Files
gh-madappgang-claude-code-p…/skills/claudish-usage/SKILL.md
2025-11-30 08:38:54 +08:00

1299 lines
34 KiB
Markdown

---
name: claudish-usage
description: CRITICAL - Guide for using Claudish CLI ONLY through sub-agents to run Claude Code with OpenRouter models (Grok, GPT-5, Gemini, MiniMax). NEVER run Claudish directly in main context unless user explicitly requests it. Use when user mentions external AI models, Claudish, OpenRouter, or alternative models. Includes mandatory sub-agent delegation patterns, agent selection guide, file-based instructions, and strict rules to prevent context window pollution.
---
# Claudish Usage Skill
**Version:** 1.1.0
**Purpose:** Guide AI agents on how to use Claudish CLI to run Claude Code with OpenRouter models
**Status:** Production Ready
## ⚠️ CRITICAL RULES - READ FIRST
### 🚫 NEVER Run Claudish from Main Context
**Claudish MUST ONLY be run through sub-agents** unless the user **explicitly** requests direct execution.
**Why:**
- Running Claudish directly pollutes main context with 10K+ tokens (full conversation + reasoning)
- Destroys context window efficiency
- Makes main conversation unmanageable
**When you can run Claudish directly:**
- ✅ User explicitly says "run claudish directly" or "don't use a sub-agent"
- ✅ User is debugging and wants to see full output
- ✅ User specifically requests main context execution
**When you MUST use sub-agent:**
- ✅ User says "use Grok to implement X" (delegate to sub-agent)
- ✅ User says "ask GPT-5 to review X" (delegate to sub-agent)
- ✅ User mentions any model name without "directly" (delegate to sub-agent)
- ✅ Any production task (always delegate)
### 📋 Workflow Decision Tree
```
User Request
Does it mention Claudish/OpenRouter/model name? → NO → Don't use this skill
↓ YES
Does user say "directly" or "in main context"? → YES → Run in main context (rare)
↓ NO
Find appropriate agent or create one → Delegate to sub-agent (default)
```
## 🤖 Agent Selection Guide
### Step 1: Find the Right Agent
**When user requests Claudish task, follow this process:**
1. **Check for existing agents** that support proxy mode or external model delegation
2. **If no suitable agent exists:**
- Suggest creating a new proxy-mode agent for this task type
- Offer to proceed with generic `general-purpose` agent if user declines
3. **If user declines agent creation:**
- Warn about context pollution
- Ask if they want to proceed anyway
### Step 2: Agent Type Selection Matrix
| Task Type | Recommended Agent | Fallback | Notes |
|-----------|------------------|----------|-------|
| **Code implementation** | Create coding agent with proxy mode | `general-purpose` | Best: custom agent for project-specific patterns |
| **Code review** | Use existing code review agent + proxy | `general-purpose` | Check if plugin has review agent first |
| **Architecture planning** | Use existing architect agent + proxy | `general-purpose` | Look for `architect` or `planner` agents |
| **Testing** | Use existing test agent + proxy | `general-purpose` | Look for `test-architect` or `tester` agents |
| **Refactoring** | Create refactoring agent with proxy | `general-purpose` | Complex refactors benefit from specialized agent |
| **Documentation** | `general-purpose` | - | Simple task, generic agent OK |
| **Analysis** | Use existing analysis agent + proxy | `general-purpose` | Check for `analyzer` or `detective` agents |
| **Other** | `general-purpose` | - | Default for unknown task types |
### Step 3: Agent Creation Offer (When No Agent Exists)
**Template response:**
```
I notice you want to use [Model Name] for [task type].
RECOMMENDATION: Create a specialized [task type] agent with proxy mode support.
This would:
✅ Provide better task-specific guidance
✅ Reusable for future [task type] tasks
✅ Optimized prompting for [Model Name]
Options:
1. Create specialized agent (recommended) - takes 2-3 minutes
2. Use generic general-purpose agent - works but less optimized
3. Run directly in main context (NOT recommended - pollutes context)
Which would you prefer?
