Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:44:08 +08:00
commit 12f823b4a9
24 changed files with 4951 additions and 0 deletions

View File

@@ -0,0 +1,85 @@
"""
PocketFlow Cookbook Example: Interactive Chat Bot
Difficulty: ☆☆☆ Dummy Level
Source: https://github.com/The-Pocket/PocketFlow/tree/main/cookbook/pocketflow-chat
Description:
A basic chat bot with conversation history. Demonstrates:
- Self-looping nodes for continuous interaction
- Message history management
- User input handling
- Graceful exit conditions
"""
from pocketflow import Node, Flow
# from utils import call_llm # You need to implement this
class ChatNode(Node):
"""Interactive chat node that maintains conversation history"""
def prep(self, shared):
"""Get user input and maintain message history"""
# Initialize messages if this is the first run
if "messages" not in shared:
shared["messages"] = []
print("Welcome to the chat! Type 'exit' to end the conversation.")
# Get user input
user_input = input("\nYou: ")
# Check if user wants to exit
if user_input.lower() == 'exit':
return None
# Add user message to history
shared["messages"].append({"role": "user", "content": user_input})
# Return all messages for the LLM
return shared["messages"]
def exec(self, messages):
"""Call LLM with conversation history"""
if messages is None:
return None
# Call LLM with the entire conversation history
# response = call_llm(messages)
response = "This is a placeholder response. Implement call_llm()."
return response
def post(self, shared, prep_res, exec_res):
"""Display response and continue or end conversation"""
if prep_res is None or exec_res is None:
print("\nGoodbye!")
return None # End the conversation
# Print the assistant's response
print(f"\nAssistant: {exec_res}")
# Add assistant message to history
shared["messages"].append({"role": "assistant", "content": exec_res})
# Loop back to continue the conversation
return "continue"
# Build the flow with self-loop
def create_chat_flow():
"""Create a chat flow that loops back to itself"""
chat_node = ChatNode()
chat_node - "continue" >> chat_node # Loop back to continue conversation
flow = Flow(start=chat_node)
return flow
# Example usage
if __name__ == "__main__":
shared = {}
flow = create_chat_flow()
flow.run(shared)
# Conversation history is preserved in shared["messages"]
print(f"\n\nTotal messages: {len(shared.get('messages', []))}")

View File

@@ -0,0 +1,120 @@
"""
PocketFlow Cookbook Example: Article Writing Workflow
Difficulty: ☆☆☆ Dummy Level
Source: https://github.com/The-Pocket/PocketFlow/tree/main/cookbook/pocketflow-workflow
Description:
A writing workflow that outlines, writes content, and applies styling.
Demonstrates:
- Sequential multi-step workflow
- Progressive content generation
- Task decomposition pattern
"""
from pocketflow import Node, Flow
# from utils import call_llm # You need to implement this
class GenerateOutlineNode(Node):
"""Generate article outline from topic"""
def prep(self, shared):
return shared["topic"]
def exec(self, topic):
"""Create outline with LLM"""
prompt = f"Create a detailed outline for an article about: {topic}"
# outline = call_llm(prompt)
outline = f"Outline for {topic}:\n1. Introduction\n2. Main Points\n3. Conclusion"
print(f"\n📋 Outline Generated ({len(outline)} chars)")
return outline
def post(self, shared, prep_res, exec_res):
shared["outline"] = exec_res
return "default"
class WriteDraftNode(Node):
"""Write article draft from outline"""
def prep(self, shared):
return shared["outline"]
def exec(self, outline):
"""Generate content based on outline"""
prompt = f"Write content based on this outline:\n{outline}"
# draft = call_llm(prompt)
draft = f"Draft article based on outline:\n\n{outline}\n\n[Article content here...]"
