734 lines
18 KiB
Markdown
734 lines
18 KiB
Markdown
---
|
|
name: kaizen
|
|
description: Use when Code implementation and refactoring, architecturing or designing systems, process and workflow improvements, error handling and validation. Provide tehniquest to avoid over-engineering and apply iterative improvements.
|
|
---
|
|
|
|
# Kaizen: Continuous Improvement
|
|
|
|
Apply continuous improvement mindset - suggest small iterative improvements, error-proof designs, follow established patterns, avoid over-engineering; automatically applied to guide quality and simplicity
|
|
|
|
## Overview
|
|
|
|
Small improvements, continuously. Error-proof by design. Follow what works. Build only what's needed.
|
|
|
|
**Core principle:** Many small improvements beat one big change. Prevent errors at design time, not with fixes.
|
|
|
|
## When to Use
|
|
|
|
**Always applied for:**
|
|
|
|
- Code implementation and refactoring
|
|
- Architecture and design decisions
|
|
- Process and workflow improvements
|
|
- Error handling and validation
|
|
|
|
**Philosophy:** Quality through incremental progress and prevention, not perfection through massive effort.
|
|
|
|
## The Four Pillars
|
|
|
|
### 1. Continuous Improvement (Kaizen)
|
|
|
|
Small, frequent improvements compound into major gains.
|
|
|
|
#### Principles
|
|
|
|
**Incremental over revolutionary:**
|
|
|
|
- Make smallest viable change that improves quality
|
|
- One improvement at a time
|
|
- Verify each change before next
|
|
- Build momentum through small wins
|
|
|
|
**Always leave code better:**
|
|
|
|
- Fix small issues as you encounter them
|
|
- Refactor while you work (within scope)
|
|
- Update outdated comments
|
|
- Remove dead code when you see it
|
|
|
|
**Iterative refinement:**
|
|
|
|
- First version: make it work
|
|
- Second pass: make it clear
|
|
- Third pass: make it efficient
|
|
- Don't try all three at once
|
|
|
|
<Good>
|
|
```typescript
|
|
// Iteration 1: Make it work
|
|
const calculateTotal = (items: Item[]) => {
|
|
let total = 0;
|
|
for (let i = 0; i < items.length; i++) {
|
|
total += items[i].price * items[i].quantity;
|
|
}
|
|
return total;
|
|
};
|
|
|
|
// Iteration 2: Make it clear (refactor)
|
|
const calculateTotal = (items: Item[]): number => {
|
|
return items.reduce((total, item) => {
|
|
return total + (item.price * item.quantity);
|
|
}, 0);
|
|
};
|
|
|
|
// Iteration 3: Make it robust (add validation)
|
|
const calculateTotal = (items: Item[]): number => {
|
|
if (!items?.length) return 0;
|
|
|
|
return items.reduce((total, item) => {
|
|
if (item.price < 0 || item.quantity < 0) {
|
|
throw new Error('Price and quantity must be non-negative');
|
|
}
|
|
return total + (item.price * item.quantity);
|
|
}, 0);
|
|
};
|
|
|
|
```
|
|
Each step is complete, tested, and working
|
|
</Good>
|
|
|
|
<Bad>
|
|
```typescript
|
|
// Trying to do everything at once
|
|
const calculateTotal = (items: Item[]): number => {
|
|
// Validate, optimize, add features, handle edge cases all together
|
|
if (!items?.length) return 0;
|
|
const validItems = items.filter(item => {
|
|
if (item.price < 0) throw new Error('Negative price');
|
|
if (item.quantity < 0) throw new Error('Negative quantity');
|
|
return item.quantity > 0; // Also filtering zero quantities
|
|
});
|
|
// Plus caching, plus logging, plus currency conversion...
