Files
2025-11-30 08:47:23 +08:00

7.1 KiB

name, description
name description
sql-optimizer WHEN: SQL query review, query optimization, index usage, N+1 detection, performance analysis WHAT: Query plan analysis + Index recommendations + N+1 detection + Join optimization + Performance tuning WHEN NOT: Schema design → schema-reviewer, ORM code → orm-reviewer

SQL Optimizer Skill

Purpose

Analyzes and optimizes SQL queries for performance, index usage, and best practices.

When to Use

  • SQL query optimization
  • Query performance review
  • Index usage analysis
  • N+1 query detection
  • Slow query troubleshooting

Project Detection

  • .sql files
  • Query strings in code
  • Database migration files
  • ORM query logs

Workflow

Step 1: Analyze Query

**Database**: PostgreSQL/MySQL/SQLite
**Tables**: users, orders, products
**Query Type**: SELECT with JOINs
**Estimated Rows**: 100K+

Step 2: Select Review Areas

AskUserQuestion:

"Which areas to review?"
Options:
- Full query optimization (recommended)
- Index usage analysis
- Join optimization
- Subquery refactoring
- N+1 detection
multiSelect: true

Detection Rules

Index Usage

Check Recommendation Severity
Full table scan Add appropriate index CRITICAL
Index not used Check column order HIGH
Too many indexes Consolidate indexes MEDIUM
Missing composite index Add multi-column index HIGH
-- BAD: No index on filter columns
SELECT * FROM orders
WHERE created_at > '2024-01-01'
AND status = 'pending';
-- Full table scan!

-- GOOD: Add composite index
CREATE INDEX idx_orders_status_created
ON orders(status, created_at);

-- Index order matters!
-- For WHERE status = ? AND created_at > ?
-- Index(status, created_at) ✓
-- Index(created_at, status) ✗ (less effective)

SELECT Optimization

Check Recommendation Severity
SELECT * Select specific columns HIGH
Unnecessary columns Remove unused columns MEDIUM
No LIMIT Add LIMIT for large results HIGH
-- BAD: SELECT * with large result
SELECT * FROM orders
WHERE user_id = 123;
-- Returns all columns, no limit

-- GOOD: Specific columns, limited results
SELECT id, status, total, created_at
FROM orders
WHERE user_id = 123
ORDER BY created_at DESC
LIMIT 20;

JOIN Optimization

Check Recommendation Severity
Cartesian product Add join condition CRITICAL
Join on non-indexed column Add index HIGH
Too many joins Consider denormalization MEDIUM
Implicit join Use explicit JOIN syntax LOW
-- BAD: Implicit join (harder to read, error-prone)
SELECT o.*, u.name
FROM orders o, users u
WHERE o.user_id = u.id;

-- GOOD: Explicit JOIN
SELECT o.id, o.total, u.name
FROM orders o
INNER JOIN users u ON o.user_id = u.id;

-- BAD: Join on non-indexed column
SELECT o.*, p.name
FROM orders o
JOIN products p ON o.product_code = p.code;
-- If products.code has no index → slow!

-- FIX: Add index
CREATE INDEX idx_products_code ON products(code);

Subquery Optimization

Check Recommendation Severity
Correlated subquery Convert to JOIN HIGH
IN with subquery Use EXISTS or JOIN MEDIUM
Subquery in SELECT Move to JOIN HIGH
-- BAD: Correlated subquery (runs for each row)
SELECT *
FROM orders o
WHERE total > (
    SELECT AVG(total)
    FROM orders
    WHERE user_id = o.user_id
);

-- GOOD: Use window function
SELECT *
FROM (
    SELECT *,
           AVG(total) OVER (PARTITION BY user_id) as avg_total
    FROM orders
) sub
WHERE total > avg_total;

-- BAD: IN with large subquery
SELECT * FROM users
WHERE id IN (SELECT user_id FROM orders WHERE status = 'vip');