print(f"\n✍️ Draft Written ({len(draft)} chars)")
return draft
def post(self, shared, prep_res, exec_res):
shared["draft"] = exec_res
return "default"
class RefineArticleNode(Node):
"""Polish and refine the draft"""
def prep(self, shared):
return shared["draft"]
def exec(self, draft):
"""Improve draft quality"""
prompt = f"Review and improve this draft:\n{draft}"
# final = call_llm(prompt)
final = f"Refined version:\n\n{draft}\n\n[Enhanced with better flow and clarity]"
print(f"\n✨ Article Refined ({len(final)} chars)")
return final
def post(self, shared, prep_res, exec_res):
shared["final_article"] = exec_res
print("\n✅ Article Complete!")
return "default"
# Build the workflow
def create_article_flow():
"""Create sequential article writing workflow"""
outline = GenerateOutlineNode()
draft = WriteDraftNode()
refine = RefineArticleNode()
# Sequential pipeline
outline >> draft >> refine
flow = Flow(start=outline)
return flow
# Example usage
def run_flow(topic="AI Safety"):
"""Run the article writing workflow"""
shared = {"topic": topic}
print(f"\n=== Starting Article Workflow: {topic} ===\n")
flow = create_article_flow()
flow.run(shared)
# Output summary
print("\n=== Workflow Statistics ===")
print(f"Topic: {shared['topic']}")
print(f"Outline: {len(shared['outline'])} characters")
print(f"Draft: {len(shared['draft'])} characters")
print(f"Final: {len(shared['final_article'])} characters")
return shared
if __name__ == "__main__":
import sys
# Get topic from command line or use default
topic = " ".join(sys.argv[1:]) if len(sys.argv) > 1 else "AI Safety"
result = run_flow(topic)
# Print final article
print("\n=== Final Article ===")
print(result["final_article"])

View File

@@ -0,0 +1,165 @@
"""
PocketFlow Cookbook Example: Research Agent
Difficulty: ☆☆☆ Dummy Level
Source: https://github.com/The-Pocket/PocketFlow/tree/main/cookbook/pocketflow-agent
Description:
A research agent that can search the web and answer questions.
Demonstrates:
- Agent pattern with dynamic action selection
- Branching based on decisions
- Loop-back for iterative research
- Tool usage (web search)
"""
from pocketflow import Node, Flow
# from utils import call_llm, search_web # You need to implement these
class DecideActionNode(Node):
"""Agent decides whether to search or answer"""
def prep(self, shared):
return {
"question": shared["question"],
"context": shared.get("context", "No information gathered yet")
}
def exec(self, inputs):
"""Decide next action using LLM"""
question = inputs["question"]
context = inputs["context"]
prompt = f"""
Given:
Question: {question}
Current Context: {context}
Should I:
1. Search web for more information
2. Answer with current knowledge
Output in format:
Action: search/answer
Reasoning: [why]
Search Query: [if action is search]
"""
# response = call_llm(prompt)
# Parse response to get action
# Placeholder logic
if not context or "No information" in context:
action = "search"
search_query = question
else:
action = "answer"
search_query = None
print(f"\n🤔 Agent decided: {action}")
return {
"action": action,
"search_query": search_query
}
def post(self, shared, prep_res, exec_res):
shared["decision"] = exec_res
# Branch based on action
return exec_res["action"]
class SearchWebNode(Node):
"""Search the web for information"""
def prep(self, shared):
return shared["decision"]["search_query"]
def exec(self, query):
"""Perform web search"""
print(f"\n🔍 Searching: {query}")
# results = search_web(query)
results = f"Search results for '{query}':\n- Result 1\n- Result 2\n- Result 3"
return results
def post(self, shared, prep_res, exec_res):
# Add to context
current_context = shared.get("context", "")
shared["context"] = current_context + "\n\n" + exec_res
print(f"\n📚 Context updated ({len(shared['context'])} chars)")
# Loop back to decide again
return "continue"
class AnswerNode(Node):
"""Generate final answer"""
def prep(self, shared):
return {
"question": shared["question"],
"context": shared.get("context", "")
}
def exec(self, inputs):
"""Generate answer from context"""
prompt = f"""
Context: {inputs['context']}
Question: {inputs['question']}
Provide a comprehensive answer:
"""
# answer = call_llm(prompt)
answer = f"Based on the research, here's the answer to '{inputs['question']}':\n\n[Answer based on context]"
return answer
def post(self, shared, prep_res, exec_res):
shared["final_answer"] = exec_res
print(f"\n✅ Answer generated")
return "done"
# Build the agent flow
def create_agent_flow():
"""Create research agent with branching and looping"""
decide = DecideActionNode()
search = SearchWebNode()
answer = AnswerNode()
# Branching: decide can lead to search or answer
decide - "search" >> search
decide - "answer" >> answer
# Loop: search leads back to decide
search - "continue" >> decide
flow = Flow(start=decide)
return flow
# Example usage
def main():
"""Run the research agent"""
# Default question
question = "Who won the Nobel Prize in Physics 2024?"