|
|
return validItems.reduce(...); // Too many concerns at once
|
|
};
|
|
```
|
|
|
|
Overwhelming, error-prone, hard to verify
|
|
</Bad>
|
|
|
|
#### In Practice
|
|
|
|
**When implementing features:**
|
|
|
|
1. Start with simplest version that works
|
|
2. Add one improvement (error handling, validation, etc.)
|
|
3. Test and verify
|
|
4. Repeat if time permits
|
|
5. Don't try to make it perfect immediately
|
|
|
|
**When refactoring:**
|
|
|
|
- Fix one smell at a time
|
|
- Commit after each improvement
|
|
- Keep tests passing throughout
|
|
- Stop when "good enough" (diminishing returns)
|
|
|
|
**When reviewing code:**
|
|
|
|
- Suggest incremental improvements (not rewrites)
|
|
- Prioritize: critical → important → nice-to-have
|
|
- Focus on highest-impact changes first
|
|
- Accept "better than before" even if not perfect
|
|
|
|
### 2. Poka-Yoke (Error Proofing)
|
|
|
|
Design systems that prevent errors at compile/design time, not runtime.
|
|
|
|
#### Principles
|
|
|
|
**Make errors impossible:**
|
|
|
|
- Type system catches mistakes
|
|
- Compiler enforces contracts
|
|
- Invalid states unrepresentable
|
|
- Errors caught early (left of production)
|
|
|
|
**Design for safety:**
|
|
|
|
- Fail fast and loudly
|
|
- Provide helpful error messages
|
|
- Make correct path obvious
|
|
- Make incorrect path difficult
|
|
|
|
**Defense in layers:**
|
|
|
|
1. Type system (compile time)
|
|
2. Validation (runtime, early)
|
|
3. Guards (preconditions)
|
|
4. Error boundaries (graceful degradation)
|
|
|
|
#### Type System Error Proofing
|
|
|
|
<Good>
|
|
```typescript
|
|
// Error: string status can be any value
|
|
type OrderBad = {
|
|
status: string; // Can be "pending", "PENDING", "pnding", anything!
|
|
total: number;
|
|
};
|
|
|
|
// Good: Only valid states possible
|
|
type OrderStatus = 'pending' | 'processing' | 'shipped' | 'delivered';
|
|
type Order = {
|
|
status: OrderStatus;
|
|
total: number;
|
|
};
|
|
|
|
// Better: States with associated data
|
|
type Order =
|
|
| { status: 'pending'; createdAt: Date }
|
|
| { status: 'processing'; startedAt: Date; estimatedCompletion: Date }
|
|
| { status: 'shipped'; trackingNumber: string; shippedAt: Date }
|
|
| { status: 'delivered'; deliveredAt: Date; signature: string };
|
|
|
|
// Now impossible to have shipped without trackingNumber
|
|
|
|
```
|
|
Type system prevents entire classes of errors
|
|
</Good>
|
|
|
|
<Good>
|
|
```typescript
|
|
// Make invalid states unrepresentable
|
|
type NonEmptyArray<T> = [T, ...T[]];
|
|
|
|
const firstItem = <T>(items: NonEmptyArray<T>): T => {
|
|
return items[0]; // Always safe, never undefined!
|
|
};
|
|
|
|
// Caller must prove array is non-empty
|
|
const items: number[] = [1, 2, 3];
|
|
if (items.length > 0) {
|
|
firstItem(items as NonEmptyArray<number>); // Safe
|
|
}
|
|
```
|
|
|
|
Function signature guarantees safety
|
|
</Good>
|
|
|
|
#### Validation Error Proofing
|
|
|
|
<Good>
|
|
```typescript
|
|
// Error: Validation after use
|
|
const processPayment = (amount: number) => {
|
|
const fee = amount * 0.03; // Used before validation!
|
|
if (amount <= 0) throw new Error('Invalid amount');
|
|
// ...
