# Expected Value Templates Quick-start templates for decision framing, outcome identification, probability estimation, payoff quantification, EV calculation, and sensitivity analysis. ## Workflow ``` Expected Value Analysis Progress: - [ ] Step 1: Define decision and alternatives - [ ] Step 2: Identify possible outcomes - [ ] Step 3: Estimate probabilities - [ ] Step 4: Estimate payoffs (values) - [ ] Step 5: Calculate expected values - [ ] Step 6: Interpret and adjust for risk preferences ``` **Step 1: Define decision and alternatives** → Use [Decision Framing Template](#decision-framing-template) **Step 2: Identify possible outcomes** → Use [Outcome Identification Template](#outcome-identification-template) **Step 3: Estimate probabilities** → Use [Probability Estimation Template](#probability-estimation-template) **Step 4: Estimate payoffs** → Use [Payoff Quantification Template](#payoff-quantification-template) **Step 5: Calculate expected values** → Use [EV Calculation Template](#ev-calculation-template) **Step 6: Interpret and adjust for risk** → Use [Risk Adjustment Template](#risk-adjustment-template) and [Sensitivity Analysis Template](#sensitivity-analysis-template) --- ## Decision Framing Template **Decision to be made**: [Clear statement of the choice] **Context**: [Why are you making this decision? What's the deadline? What constraints exist?] **Alternatives** (mutually exclusive options): 1. **[Alternative 1]**: [Brief description] 2. **[Alternative 2]**: [Brief description] 3. **[Alternative 3]**: [Brief description, if applicable] 4. **Do nothing / status quo**: [Always consider baseline] **Success criteria**: [How will you know if this was a good decision? What are you optimizing for?] **Assumptions**: - [Key assumption 1] - [Key assumption 2] - [Key assumption 3] **Out of scope** (not considering): - [Factor 1 you're explicitly not modeling] - [Factor 2] --- ## Outcome Identification Template For each alternative, identify 3-5 possible outcomes (scenarios). ### Alternative: [Name] **Outcome 1: Best case** - **Description**: [What happens in optimistic scenario?] - **Key drivers**: [What needs to go right?] - **Likelihood indicator**: [Rough sense: common, uncommon, rare?] **Outcome 2: Base case** - **Description**: [What happens in most likely scenario?] - **Key drivers**: [What's the typical path?] - **Likelihood indicator**: [Should be most probable] **Outcome 3: Worst case** - **Description**: [What happens in pessimistic scenario?] - **Key drivers**: [What needs to go wrong?] - **Likelihood indicator**: [How bad could it get?] **Outcome 4: [Other scenario, if needed]** - **Description**: - **Key drivers**: - **Likelihood indicator**: **Check**: Do these outcomes cover the full range of possibilities? Are they mutually exclusive (no overlap)? --- ## Probability Estimation Template Estimate probability for each outcome using multiple methods, then reconcile. ### Outcome: [Name] | Method | Estimate | Notes | |--------|----------|-------| | **Base rates** (reference class) | [X%] | [Similar situations: N cases, frequency] | | **Inside view** (causal model) | [Y%] | [Key factors: p_A × p_B × p_C] | | **Expert judgment** | [Z%] | [Average of expert estimates] | | **Data/model** | [W%] | [Forecast, confidence interval] | **Final estimate**: [Weighted average] **Confidence**: [Range if uncertain] **All outcomes** (must sum to 1.0): - Outcome 1: [p₁], Outcome 2: [p₂], Outcome 3: [p₃]. **Total**: [p₁+p₂+p₃ = 1.0 ✓] --- ## Payoff Quantification Template ### Outcome: [Name] **Monetary**: Revenue [+$X], Cost [-$Y], Savings [+$Z], Opp. cost [-$W]. **Net**: [Sum] **Non-monetary** (convert to $ or utility): Time [X hrs × $rate], Reputation [$Z], Learning [$W], Strategic [qualitative or $], Morale [qualitative or $] **Time horizon**: [When?] **Discount rate**: [r%/yr if multi-period] **NPV** (if multi-period): Yr0 [$X/(1+r)⁰], Yr1 [$Y/(1+r)¹], Yr2 [$Z/(1+r)²]. **Total NPV**: [Sum] **Total Payoff**: [$ or utility] **Uncertainty**: [Point estimate or range: low-high] --- ## EV Calculation Template Calculate expected value for each alternative. ### Alternative: [Name] | Outcome | Probability (p) | Payoff (v) | p × v | |---------|----------------|-----------|-------| | [Outcome 1] | [p₁] | [v₁] | [p₁ × v₁] | | [Outcome 2] | [p₂] | [v₂] | [p₂ × v₂] | | [Outcome 3] | [p₃] | [v₃] | [p₃ × v₃] | | **Total** | **1.0** | | **EV = Σ (p × v)** | **Expected Value**: [EV = p₁×v₁ + p₂×v₂ + p₃×v₃] **Variance**: Var = Σ (pᵢ × (vᵢ - EV)²) - (v₁ - EV)² × p₁ = [X] - (v₂ - EV)² × p₂ = [Y] - (v₃ - EV)² × p₃ = [Z] - **Variance** = [X + Y + Z] **Standard Deviation**: σ = √Var = [σ] **Coefficient of Variation**: CV = σ / EV = [CV] (lower = better risk-adjusted return) ### Comparison Across Alternatives | Alternative | EV | σ (risk) | CV | Rank by EV | |-------------|-------|----------|-----|------------| | [Alt 1] | [EV₁] | [σ₁] | [CV₁] | [1] | | [Alt 2] | [EV₂] | [σ₂] | [CV₂] | [2] | | [Alt 3] | [EV₃] | [σ₃] | [CV₃] | [3] | **Preliminary recommendation** (based on EV): [Highest EV alternative] --- ## Sensitivity Analysis Template Test how sensitive the decision is to changes in key assumptions. ### One-Way Sensitivity (vary one variable at a time) **Variable**: Probability of [Outcome X] | p(Outcome X) | EV(Alt 1) | EV(Alt 2) | Best choice | |-------------|-----------|-----------|-------------| | [Low: p-20%] | [EV] | [EV] | [Alt] | | [Base: p] | [EV] | [EV] | [Alt] | | [High: p+20%] | [EV] | [EV] | [Alt] | **Breakeven**: At what probability does decision flip? Solve: EV(Alt 1) = EV(Alt 2). **Variable**: Payoff of [Outcome Y] | v(Outcome Y) | EV(Alt 1) | EV(Alt 2) | Best choice | |-------------|-----------|-----------|-------------| | [Low: v-30%] | [EV] | [EV] | [Alt] | | [Base: v] | [EV] | [EV] | [Alt] | | [High: v+30%] | [EV] | [EV] | [Alt] | ### Tornado Diagram (which variables have most impact on EV?) | Variable | Range tested | Impact on EV (swing) | Rank | |----------|-------------|---------------------|------| | [Var 1] | [low-high] | [±$X] | [1 (highest impact)] | | [Var 2] | [low-high] | [±$Y] | [2] | | [Var 3] | [low-high] | [±$Z] | [3] | **Interpretation**: Focus on high-impact variables. Get better estimates for top 2-3. ### Scenario Analysis (vary multiple variables together) | Scenario | Assumptions | EV(Alt 1) | EV(Alt 2) | Best | |----------|------------|-----------|-----------|------| | **Optimistic** | [High demand, low cost, no delays] | [EV] | [EV] | [Alt] | | **Base** | [Expected values] | [EV] | [EV] | [Alt] | | **Pessimistic** | [Low demand, high cost, delays] | [EV] | [EV] | [Alt] | **Robustness**: Does the decision hold across scenarios? If different winners in different scenarios → decision is fragile, more info needed. --- ## Risk Adjustment Template **Risk profile**: Risk-neutral / Risk-averse / Risk-seeking? One-shot or repeated decision? **Utility function** (if risk-averse): U(x) = x (neutral), √x (moderate aversion), log(x) (strong aversion) ### Expected