```
### Step 4: Common Agents by Plugin
**Frontend Plugin:**
- `typescript-frontend-dev` - Use for UI implementation with external models
- `frontend-architect` - Use for architecture planning with external models
- `senior-code-reviewer` - Use for code review (can delegate to external models)
- `test-architect` - Use for test planning/implementation
**Bun Backend Plugin:**
- `backend-developer` - Use for API implementation with external models
- `api-architect` - Use for API design with external models
**Code Analysis Plugin:**
- `codebase-detective` - Use for investigation tasks with external models
**No Plugin:**
- `general-purpose` - Default fallback for any task
### Step 5: Example Agent Selection
**Example 1: User says "use Grok to implement authentication"**
```
Task: Code implementation (authentication)
Plugin: Bun Backend (if backend) or Frontend (if UI)
Decision:
1. Check for backend-developer or typescript-frontend-dev agent
2. Found backend-developer? → Use it with Grok proxy
3. Not found? → Offer to create custom auth agent
4. User declines? → Use general-purpose with file-based pattern
```
**Example 2: User says "ask GPT-5 to review my API design"**
```
Task: Code review (API design)
Plugin: Bun Backend
Decision:
1. Check for api-architect or senior-code-reviewer agent
2. Found? → Use it with GPT-5 proxy
3. Not found? → Use general-purpose with review instructions
4. Never run directly in main context
```
**Example 3: User says "use Gemini to refactor this component"**
```
Task: Refactoring (component)
Plugin: Frontend
Decision:
1. No specialized refactoring agent exists
2. Offer to create component-refactoring agent
3. User declines? → Use typescript-frontend-dev with proxy
4. Still no agent? → Use general-purpose with file-based pattern
```
## Overview
**Claudish** is a CLI tool that allows running Claude Code with any OpenRouter model (Grok, GPT-5, MiniMax, Gemini, etc.) by proxying requests through a local Anthropic API-compatible server.
**Key Principle:** **ALWAYS** use Claudish through sub-agents with file-based instructions to avoid context window pollution.
## What is Claudish?
Claudish (Claude-ish) is a proxy tool that:
- ✅ Runs Claude Code with **any OpenRouter model** (not just Anthropic models)
- ✅ Uses local API-compatible proxy server
- ✅ Supports 100% of Claude Code features
- ✅ Provides cost tracking and model selection
- ✅ Enables multi-model workflows
**Use Cases:**
- Run tasks with different AI models (Grok for speed, GPT-5 for reasoning, Gemini for vision)
- Compare model performance on same task
- Reduce costs with cheaper models for simple tasks
- Access models with specialized capabilities
## Requirements
### System Requirements
- **OpenRouter API Key** - Required (set as `OPENROUTER_API_KEY` environment variable)
- **Claudish CLI** - Install with: `npm install -g claudish` or `bun install -g claudish`
- **Claude Code** - Must be installed
### Environment Variables
```bash
# Required
export OPENROUTER_API_KEY='sk-or-v1-...' # Your OpenRouter API key
# Optional (but recommended)
export ANTHROPIC_API_KEY='sk-ant-api03-placeholder' # Prevents Claude Code dialog
# Optional - default model
export CLAUDISH_MODEL='x-ai/grok-code-fast-1' # or ANTHROPIC_MODEL
```
**Get OpenRouter API Key:**
1. Visit https://openrouter.ai/keys
2. Sign up (free tier available)
3. Create API key
4. Set as environment variable
## Quick Start Guide
### Step 1: Install Claudish
```bash
# With npm (works everywhere)
npm install -g claudish
# With Bun (faster)
bun install -g claudish
# Verify installation
claudish --version
```
### Step 2: Get Available Models
```bash
# List ALL OpenRouter models grouped by provider
claudish --models
# Fuzzy search models by name, ID, or description
claudish --models gemini
claudish --models "grok code"
# Show top recommended programming models (curated list)
claudish --top-models
# JSON output for parsing
claudish --models --json
claudish --top-models --json
# Force update from OpenRouter API
claudish --models --force-update
```
### Step 3: Run Claudish
**Interactive Mode (default):**
```bash
# Shows model selector, persistent session
claudish
```
**Single-shot Mode:**
```bash
# One task and exit (requires --model)
claudish --model x-ai/grok-code-fast-1 "implement user authentication"
```
**With stdin for large prompts:**
```bash
# Read prompt from stdin (useful for git diffs, code review)
git diff | claudish --stdin --model openai/gpt-5-codex "Review these changes"
```
## Recommended Models
**Top Models for Development (verified from OpenRouter):**
1. **x-ai/grok-code-fast-1** - xAI's Grok (fast coding, visible reasoning)