-- GOOD: Use EXISTS or JOIN
SELECT u.* FROM users u
WHERE EXISTS (
    SELECT 1 FROM orders o
    WHERE o.user_id = u.id AND o.status = 'vip'
);

-- Or with JOIN
SELECT DISTINCT u.*
FROM users u
INNER JOIN orders o ON o.user_id = u.id
WHERE o.status = 'vip';

N+1 Query Detection

Check Recommendation Severity
Loop with query Batch fetch CRITICAL
Lazy load in loop Eager load CRITICAL
-- N+1 Pattern (application code)
-- Query 1: Get all users
SELECT * FROM users;

-- Then for each user (N queries):
SELECT * FROM orders WHERE user_id = 1;
SELECT * FROM orders WHERE user_id = 2;
SELECT * FROM orders WHERE user_id = 3;
-- ... N more queries

-- SOLUTION 1: JOIN
SELECT u.*, o.*
FROM users u
LEFT JOIN orders o ON o.user_id = u.id;

-- SOLUTION 2: IN query (for separate queries)
SELECT * FROM orders WHERE user_id IN (1, 2, 3, ...);

Aggregation Optimization

Check Recommendation Severity
COUNT(*) on large table Use approximate count MEDIUM
GROUP BY without index Add index HIGH
HAVING vs WHERE Filter early with WHERE MEDIUM
-- BAD: COUNT on entire table
SELECT COUNT(*) FROM orders;
-- Scans entire table

-- GOOD: Approximate count (PostgreSQL)
SELECT reltuples::bigint AS estimate
FROM pg_class
WHERE relname = 'orders';

-- BAD: WHERE in HAVING
SELECT user_id, COUNT(*)
FROM orders
GROUP BY user_id
HAVING status = 'completed';  -- Wrong place!

-- GOOD: Filter before grouping
SELECT user_id, COUNT(*)
FROM orders
WHERE status = 'completed'  -- Filter first
GROUP BY user_id;

-- Index for GROUP BY
CREATE INDEX idx_orders_user_status
ON orders(user_id, status);

EXPLAIN Analysis

-- PostgreSQL EXPLAIN
EXPLAIN (ANALYZE, BUFFERS, FORMAT TEXT)
SELECT u.name, COUNT(o.id)
FROM users u
LEFT JOIN orders o ON o.user_id = u.id
GROUP BY u.id;

-- Look for:
-- ✗ Seq Scan (full table scan)
-- ✗ Nested Loop with high rows
-- ✗ Hash Join with large hash
-- ✓ Index Scan
-- ✓ Index Only Scan
-- ✓ Bitmap Index Scan

Response Template

## SQL Query Optimization Results

**Database**: PostgreSQL 15
**Query Type**: SELECT with JOIN
**Estimated Impact**: ~10x improvement

### Index Usage
| Status | Issue | Recommendation |
|--------|-------|----------------|
| CRITICAL | Full table scan on orders | Add index on (status, created_at) |

### Join Analysis
| Status | Issue | Recommendation |
|--------|-------|----------------|
| HIGH | Non-indexed join column | Add index on products.code |

### Query Structure
| Status | Issue | Recommendation |
|--------|-------|----------------|
| HIGH | SELECT * with no LIMIT | Select specific columns, add LIMIT |

### Recommended Indexes
```sql
CREATE INDEX idx_orders_status_created ON orders(status, created_at);
CREATE INDEX idx_products_code ON products(code);

Optimized Query

SELECT o.id, o.total, p.name
FROM orders o
INNER JOIN products p ON o.product_id = p.id
WHERE o.status = 'pending'
ORDER BY o.created_at DESC
LIMIT 100;

## Best Practices
1. **Indexes**: Add for WHERE, JOIN, ORDER BY columns
2. **SELECT**: Only needed columns, with LIMIT
3. **JOINs**: Explicit syntax, indexed columns
4. **Subqueries**: Prefer JOINs or CTEs
5. **EXPLAIN**: Always analyze query plans

## Integration
- `schema-reviewer`: Database design
- `orm-reviewer`: ORM query patterns
- `perf-analyzer`: Application performance