|
|
};
|
|
|
|
// Good: Validate immediately
|
|
const processPayment = (amount: number) => {
|
|
if (amount <= 0) {
|
|
throw new Error('Payment amount must be positive');
|
|
}
|
|
if (amount > 10000) {
|
|
throw new Error('Payment exceeds maximum allowed');
|
|
}
|
|
|
|
const fee = amount * 0.03;
|
|
// ... now safe to use
|
|
};
|
|
|
|
// Better: Validation at boundary with branded type
|
|
type PositiveNumber = number & { readonly __brand: 'PositiveNumber' };
|
|
|
|
const validatePositive = (n: number): PositiveNumber => {
|
|
if (n <= 0) throw new Error('Must be positive');
|
|
return n as PositiveNumber;
|
|
};
|
|
|
|
const processPayment = (amount: PositiveNumber) => {
|
|
// amount is guaranteed positive, no need to check
|
|
const fee = amount * 0.03;
|
|
};
|
|
|
|
// Validate at system boundary
|
|
const handlePaymentRequest = (req: Request) => {
|
|
const amount = validatePositive(req.body.amount); // Validate once
|
|
processPayment(amount); // Use everywhere safely
|
|
};
|
|
|
|
```
|
|
Validate once at boundary, safe everywhere else
|
|
</Good>
|
|
|
|
#### Guards and Preconditions
|
|
|
|
<Good>
|
|
```typescript
|
|
// Early returns prevent deeply nested code
|
|
const processUser = (user: User | null) => {
|
|
if (!user) {
|
|
logger.error('User not found');
|
|
return;
|
|
}
|
|
|
|
if (!user.email) {
|
|
logger.error('User email missing');
|
|
return;
|
|
}
|
|
|
|
if (!user.isActive) {
|
|
logger.info('User inactive, skipping');
|
|
return;
|
|
}
|
|
|
|
// Main logic here, guaranteed user is valid and active
|
|
sendEmail(user.email, 'Welcome!');
|
|
};
|
|
```
|
|
|
|
Guards make assumptions explicit and enforced
|
|
</Good>
|
|
|
|
#### Configuration Error Proofing
|
|
|
|
<Good>
|
|
```typescript
|
|
// Error: Optional config with unsafe defaults
|
|
type ConfigBad = {
|
|
apiKey?: string;
|
|
timeout?: number;
|
|
};
|
|
|
|
const client = new APIClient({ timeout: 5000 }); // apiKey missing!
|
|
|
|
// Good: Required config, fails early
|
|
type Config = {
|
|
apiKey: string;
|
|
timeout: number;
|
|
};
|
|
|
|
const loadConfig = (): Config => {
|
|
const apiKey = process.env.API_KEY;
|
|
if (!apiKey) {
|
|
throw new Error('API_KEY environment variable required');
|
|
}
|
|
|
|
return {
|
|
apiKey,
|
|
timeout: 5000,
|
|
};
|
|
};
|
|
|
|
// App fails at startup if config invalid, not during request
|
|
const config = loadConfig();
|
|
const client = new APIClient(config);
|
|
|
|
```
|
|
Fail at startup, not in production
|
|
</Good>
|
|
|
|
#### In Practice
|
|
|
|
**When designing APIs:**
|
|
- Use types to constrain inputs
|
|
- Make invalid states unrepresentable
|
|
- Return Result<T, E> instead of throwing
|
|
- Document preconditions in types
|
|
|
|
**When handling errors:**
|
|
- Validate at system boundaries
|
|
- Use guards for preconditions
|
|
- Fail fast with clear messages
|
|
- Log context for debugging
|
|
|
|
**When configuring:**
|
|
- Required over optional with defaults
|
|
- Validate all config at startup
|
|
- Fail deployment if config invalid
|
|
- Don't allow partial configurations
|
|
|
|
### 3. Standardized Work
|
|
|
|
Follow established patterns. Document what works. Make good practices easy to follow.