- Category: coding
- Context: 256K
- Best for: Quick iterations, agentic coding
2. **google/gemini-2.5-flash** - Google's Gemini (state-of-the-art reasoning)
- Category: reasoning
- Context: 1000K
- Best for: Complex analysis, multi-step reasoning
3. **minimax/minimax-m2** - MiniMax M2 (high performance)
- Category: coding
- Context: 128K
- Best for: General coding tasks
4. **openai/gpt-5** - OpenAI's GPT-5 (advanced reasoning)
- Category: reasoning
- Context: 128K
- Best for: Complex implementations, architecture decisions
5. **qwen/qwen3-vl-235b-a22b-instruct** - Alibaba's Qwen (vision-language)
- Category: vision
- Context: 32K
- Best for: UI/visual tasks, design implementation
**Get Latest Models:**
```bash
# List all models (auto-updates every 2 days)
claudish --models
# Search for specific models
claudish --models grok
claudish --models "gemini flash"
# Show curated top models
claudish --top-models
# Force immediate update
claudish --models --force-update
```
## NEW: Direct Agent Selection (v2.1.0)
**Use `--agent` flag to invoke agents directly without the file-based pattern:**
```bash
# Use specific agent (prepends @agent- automatically)
claudish --model x-ai/grok-code-fast-1 --agent frontend:developer "implement React component"
# Claude receives: "Use the @agent-frontend:developer agent to: implement React component"
# List available agents in project
claudish --list-agents
```
**When to use `--agent` vs file-based pattern:**
**Use `--agent` when:**
- Single, simple task that needs agent specialization
- Direct conversation with one agent
- Testing agent behavior
- CLI convenience
**Use file-based pattern when:**
- Complex multi-step workflows
- Multiple agents needed
- Large codebases
- Production tasks requiring review
- Need isolation from main conversation
**Example comparisons:**
**Simple task (use `--agent`):**
```bash
claudish --model x-ai/grok-code-fast-1 --agent frontend:developer "create button component"
```
**Complex task (use file-based):**
```typescript
// multi-phase-workflow.md
Phase 1: Use api-architect to design API
Phase 2: Use backend-developer to implement
Phase 3: Use test-architect to add tests
Phase 4: Use senior-code-reviewer to review
then:
claudish --model x-ai/grok-code-fast-1 --stdin < multi-phase-workflow.md
```
## Best Practice: File-Based Sub-Agent Pattern
### ⚠️ CRITICAL: Don't Run Claudish Directly from Main Conversation
**Why:** Running Claudish directly in main conversation pollutes context window with:
- Entire conversation transcript
- All tool outputs
- Model reasoning (can be 10K+ tokens)
**Solution:** Use file-based sub-agent pattern
### File-Based Pattern (Recommended)
**Step 1: Create instruction file**
```markdown
# /tmp/claudish-task-{timestamp}.md
## Task
Implement user authentication with JWT tokens
## Requirements
- Use bcrypt for password hashing
- Generate JWT with 24h expiration
- Add middleware for protected routes
## Deliverables
Write implementation to: /tmp/claudish-result-{timestamp}.md
## Output Format
```markdown
## Implementation
[code here]
## Files Created/Modified
- path/to/file1.ts
- path/to/file2.ts
## Tests
[test code if applicable]
## Notes
[any important notes]
```
```
**Step 2: Run Claudish with file instruction**
```bash
# Read instruction from file, write result to file
claudish --model x-ai/grok-code-fast-1 --stdin < /tmp/claudish-task-{timestamp}.md > /tmp/claudish-result-{timestamp}.md
```
**Step 3: Read result file and provide summary**
```typescript
// In your agent/command:
const result = await Read({ file_path: "/tmp/claudish-result-{timestamp}.md" });
// Parse result
const filesModified = extractFilesModified(result);
const summary = extractSummary(result);
// Provide short feedback to main agent
return `✅ Task completed. Modified ${filesModified.length} files. ${summary}`;
```
### Complete Example: Using Claudish in Sub-Agent
```typescript
/**
* Example: Run code review with Grok via Claudish sub-agent
*/
async function runCodeReviewWithGrok(files: string[]) {
const timestamp = Date.now();
const instructionFile = `/tmp/claudish-review-instruction-${timestamp}.md`;
const resultFile = `/tmp/claudish-review-result-${timestamp}.md`;
// Step 1: Create instruction file
const instruction = `# Code Review Task
## Files to Review
${files.map(f => `- ${f}`).join('\n')}
## Review Criteria
- Code quality and maintainability
- Potential bugs or issues
- Performance considerations
- Security vulnerabilities
## Output Format
Write your review to: ${resultFile}
Use this format:
\`\`\`markdown
## Summary
[Brief overview]
## Issues Found
### Critical
- [issue 1]