# Get question from command line if provided
import sys
if len(sys.argv) > 1:
question = " ".join(sys.argv[1:])
shared = {"question": question}
print(f"\n🤔 Processing question: {question}")
print("="*50)
flow = create_agent_flow()
flow.run(shared)
print("\n" + "="*50)
print("\n🎯 Final Answer:")
print(shared.get("final_answer", "No answer found"))
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,226 @@
"""
PocketFlow Cookbook Example: RAG (Retrieval Augmented Generation)
Difficulty: ☆☆☆ Dummy Level
Source: https://github.com/The-Pocket/PocketFlow/tree/main/cookbook/pocketflow-rag
Description:
A simple RAG system with offline indexing and online querying.
Demonstrates:
- Two-stage RAG pipeline (offline + online)
- Document embedding and indexing
- Similarity search
- Context-based answer generation
"""
from pocketflow import Node, Flow
# from utils import call_llm, get_embedding, build_index, search_index
import sys
# ============================================================
# OFFLINE FLOW: Index Documents
# ============================================================
class EmbedDocumentsNode(Node):
"""Embed all documents for indexing"""
def prep(self, shared):
return shared["texts"]
def exec(self, texts):
"""Generate embeddings for all texts"""
print(f"\n📊 Embedding {len(texts)} documents...")
# embeddings = [get_embedding(text) for text in texts]
embeddings = [[0.1] * 128 for _ in texts] # Placeholder
return embeddings
def post(self, shared, prep_res, exec_res):
shared["embeddings"] = exec_res
print(f"✅ Embedded {len(exec_res)} documents")
return "default"
class BuildIndexNode(Node):
"""Build search index from embeddings"""
def prep(self, shared):
return shared["embeddings"]
def exec(self, embeddings):
"""Create vector index"""
print(f"\n🔨 Building index...")
# index = build_faiss_index(embeddings)
index = "placeholder_index" # Placeholder
return index
def post(self, shared, prep_res, exec_res):
shared["index"] = exec_res
print("✅ Index built")
return "default"
# Build offline flow
embed_docs = EmbedDocumentsNode()
build_index = BuildIndexNode()
embed_docs >> build_index
offline_flow = Flow(start=embed_docs)
# ============================================================
# ONLINE FLOW: Query and Answer
# ============================================================
class EmbedQueryNode(Node):
"""Embed the user query"""
def prep(self, shared):
return shared["query"]
def exec(self, query):
"""Generate query embedding"""
print(f"\n🔍 Processing query: {query}")
# query_embedding = get_embedding(query)
query_embedding = [0.1] * 128 # Placeholder
return query_embedding
def post(self, shared, prep_res, exec_res):
shared["query_embedding"] = exec_res
return "default"
class RetrieveDocumentNode(Node):
"""Search index and retrieve most relevant document"""
def prep(self, shared):
return {
"query_embedding": shared["query_embedding"],
"index": shared["index"],
"texts": shared["texts"]
}
def exec(self, inputs):
"""Find most similar document"""
print(f"\n📚 Searching index...")