|
|
|
|
#### Principles
|
|
|
|
**Consistency over cleverness:**
|
|
- Follow existing codebase patterns
|
|
- Don't reinvent solved problems
|
|
- New pattern only if significantly better
|
|
- Team agreement on new patterns
|
|
|
|
**Documentation lives with code:**
|
|
- README for setup and architecture
|
|
- CLAUDE.md for AI coding conventions
|
|
- Comments for "why", not "what"
|
|
- Examples for complex patterns
|
|
|
|
**Automate standards:**
|
|
- Linters enforce style
|
|
- Type checks enforce contracts
|
|
- Tests verify behavior
|
|
- CI/CD enforces quality gates
|
|
|
|
#### Following Patterns
|
|
|
|
<Good>
|
|
```typescript
|
|
// Existing codebase pattern for API clients
|
|
class UserAPIClient {
|
|
async getUser(id: string): Promise<User> {
|
|
return this.fetch(`/users/${id}`);
|
|
}
|
|
}
|
|
|
|
// New code follows the same pattern
|
|
class OrderAPIClient {
|
|
async getOrder(id: string): Promise<Order> {
|
|
return this.fetch(`/orders/${id}`);
|
|
}
|
|
}
|
|
```
|
|
|
|
Consistency makes codebase predictable
|
|
</Good>
|
|
|
|
<Bad>
|
|
```typescript
|
|
// Existing pattern uses classes
|
|
class UserAPIClient { /* ... */ }
|
|
|
|
// New code introduces different pattern without discussion
|
|
const getOrder = async (id: string): Promise<Order> => {
|
|
// Breaking consistency "because I prefer functions"
|
|
};
|
|
|
|
```
|
|
Inconsistency creates confusion
|
|
</Bad>
|
|
|
|
#### Error Handling Patterns
|
|
|
|
<Good>
|
|
```typescript
|
|
// Project standard: Result type for recoverable errors
|
|
type Result<T, E> = { ok: true; value: T } | { ok: false; error: E };
|
|
|
|
// All services follow this pattern
|
|
const fetchUser = async (id: string): Promise<Result<User, Error>> => {
|
|
try {
|
|
const user = await db.users.findById(id);
|
|
if (!user) {
|
|
return { ok: false, error: new Error('User not found') };
|
|
}
|
|
return { ok: true, value: user };
|
|
} catch (err) {
|
|
return { ok: false, error: err as Error };
|
|
}
|
|
};
|
|
|
|
// Callers use consistent pattern
|
|
const result = await fetchUser('123');
|
|
if (!result.ok) {
|
|
logger.error('Failed to fetch user', result.error);
|
|
return;
|
|
}
|
|
const user = result.value; // Type-safe!
|
|
```
|
|
|
|
Standard pattern across codebase
|
|
</Good>
|
|
|
|
#### Documentation Standards
|
|
|
|
<Good>
|
|
```typescript
|
|
/**
|
|
* Retries an async operation with exponential backoff.
|
|
*
|
|
* Why: Network requests fail temporarily; retrying improves reliability
|
|
* When to use: External API calls, database operations
|
|
* When not to use: User input validation, internal function calls
|
|
*
|
|
* @example
|
|
* const result = await retry(
|
|
* () => fetch('https://api.example.com/data'),
|
|
* { maxAttempts: 3, baseDelay: 1000 }
|
|
* );
|
|
*/
|
|
const retry = async <T>(
|
|
operation: () => Promise<T>,
|
|
options: RetryOptions
|
|
): Promise<T> => {
|
|
// Implementation...
|
|
};
|
|
```
|
|
Documents why, when, and how
|
|
</Good>
|
|
|
|
#### In Practice
|
|
|
|
**Before adding new patterns:**
|
|
|
|
- Search codebase for similar problems solved
|
|
- Check CLAUDE.md for project conventions
|
|
- Discuss with team if breaking from pattern
|
|
- Update docs when introducing new pattern
|
|
|
|
**When writing code:**
|
|
|
|
- Match existing file structure
|
|
- Use same naming conventions
|
|
- Follow same error handling approach
|
|
- Import from same locations
|
|
|
|
**When reviewing:**
|
|
|
|
- Check consistency with existing code
|
|
- Point to examples in codebase
|
|
- Suggest aligning with standards
|
|
- Update CLAUDE.md if new standard emerges
|
|
|
|
### 4. Just-In-Time (JIT)
|
|
|
|
Build what's needed now. No more, no less. Avoid premature optimization and over-engineering.