### Medium
- [issue 2]
### Low
- [issue 3]
## Recommendations
- [recommendation 1]
## Files Reviewed
- [file 1]: [status]
\`\`\`
`;
await Write({ file_path: instructionFile, content: instruction });
// Step 2: Run Claudish with stdin
await Bash(`claudish --model x-ai/grok-code-fast-1 --stdin < ${instructionFile}`);
// Step 3: Read result
const result = await Read({ file_path: resultFile });
// Step 4: Parse and return summary
const summary = extractSummary(result);
const issueCount = extractIssueCount(result);
// Step 5: Clean up temp files
await Bash(`rm ${instructionFile} ${resultFile}`);
// Step 6: Return concise feedback
return {
success: true,
summary,
issueCount,
fullReview: result // Available if needed, but not in main context
};
}
function extractSummary(review: string): string {
const match = review.match(/## Summary\s*\n(.*?)(?=\n##|$)/s);
return match ? match[1].trim() : "Review completed";
}
function extractIssueCount(review: string): { critical: number; medium: number; low: number } {
const critical = (review.match(/### Critical\s*\n(.*?)(?=\n###|$)/s)?.[1].match(/^-/gm) || []).length;
const medium = (review.match(/### Medium\s*\n(.*?)(?=\n###|$)/s)?.[1].match(/^-/gm) || []).length;
const low = (review.match(/### Low\s*\n(.*?)(?=\n###|$)/s)?.[1].match(/^-/gm) || []).length;
return { critical, medium, low };
}
```
## Sub-Agent Delegation Pattern
When running Claudish from an agent, use the Task tool to create a sub-agent:
### Pattern 1: Simple Task Delegation
```typescript
/**
* Example: Delegate implementation to Grok via Claudish
*/
async function implementFeatureWithGrok(featureDescription: string) {
// Use Task tool to create sub-agent
const result = await Task({
subagent_type: "general-purpose",
description: "Implement feature with Grok",
prompt: `
Use Claudish CLI to implement this feature with Grok model:
${featureDescription}
INSTRUCTIONS:
1. Search for available models:
claudish --models grok
2. Run implementation with Grok:
claudish --model x-ai/grok-code-fast-1 "${featureDescription}"
3. Return ONLY:
- List of files created/modified
- Brief summary (2-3 sentences)
- Any errors encountered
DO NOT return the full conversation transcript or implementation details.
Keep your response under 500 tokens.
`
});
return result;
}
```
### Pattern 2: File-Based Task Delegation
```typescript
/**
* Example: Use file-based instruction pattern in sub-agent
*/
async function analyzeCodeWithGemini(codebasePath: string) {
const timestamp = Date.now();
const instructionFile = `/tmp/claudish-analyze-${timestamp}.md`;
const resultFile = `/tmp/claudish-analyze-result-${timestamp}.md`;
// Create instruction file
const instruction = `# Codebase Analysis Task
## Codebase Path
${codebasePath}
## Analysis Required
- Architecture overview
- Key patterns used
- Potential improvements
- Security considerations
## Output
Write analysis to: ${resultFile}
Keep analysis concise (under 1000 words).
`;
await Write({ file_path: instructionFile, content: instruction });
// Delegate to sub-agent
const result = await Task({
subagent_type: "general-purpose",
description: "Analyze codebase with Gemini",
prompt: `
Use Claudish to analyze codebase with Gemini model.
Instruction file: ${instructionFile}
Result file: ${resultFile}
STEPS:
1. Read instruction file: ${instructionFile}
2. Run: claudish --model google/gemini-2.5-flash --stdin < ${instructionFile}
3. Wait for completion
4. Read result file: ${resultFile}
5. Return ONLY a 2-3 sentence summary
DO NOT include the full analysis in your response.
The full analysis is in ${resultFile} if needed.
`
});
// Read full result if needed
const fullAnalysis = await Read({ file_path: resultFile });
// Clean up
await Bash(`rm ${instructionFile} ${resultFile}`);
return {
summary: result,
fullAnalysis
};
}
```
### Pattern 3: Multi-Model Comparison
```typescript
/**
* Example: Run same task with multiple models and compare
*/
async function compareModels(task: string, models: string[]) {
const results = [];
for (const model of models) {
const timestamp = Date.now();
const resultFile = `/tmp/claudish-${model.replace('/', '-')}-${timestamp}.md`;
// Run task with each model
await Task({
subagent_type: "general-purpose",
description: `Run task with ${model}`,
prompt: `
Use Claudish to run this task with ${model}:
${task}
STEPS:
1. Run: claudish --model ${model} --json "${task}"
2. Parse JSON output
3. Return ONLY:
- Cost (from total_cost_usd)
- Duration (from duration_ms)
- Token usage (from usage.input_tokens and usage.output_tokens)
- Brief quality assessment (1-2 sentences)
DO NOT return full output.