# I, D = search_index(inputs["index"], inputs["query_embedding"], top_k=1)
# best_doc = inputs["texts"][I[0][0]]
# Placeholder: return first document
best_doc = inputs["texts"][0]
print(f"✅ Retrieved document ({len(best_doc)} chars)")
return best_doc
def post(self, shared, prep_res, exec_res):
shared["retrieved_document"] = exec_res
return "default"
class GenerateAnswerNode(Node):
"""Generate answer using retrieved context"""
def prep(self, shared):
return {
"query": shared["query"],
"context": shared["retrieved_document"]
}
def exec(self, inputs):
"""Generate answer with context"""
print(f"\n✍️ Generating answer...")
prompt = f"""
Context: {inputs['context']}
Question: {inputs['query']}
Answer the question using only the information from the context:
"""
# answer = call_llm(prompt)
answer = f"Based on the context, the answer is: [Answer would be generated here]"
return answer
def post(self, shared, prep_res, exec_res):
shared["generated_answer"] = exec_res
print(f"✅ Answer generated")
return "default"
# Build online flow
embed_query = EmbedQueryNode()
retrieve = RetrieveDocumentNode()
generate = GenerateAnswerNode()
embed_query >> retrieve >> generate
online_flow = Flow(start=embed_query)
# ============================================================
# Main Demo
# ============================================================
def run_rag_demo():
"""Run complete RAG demonstration"""
# Sample documents
texts = [
"""Pocket Flow is a 100-line minimalist LLM framework.
Lightweight: Just 100 lines. Zero bloat, zero dependencies, zero vendor lock-in.
Expressive: Everything you love—(Multi-)Agents, Workflow, RAG, and more.
Agentic Coding: Let AI Agents (e.g., Cursor AI) build Agents—10x productivity boost!
To install, pip install pocketflow or just copy the source code (only 100 lines).""",
"""NeurAlign M7 is a revolutionary non-invasive neural alignment device.
Targeted magnetic resonance technology increases neuroplasticity in specific brain regions.
Clinical trials showed 72% improvement in PTSD treatment outcomes.
Developed by Cortex Medical in 2024 as an adjunct to standard cognitive therapy.
Portable design allows for in-home use with remote practitioner monitoring.""",
"""Q-Mesh is QuantumLeap Technologies' instantaneous data synchronization protocol.
Utilizes directed acyclic graph consensus for 500,000 transactions per second.
Consumes 95% less energy than traditional blockchain systems.
Adopted by three central banks for secure financial data transfer.
Released in February 2024 after five years of development in stealth mode.""",
]
# Get query from command line or use default
default_query = "How to install PocketFlow?"
query = default_query
for arg in sys.argv[1:]:
if arg.startswith("--"):
query = arg[2:]
break
print("=" * 60)
print("PocketFlow RAG Demo")
print("=" * 60)
# Single shared store for both flows
shared = {
"texts": texts,
"query": query
}
# Stage 1: Index documents (offline)
print("\n📥 STAGE 1: Indexing Documents")
print("-" * 60)
offline_flow.run(shared)
# Stage 2: Query and answer (online)
print("\n🔍 STAGE 2: Query and Answer")
print("-" * 60)
online_flow.run(shared)
# Display results
print("\n" + "=" * 60)
print("✅ RAG Complete")
print("=" * 60)
print(f"\nQuery: {shared['query']}")
print(f"\nRetrieved Context Preview:")
print(shared["retrieved_document"][:150] + "...")
print(f"\nGenerated Answer:")
print(shared["generated_answer"])
if __name__ == "__main__":
run_rag_demo()

View File

@@ -0,0 +1,175 @@
"""
PocketFlow Cookbook Example: Structured Output (Resume Parser)
Difficulty: ☆☆☆ Dummy Level
Source: https://github.com/The-Pocket/PocketFlow/tree/main/cookbook/pocketflow-structured-output
Description:
Extract structured data from resumes using YAML prompting.