Utility (if risk-averse) | Outcome | p | v | U(v) | p × U(v) | |---------|---|---|------|----------| | [Out 1] | [p₁] | [v₁] | [U(v₁)] | [p₁ × U(v₁)] | | [Out 2] | [p₂] | [v₂] | [U(v₂)] | [p₂ × U(v₂)] | | **Total** | **1.0** | | | **EU = Σ** | **Certainty Equivalent**: CE = U⁻¹(EU). **Risk Premium**: EV - CE. **Non-monetary factors**: Strategic value [$/qualitative], Alignment with mission [score 1-5], Regret [low/med/high] **Recommendation**: Highest EV [Alt X], Highest EU [Alt Y], **Final choice**: [Alt Z with rationale] --- ## Decision Tree Template For sequential decisions (make choice, observe outcome, make another choice). ### Tree Structure ``` [Decision 1] → [Outcome A] → [Decision 2a] → [Outcome C] → [Outcome D] → [Outcome B] → [Decision 2b] → [Outcome E] → [Outcome F] ``` ### Fold-Back Induction (work backwards from end) **Step 1: Calculate EV at terminal nodes** (final outcomes) - Outcome C: [payoff = $X] - Outcome D: [payoff = $Y] - Outcome E: [payoff = $Z] - Outcome F: [payoff = $W] **Step 2: Calculate EV at Decision 2a** - If choose path to C: [p(C) × $X] - If choose path to D: [p(D) × $Y] - **Optimal Decision 2a**: [Choose whichever has higher EV] - **EV(Decision 2a)**: [max of the two] **Step 3: Calculate EV at Decision 2b** - If choose path to E: [p(E) × $Z] - If choose path to F: [p(F) × $W] - **Optimal Decision 2b**: [Choose whichever has higher EV] - **EV(Decision 2b)**: [max of the two] **Step 4: Calculate EV at Decision 1** - If choose path to A: [p(A) × EV(Decision 2a)] - If choose path to B: [p(B) × EV(Decision 2b)] - **Optimal Decision 1**: [Choose whichever has higher EV] - **Overall EV**: [max of the two] **Optimal Strategy**: 1. At Decision 1: [Choose A or B] 2. If A occurs, at Decision 2a: [Choose path to C or D] 3. If B occurs, at Decision 2b: [Choose path to E or F] **Value of Information**: If you could know outcome before Decision 1, how much would that be worth? - EVPI = EV(with perfect info) - EV(current decision) --- ## Complete EV Analysis Template **Decision**: [Name] **Date**: [Date] **Decision maker**: [Name/Team] ### 1. Decision Framing **Alternatives**: 1. [Alt 1] 2. [Alt 2] 3. [Alt 3] **Success criteria**: [What are you optimizing for?] ### 2. Outcomes and Probabilities | Alternative | Outcome | Probability | Payoff | p × v | |-------------|---------|------------|--------|-------| | **[Alt 1]** | [Outcome 1] | [p₁] | [v₁] | [p₁ × v₁] | | | [Outcome 2] | [p₂] | [v₂] | [p₂ × v₂] | | | [Outcome 3] | [p₃] | [v₃] | [p₃ × v₃] | | | **EV(Alt 1)** | | | **[EV₁]** | | **[Alt 2]** | [Outcome 1] | [p₁] | [v₁] | [p₁ × v₁] | | | [Outcome 2] | [p₂] | [v₂] | [p₂ × v₂] | | | [Outcome 3] | [p₃] | [v₃] | [p₃ × v₃] | | | **EV(Alt 2)** | | | **[EV₂]** | ### 3. Comparison | Alternative | EV | σ (risk) | CV | |-------------|-------|----------|-----| | [Alt 1] | [EV₁] | [σ₁] | [CV₁] | | [Alt 2] | [EV₂] | [σ₂] | [CV₂] | **Highest EV**: [Alt X with EV = $Y] ### 4. Sensitivity Analysis **Key assumptions**: - [Assumption 1]: [If this changes by X%, decision flips? Yes/No] - [Assumption 2]: [Breakeven value = ?] **Robustness**: [Is decision robust across scenarios?] ### 5. Risk Adjustment **Risk profile**: [One-shot or repeated? Risk-averse or neutral?] **Recommendation**: [Alt X] **Rationale**: [Why this choice given EV, risk, strategic factors?] ### 6. Action Plan **Next steps**: 1. [Immediate action] 2. [Follow-up in X days/weeks] 3. [Decision review date] **Contingencies**: [If Outcome Y occurs, we will...]