`
});
results.push({
model,
resultFile
});
}
return results;
}
```
## Common Workflows
### Workflow 1: Quick Code Generation with Grok
```bash
# Fast, agentic coding with visible reasoning
claudish --model x-ai/grok-code-fast-1 "add error handling to api routes"
```
### Workflow 2: Complex Refactoring with GPT-5
```bash
# Advanced reasoning for complex tasks
claudish --model openai/gpt-5 "refactor authentication system to use OAuth2"
```
### Workflow 3: UI Implementation with Qwen (Vision)
```bash
# Vision-language model for UI tasks
claudish --model qwen/qwen3-vl-235b-a22b-instruct "implement dashboard from figma design"
```
### Workflow 4: Code Review with Gemini
```bash
# State-of-the-art reasoning for thorough review
git diff | claudish --stdin --model google/gemini-2.5-flash "Review these changes for bugs and improvements"
```
### Workflow 5: Multi-Model Consensus
```bash
# Run same task with multiple models
for model in "x-ai/grok-code-fast-1" "google/gemini-2.5-flash" "openai/gpt-5"; do
echo "=== Testing with $model ==="
claudish --model "$model" "find security vulnerabilities in auth.ts"
done
```
## Claudish CLI Flags Reference
### Essential Flags
| Flag | Description | Example |
|------|-------------|---------|
| `--model <model>` | OpenRouter model to use | `--model x-ai/grok-code-fast-1` |
| `--stdin` | Read prompt from stdin | `git diff \| claudish --stdin --model grok` |
| `--models` | List all models or search | `claudish --models` or `claudish --models gemini` |
| `--top-models` | Show top recommended models | `claudish --top-models` |
| `--json` | JSON output (implies --quiet) | `claudish --json "task"` |
| `--help-ai` | Print AI agent usage guide | `claudish --help-ai` |
### Advanced Flags
| Flag | Description | Default |
|------|-------------|---------|
| `--interactive` / `-i` | Interactive mode | Auto (no prompt = interactive) |
| `--quiet` / `-q` | Suppress log messages | Quiet in single-shot |
| `--verbose` / `-v` | Show log messages | Verbose in interactive |
| `--debug` / `-d` | Enable debug logging to file | Disabled |
| `--port <port>` | Proxy server port | Random (3000-9000) |
| `--no-auto-approve` | Require permission prompts | Auto-approve enabled |
| `--dangerous` | Disable sandbox | Disabled |
| `--monitor` | Proxy to real Anthropic API (debug) | Disabled |
| `--force-update` | Force refresh model cache | Auto (>2 days) |
### Output Modes
1. **Quiet Mode (default in single-shot)**
```bash
claudish --model grok "task"
# Clean output, no [claudish] logs
```
2. **Verbose Mode**
```bash
claudish --verbose "task"
# Shows all [claudish] logs for debugging
```
3. **JSON Mode**
```bash
claudish --json "task"
# Structured output: {result, cost, usage, duration}
```
## Cost Tracking
Claudish automatically tracks costs in the status line:
```
directory • model-id • $cost • ctx%
```
**Example:**
```
my-project • x-ai/grok-code-fast-1 • $0.12 • 67%
```
Shows:
- 💰 **Cost**: $0.12 USD spent in current session
- 📊 **Context**: 67% of context window remaining
**JSON Output Cost:**
```bash
claudish --json "task" | jq '.total_cost_usd'
# Output: 0.068
```
## Error Handling
### Error 1: OPENROUTER_API_KEY Not Set
**Error:**
```
Error: OPENROUTER_API_KEY environment variable is required
```
**Fix:**
```bash
export OPENROUTER_API_KEY='sk-or-v1-...'