Demonstrates:
- Structured LLM output with YAML
- Schema validation with assertions
- Retry logic for parsing errors
- Index-based skill matching
"""
import yaml
from pocketflow import Node, Flow
# from utils import call_llm # You need to implement this
class ResumeParserNode(Node):
"""Parse resume text into structured YAML format"""
def prep(self, shared):
return {
"resume_text": shared["resume_text"],
"target_skills": shared.get("target_skills", [])
}
def exec(self, prep_res):
"""Extract structured data from resume"""
resume_text = prep_res["resume_text"]
target_skills = prep_res["target_skills"]
# Create skill list with indexes for prompt
skill_list_for_prompt = "\n".join(
[f"{i}: {skill}" for i, skill in enumerate(target_skills)]
)
prompt = f"""
Analyze the resume below. Output ONLY the requested information in YAML format.
**Resume:**
```
{resume_text}
```
**Target Skills (use these indexes):**
```
{skill_list_for_prompt}
```
**YAML Output Requirements:**
- Extract `name` (string)
- Extract `email` (string)
- Extract `experience` (list of objects with `title` and `company`)
- Extract `skill_indexes` (list of integers found from the Target Skills list)
- **Add a YAML comment (`#`) explaining the source BEFORE each field**
Generate the YAML output now:
"""
# Get LLM response
# response = call_llm(prompt)
# Placeholder response
response = """
```yaml
# Extracted from header
name: John Smith
# Found in contact section
email: john.smith@email.com
# Work history section
experience:
- title: Senior Developer
company: Tech Corp
- title: Software Engineer
company: StartupXYZ
# Skills matching target list
skill_indexes: [0, 2, 5] # Team leadership, Project management, Python
```
"""
# Parse YAML from response
yaml_str = response.split("```yaml")[1].split("```")[0].strip()
structured_result = yaml.safe_load(yaml_str)
# Validate structure
assert structured_result is not None, "Parsed YAML is None"
assert "name" in structured_result, "Missing 'name'"
assert "email" in structured_result, "Missing 'email'"
assert "experience" in structured_result, "Missing 'experience'"
assert isinstance(structured_result.get("experience"), list), "'experience' is not a list"
assert "skill_indexes" in structured_result, "Missing 'skill_indexes'"
return structured_result
def post(self, shared, prep_res, exec_res):
"""Store and display structured data"""
shared["structured_data"] = exec_res
print("\n=== STRUCTURED RESUME DATA ===\n")
print(yaml.dump(exec_res, sort_keys=False, allow_unicode=True,
default_flow_style=None))
print("\n✅ Extracted resume information.\n")
return "default"
# Example usage
def run_parser():
"""Run resume parser demo"""
# Sample resume text
sample_resume = """
JOHN SMITH
Email: john.smith@email.com | Phone: (555) 123-4567
EXPERIENCE
Senior Developer - Tech Corp (2020-Present)
- Led team of 5 developers
- Built scalable Python applications
- Managed multiple projects simultaneously
Software Engineer - StartupXYZ (2018-2020)
- Developed web applications
- Collaborated with cross-functional teams
- Presented technical solutions to stakeholders
SKILLS
- Team Leadership & Management
- Python, JavaScript, SQL
- Project Management
- Public Speaking
- CRM Software
- Data Analysis
"""
# Target skills to match
target_skills = [
"Team leadership & management",
"CRM software",
"Project management",
"Public speaking",
"Microsoft Office",
"Python",
"Data Analysis"
]
# Prepare shared store
shared = {
"resume_text": sample_resume,
"target_skills": target_skills
}
# Create and run flow
parser_node = ResumeParserNode(max_retries=3, wait=10)
flow = Flow(start=parser_node)
flow.run(shared)
# Display matched skills
if "structured_data" in shared:
found_indexes = shared["structured_data"].get("skill_indexes", [])
if found_indexes:
print("\n--- Matched Target Skills ---")
for index in found_indexes:
if 0 <= index < len(target_skills):
print(f"{target_skills[index]} (Index: {index})")
if __name__ == "__main__":
run_parser()

View File

@@ -0,0 +1,153 @@
"""
PocketFlow Cookbook Example: Multi-Agent (Taboo Game)
Difficulty: ★☆☆ Beginner Level
Source: https://github.com/The-Pocket/PocketFlow/tree/main/cookbook/pocketflow-multi-agent
Description:
Two agents playing Taboo word game with async communication.
