyengine-app/src/posts/articles/` for reference implementations
|
||||
- **PolicyEngine app**: https://policyengine.org for linking to analyses
|
||||
- **Microsimulation docs**: https://policyengine.org/us/docs for methodology details
|
||||
Reference in New Issue
Block a user