# Or add to ~/.zshrc or ~/.bashrc
```
### Error 2: Claudish Not Installed
**Error:**
```
command not found: claudish
```
**Fix:**
```bash
npm install -g claudish
# Or: bun install -g claudish
```
### Error 3: Model Not Found
**Error:**
```
Model 'invalid/model' not found
```
**Fix:**
```bash
# List available models
claudish --models
# Use valid model ID
claudish --model x-ai/grok-code-fast-1 "task"
```
### Error 4: OpenRouter API Error
**Error:**
```
OpenRouter API error: 401 Unauthorized
```
**Fix:**
1. Check API key is correct
2. Verify API key at https://openrouter.ai/keys
3. Check API key has credits (free tier or paid)
### Error 5: Port Already in Use
**Error:**
```
Error: Port 3000 already in use
```
**Fix:**
```bash
# Let Claudish pick random port (default)
claudish --model grok "task"
# Or specify different port
claudish --port 8080 --model grok "task"
```
## Best Practices
### 1. ✅ Use File-Based Instructions
**Why:** Avoids context window pollution
**How:**
```bash
# Write instruction to file
echo "Implement feature X" > /tmp/task.md
# Run with stdin
claudish --stdin --model grok < /tmp/task.md > /tmp/result.md
# Read result
cat /tmp/result.md
```
### 2. ✅ Choose Right Model for Task
**Fast Coding:** `x-ai/grok-code-fast-1`
**Complex Reasoning:** `google/gemini-2.5-flash` or `openai/gpt-5`
**Vision/UI:** `qwen/qwen3-vl-235b-a22b-instruct`
### 3. ✅ Use --json for Automation
**Why:** Structured output, easier parsing
**How:**
```bash
RESULT=$(claudish --json "task" | jq -r '.result')
COST=$(claudish --json "task" | jq -r '.total_cost_usd')
```
### 4. ✅ Delegate to Sub-Agents
**Why:** Keeps main conversation context clean
**How:**
```typescript
await Task({
subagent_type: "general-purpose",
description: "Task with Claudish",
prompt: "Use claudish --model grok '...' and return summary only"
});
```
### 5. ✅ Update Models Regularly
**Why:** Get latest model recommendations
**How:**
```bash
# Auto-updates every 2 days
claudish --models
# Search for specific models
claudish --models deepseek
# Force update now
claudish --models --force-update
```
### 6. ✅ Use --stdin for Large Prompts
**Why:** Avoid command line length limits
**How:**
```bash
git diff | claudish --stdin --model grok "Review changes"
```
## Anti-Patterns (Avoid These)
### ❌❌❌ NEVER Run Claudish Directly in Main Conversation (CRITICAL)
**This is the #1 mistake. Never do this unless user explicitly requests it.**
**WRONG - Destroys context window:**
```typescript
// ❌ NEVER DO THIS - Pollutes main context with 10K+ tokens
await Bash("claudish --model grok 'implement feature'");
// ❌ NEVER DO THIS - Full conversation in main context
await Bash("claudish --model gemini 'review code'");
// ❌ NEVER DO THIS - Even with --json, output is huge
const result = await Bash("claudish --json --model gpt-5 'refactor'");
```
**RIGHT - Always use sub-agents:**
```typescript
// ✅ ALWAYS DO THIS - Delegate to sub-agent
const result = await Task({
subagent_type: "general-purpose", // or specific agent
description: "Implement feature with Grok",
prompt: `
Use Claudish to implement the feature with Grok model.
CRITICAL INSTRUCTIONS:
1. Create instruction file: /tmp/claudish-task-${Date.now()}.md
2. Write detailed task requirements to file
3. Run: claudish --model x-ai/grok-code-fast-1 --stdin < /tmp/claudish-task-*.md
4. Read result file and return ONLY a 2-3 sentence summary
DO NOT return full implementation or conversation.
Keep response under 300 tokens.
`
});
// ✅ Even better - Use specialized agent if available
const result = await Task({
subagent_type: "backend-developer", // or frontend-dev, etc.
description: "Implement with external model",
prompt: `
Use Claudish with x-ai/grok-code-fast-1 model to implement authentication.
Follow file-based instruction pattern.
Return summary only.