Demonstrates:
- Multi-agent systems
- Async message queues for inter-agent communication
- AsyncNode and AsyncFlow
- Self-looping async nodes
- Game logic with termination conditions
"""
import asyncio
from pocketflow import AsyncNode, AsyncFlow
# from utils import call_llm # You need to implement this
class AsyncHinter(AsyncNode):
"""Agent that provides hints for the target word"""
async def prep_async(self, shared):
"""Wait for guess from guesser"""
guess = await shared["hinter_queue"].get()
if guess == "GAME_OVER":
return None
return (
shared["target_word"],
shared["forbidden_words"],
shared.get("past_guesses", [])
)
async def exec_async(self, inputs):
"""Generate hint avoiding forbidden words"""
if inputs is None:
return None
target, forbidden, past_guesses = inputs
prompt = f"Generate hint for '{target}'\nForbidden words: {forbidden}"
if past_guesses:
prompt += f"\nPrevious wrong guesses: {past_guesses}\nMake hint more specific."
prompt += "\nUse at most 5 words."
# hint = call_llm(prompt)
hint = "Thinking of childhood summer days" # Placeholder
print(f"\nHinter: Here's your hint - {hint}")
return hint
async def post_async(self, shared, prep_res, exec_res):
"""Send hint to guesser"""
if exec_res is None:
return "end"
# Send hint to guesser's queue
await shared["guesser_queue"].put(exec_res)
return "continue"
class AsyncGuesser(AsyncNode):
"""Agent that guesses the target word from hints"""
async def prep_async(self, shared):
"""Wait for hint from hinter"""
hint = await shared["guesser_queue"].get()
return hint, shared.get("past_guesses", [])
async def exec_async(self, inputs):
"""Make a guess based on hint"""
hint, past_guesses = inputs
prompt = f"""
Given hint: {hint}
Past wrong guesses: {past_guesses}
Make a new guess. Reply with a single word:
"""
# guess = call_llm(prompt)
guess = "memories" # Placeholder
print(f"Guesser: I guess it's - {guess}")
return guess
async def post_async(self, shared, prep_res, exec_res):
"""Check guess and update game state"""
# Check if correct
if exec_res.lower() == shared["target_word"].lower():
print("\n✅ Game Over - Correct guess!")
await shared["hinter_queue"].put("GAME_OVER")
return "end"
# Store wrong guess
if "past_guesses" not in shared:
shared["past_guesses"] = []
shared["past_guesses"].append(exec_res)
# Send guess to hinter
await shared["hinter_queue"].put(exec_res)
return "continue"
async def main():
"""Run the Taboo game"""
# Game setup
shared = {
"target_word": "nostalgia",
"forbidden_words": ["memory", "past", "remember", "feeling", "longing"],
"hinter_queue": asyncio.Queue(),
"guesser_queue": asyncio.Queue()
}
print("\n" + "="*50)
print("🎮 Taboo Game Starting!")
print("="*50)
print(f"Target word: {shared['target_word']}")
print(f"Forbidden words: {shared['forbidden_words']}")
print("="*50 + "\n")
# Initialize game with empty guess
await shared["hinter_queue"].put("")
# Create agents
hinter = AsyncHinter()
guesser = AsyncGuesser()
# Setup self-loops
hinter - "continue" >> hinter
guesser - "continue" >> guesser
# Create flows
hinter_flow = AsyncFlow(start=hinter)
guesser_flow = AsyncFlow(start=guesser)
# Run both agents concurrently
await asyncio.gather(
hinter_flow.run_async(shared),
guesser_flow.run_async(shared)
)
print("\n" + "="*50)
print("🏁 Game Complete!")
print(f"Total guesses: {len(shared.get('past_guesses', []))}")
print("="*50 + "\n")
if __name__ == "__main__":
asyncio.run(main())