|
|
|
|
#### Principles
|
|
|
|
**YAGNI (You Aren't Gonna Need It):**
|
|
|
|
- Implement only current requirements
|
|
- No "just in case" features
|
|
- No "we might need this later" code
|
|
- Delete speculation
|
|
|
|
**Simplest thing that works:**
|
|
|
|
- Start with straightforward solution
|
|
- Add complexity only when needed
|
|
- Refactor when requirements change
|
|
- Don't anticipate future needs
|
|
|
|
**Optimize when measured:**
|
|
|
|
- No premature optimization
|
|
- Profile before optimizing
|
|
- Measure impact of changes
|
|
- Accept "good enough" performance
|
|
|
|
#### YAGNI in Action
|
|
|
|
<Good>
|
|
```typescript
|
|
// Current requirement: Log errors to console
|
|
const logError = (error: Error) => {
|
|
console.error(error.message);
|
|
};
|
|
```
|
|
Simple, meets current need
|
|
</Good>
|
|
|
|
<Bad>
|
|
```typescript
|
|
// Over-engineered for "future needs"
|
|
interface LogTransport {
|
|
write(level: LogLevel, message: string, meta?: LogMetadata): Promise<void>;
|
|
}
|
|
|
|
class ConsoleTransport implements LogTransport { /*... */ }
|
|
class FileTransport implements LogTransport { /* ... */ }
|
|
class RemoteTransport implements LogTransport { /* ...*/ }
|
|
|
|
class Logger {
|
|
private transports: LogTransport[] = [];
|
|
private queue: LogEntry[] = [];
|
|
private rateLimiter: RateLimiter;
|
|
private formatter: LogFormatter;
|
|
|
|
// 200 lines of code for "maybe we'll need it"
|
|
}
|
|
|
|
const logError = (error: Error) => {
|
|
Logger.getInstance().log('error', error.message);
|
|
};
|
|
|
|
```
|
|
Building for imaginary future requirements
|
|
</Bad>
|
|
|
|
**When to add complexity:**
|
|
- Current requirement demands it
|
|
- Pain points identified through use
|
|
- Measured performance issues
|
|
- Multiple use cases emerged
|
|
|
|
<Good>
|
|
```typescript
|
|
// Start simple
|
|
const formatCurrency = (amount: number): string => {
|
|
return `$${amount.toFixed(2)}`;
|
|
};
|
|
|
|
// Requirement evolves: support multiple currencies
|
|
const formatCurrency = (amount: number, currency: string): string => {
|
|
const symbols = { USD: '$', EUR: '€', GBP: '£' };
|
|
return `${symbols[currency]}${amount.toFixed(2)}`;
|
|
};
|
|
|
|
// Requirement evolves: support localization
|
|
const formatCurrency = (amount: number, locale: string): string => {
|
|
return new Intl.NumberFormat(locale, {
|
|
style: 'currency',
|
|
currency: locale === 'en-US' ? 'USD' : 'EUR',
|
|
}).format(amount);
|
|
};
|
|
```
|
|
|
|
Complexity added only when needed
|
|
</Good>
|
|
|
|
#### Premature Abstraction
|
|
|
|
<Bad>
|
|
```typescript
|
|
// One use case, but building generic framework
|
|
abstract class BaseCRUDService<T> {
|
|
abstract getAll(): Promise<T[]>;
|
|
abstract getById(id: string): Promise<T>;
|
|
abstract create(data: Partial<T>): Promise<T>;
|
|
abstract update(id: string, data: Partial<T>): Promise<T>;
|
|
abstract delete(id: string): Promise<void>;
|
|
}
|
|
|
|
class GenericRepository<T> { /*300 lines */ }
|
|
class QueryBuilder<T> { /* 200 lines*/ }
|
|
// ... building entire ORM for single table
|
|
|
|
```
|
|
Massive abstraction for uncertain future
|
|
</Bad>
|
|
|
|
<Good>
|
|
```typescript
|
|
// Simple functions for current needs
|
|
const getUsers = async (): Promise<User[]> => {
|
|
return db.query('SELECT * FROM users');
|
|
};
|
|
|
|