`
});
```
**When you CAN run directly (rare exceptions):**
```typescript
// ✅ Only when user explicitly requests
// User: "Run claudish directly in main context for debugging"
if (userExplicitlyRequestedDirect) {
await Bash("claudish --model grok 'task'");
}
```
### ❌ Don't Ignore Model Selection
**Wrong:**
```bash
# Always using default model
claudish "any task"
```
**Right:**
```bash
# Choose appropriate model
claudish --model x-ai/grok-code-fast-1 "quick fix"
claudish --model google/gemini-2.5-flash "complex analysis"
```
### ❌ Don't Parse Text Output
**Wrong:**
```bash
OUTPUT=$(claudish --model grok "task")
COST=$(echo "$OUTPUT" | grep cost | awk '{print $2}')
```
**Right:**
```bash
# Use JSON output
COST=$(claudish --json --model grok "task" | jq -r '.total_cost_usd')
```
### ❌ Don't Hardcode Model Lists
**Wrong:**
```typescript
const MODELS = ["x-ai/grok-code-fast-1", "openai/gpt-5"];
```
**Right:**
```typescript
// Query dynamically
const { stdout } = await Bash("claudish --models --json");
const models = JSON.parse(stdout).models.map(m => m.id);
```
### ✅ Do Accept Custom Models From Users
**Problem:** User provides a custom model ID that's not in --top-models
**Wrong (rejecting custom models):**
```typescript
const availableModels = ["x-ai/grok-code-fast-1", "openai/gpt-5"];
const userModel = "custom/provider/model-123";
if (!availableModels.includes(userModel)) {
throw new Error("Model not in my shortlist"); // ❌ DON'T DO THIS
}
```
**Right (accept any valid model ID):**
```typescript
// Claudish accepts ANY valid OpenRouter model ID, even if not in --top-models
const userModel = "custom/provider/model-123";
// Validate it's a non-empty string with provider format
if (!userModel.includes("/")) {
console.warn("Model should be in format: provider/model-name");
}
// Use it directly - Claudish will validate with OpenRouter
await Bash(`claudish --model ${userModel} "task"`);
```
**Why:** Users may have access to:
- Beta/experimental models
- Private/custom fine-tuned models
- Newly released models not yet in rankings
- Regional/enterprise models
- Cost-saving alternatives
**Always accept user-provided model IDs** unless they're clearly invalid (empty, wrong format).
### ✅ Do Handle User-Preferred Models
**Scenario:** User says "use my custom model X" and expects it to be remembered
**Solution 1: Environment Variable (Recommended)**
```typescript
// Set for the session
process.env.CLAUDISH_MODEL = userPreferredModel;
// Or set permanently in user's shell profile
await Bash(`echo 'export CLAUDISH_MODEL="${userPreferredModel}"' >> ~/.zshrc`);
```
**Solution 2: Session Cache**
```typescript
// Store in a temporary session file
const sessionFile = "/tmp/claudish-user-preferences.json";
const prefs = {
preferredModel: userPreferredModel,
lastUsed: new Date().toISOString()
};
await Write({ file_path: sessionFile, content: JSON.stringify(prefs, null, 2) });
// Load in subsequent commands
const { stdout } = await Read({ file_path: sessionFile });
const prefs = JSON.parse(stdout);
const model = prefs.preferredModel || defaultModel;
```
**Solution 3: Prompt Once, Remember for Session**
```typescript
// In a multi-step workflow, ask once
if (!process.env.CLAUDISH_MODEL) {
const { stdout } = await Bash("claudish --models --json");
const models = JSON.parse(stdout).models;
const response = await AskUserQuestion({
question: "Select model (or enter custom model ID):",
options: models.map((m, i) => ({ label: m.name, value: m.id })).concat([
{ label: "Enter custom model...", value: "custom" }
])
});
if (response === "custom") {
const customModel = await AskUserQuestion({
question: "Enter OpenRouter model ID (format: provider/model):"
});
process.env.CLAUDISH_MODEL = customModel;
} else {
process.env.CLAUDISH_MODEL = response;
}
}
// Use the selected model for all subsequent calls
const model = process.env.CLAUDISH_MODEL;
await Bash(`claudish --model ${model} "task 1"`);
await Bash(`claudish --model ${model} "task 2"`);
```
**Guidance for Agents:**
1. ✅ **Accept any model ID** user provides (unless obviously malformed)
2. ✅ **Don't filter** based on your "shortlist" - let Claudish handle validation
3. ✅ **Offer to set CLAUDISH_MODEL** environment variable for session persistence
4. ✅ **Explain** that --top-models shows curated recommendations, --models shows all
5. ✅ **Validate format** (should contain "/") but not restrict to known models
6. ❌ **Never reject** a user's custom model with "not in my shortlist"
### ❌ Don't Skip Error Handling
**Wrong:**
```typescript
const result = await Bash("claudish --model grok 'task'");
```
**Right:**
```typescript
try {
const result = await Bash("claudish --model grok 'task'");
} catch (error) {
console.error("Claudish failed:", error.message);
// Fallback to embedded Claude or handle error
}
```
## Agent Integration Examples
### Example 1: Code Review Agent
```typescript
/**
* Agent: code-reviewer (using Claudish with multiple models)
*/
async function reviewCodeWithMultipleModels(files: string[]) {
const models = [
"x-ai/grok-code-fast-1", // Fast initial scan
"google/gemini-2.5-flash", // Deep analysis
"openai/gpt-5" // Final validation
];
const reviews = [];
for (const model of models) {
const timestamp = Date.now();
const instructionFile = `/tmp/review-${model.replace('/', '-')}-${timestamp}.md`;
const resultFile = `/tmp/review-result-${model.replace('/', '-')}-${timestamp}.md`;
// Create instruction
const instruction = createReviewInstruction(files, resultFile);
await Write({ file_path: instructionFile, content: instruction });
// Run review with model
await Bash(`claudish --model ${model} --stdin < ${instructionFile}`);
// Read result
const result = await Read({ file_path: resultFile });
// Extract summary
reviews.push({
model,
summary: extractSummary(result),
issueCount: extractIssueCount(result)
});
// Clean up
await Bash(`rm ${instructionFile} ${resultFile}`);
}
return reviews;
}
```
### Example 2: Feature Implementation Command
```typescript
/**
* Command: /implement-with-model
* Usage: /implement-with-model "feature description"
*/
async function implementWithModel(featureDescription: string) {
// Step 1: Get available models
const { stdout } = await Bash("claudish --models --json");
const models = JSON.parse(stdout).models;
// Step 2: Let user select model
const selectedModel = await promptUserForModel(models);
// Step 3: Create instruction file
const timestamp = Date.now();
const instructionFile = `/tmp/implement-${timestamp}.md`;
const resultFile = `/tmp/implement-result-${timestamp}.md`;
const instruction = `# Feature Implementation
## Description
${featureDescription}
## Requirements
- Write clean, maintainable code
- Add comprehensive tests
- Include error handling
- Follow project conventions
## Output
Write implementation details to: ${resultFile}
Include:
- Files created/modified
- Code snippets
- Test coverage
- Documentation updates
`;
await Write({ file_path: instructionFile, content: instruction });
// Step 4: Run implementation
await Bash(`claudish --model ${selectedModel} --stdin < ${instructionFile}`);
// Step 5: Read and present results
const result = await Read({ file_path: resultFile });
// Step 6: Clean up
await Bash(`rm ${instructionFile} ${resultFile}`);
return result;
}
```
## Troubleshooting
### Issue: Slow Performance
**Symptoms:** Claudish takes long time to respond
**Solutions:**
1. Use faster model: `x-ai/grok-code-fast-1` or `minimax/minimax-m2`
2. Reduce prompt size (use --stdin with concise instructions)
3. Check internet connection to OpenRouter
### Issue: High Costs
**Symptoms:** Unexpected API costs
**Solutions:**
1. Use budget-friendly models (check pricing with `--models` or `--top-models`)
2. Enable cost tracking: `--cost-tracker`
3. Use --json to monitor costs: `claudish --json "task" | jq '.total_cost_usd'`
### Issue: Context Window Exceeded
**Symptoms:** Error about token limits
**Solutions:**
1. Use model with larger context (Gemini: 1000K, Grok: 256K)
2. Break task into smaller subtasks
3. Use file-based pattern to avoid conversation history
### Issue: Model Not Available
**Symptoms:** "Model not found" error
**Solutions:**
1. Update model cache: `claudish --models --force-update`
2. Check OpenRouter website for model availability
3. Use alternative model from same category
## Additional Resources
**Documentation:**
- Full README: `mcp/claudish/README.md` (in repository root)
- AI Agent Guide: Print with `claudish --help-ai`
- Model Integration: `skills/claudish-integration/SKILL.md` (in repository root)
**External Links:**
- Claudish GitHub: https://github.com/MadAppGang/claude-code
- OpenRouter: https://openrouter.ai
- OpenRouter Models: https://openrouter.ai/models
- OpenRouter API Docs: https://openrouter.ai/docs
**Version Information:**
```bash
claudish --version
```
**Get Help:**
```bash
claudish --help # CLI usage
claudish --help-ai # AI agent usage guide
```
---
**Maintained by:** MadAppGang
**Last Updated:** November 25, 2025
**Skill Version:** 1.1.0