const getUserById = async (id: string): Promise<User | null> => {
|
|
return db.query('SELECT * FROM users WHERE id = $1', [id]);
|
|
};
|
|
|
|
// When pattern emerges across multiple entities, then abstract
|
|
```
|
|
|
|
Abstract only when pattern proven across 3+ cases
|
|
</Good>
|
|
|
|
#### Performance Optimization
|
|
|
|
<Good>
|
|
```typescript
|
|
// Current: Simple approach
|
|
const filterActiveUsers = (users: User[]): User[] => {
|
|
return users.filter(user => user.isActive);
|
|
};
|
|
|
|
// Benchmark shows: 50ms for 1000 users (acceptable)
|
|
// ✓ Ship it, no optimization needed
|
|
|
|
// Later: After profiling shows this is bottleneck
|
|
// Then optimize with indexed lookup or caching
|
|
|
|
```
|
|
Optimize based on measurement, not assumptions
|
|
</Good>
|
|
|
|
<Bad>
|
|
```typescript
|
|
// Premature optimization
|
|
const filterActiveUsers = (users: User[]): User[] => {
|
|
// "This might be slow, so let's cache and index"
|
|
const cache = new WeakMap();
|
|
const indexed = buildBTreeIndex(users, 'isActive');
|
|
// 100 lines of optimization code
|
|
// Adds complexity, harder to maintain
|
|
// No evidence it was needed
|
|
};
|
|
```
|
|
|
|
Complex solution for unmeasured problem
|
|
</Bad>
|
|
|
|
#### In Practice
|
|
|
|
**When implementing:**
|
|
|
|
- Solve the immediate problem
|
|
- Use straightforward approach
|
|
- Resist "what if" thinking
|
|
- Delete speculative code
|
|
|
|
**When optimizing:**
|
|
|
|
- Profile first, optimize second
|
|
- Measure before and after
|
|
- Document why optimization needed
|
|
- Keep simple version in tests
|
|
|
|
**When abstracting:**
|
|
|
|
- Wait for 3+ similar cases (Rule of Three)
|
|
- Make abstraction as simple as possible
|
|
- Prefer duplication over wrong abstraction
|
|
- Refactor when pattern clear
|
|
|
|
## Integration with Commands
|
|
|
|
The Kaizen skill guides how you work. The commands provide structured analysis:
|
|
|
|
- **`/why`**: Root cause analysis (5 Whys)
|
|
- **`/cause-and-effect`**: Multi-factor analysis (Fishbone)
|
|
- **`/plan-do-check-act`**: Iterative improvement cycles
|
|
- **`/analyse-problem`**: Comprehensive documentation (A3)
|
|
- **`/analyse`**: Smart method selection (Gemba/VSM/Muda)
|
|
|
|
Use commands for structured problem-solving. Apply skill for day-to-day development.
|
|
|
|
## Red Flags
|
|
|
|
**Violating Continuous Improvement:**
|
|
|
|
- "I'll refactor it later" (never happens)
|
|
- Leaving code worse than you found it
|
|
- Big bang rewrites instead of incremental
|
|
|
|
**Violating Poka-Yoke:**
|
|
|
|
- "Users should just be careful"
|
|
- Validation after use instead of before
|
|
- Optional config with no validation
|
|
|
|
**Violating Standardized Work:**
|
|
|
|
- "I prefer to do it my way"
|
|
- Not checking existing patterns
|
|
- Ignoring project conventions
|
|
|
|
**Violating Just-In-Time:**
|
|
|
|
- "We might need this someday"
|
|
- Building frameworks before using them
|
|
- Optimizing without measuring
|
|
|
|
## Remember
|
|
|
|
**Kaizen is about:**
|
|
|
|
- Small improvements continuously
|
|
- Preventing errors by design
|
|
- Following proven patterns
|
|
- Building only what's needed
|
|
|
|
**Not about:**
|
|
|
|
- Perfection on first try
|
|
- Massive refactoring projects
|
|
- Clever abstractions
|
|
- Premature optimization
|
|
|
|
**Mindset:** Good enough today, better tomorrow. Repeat.
|