Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:35:59 +08:00
commit 90883a4d25
287 changed files with 75058 additions and 0 deletions

153
skills/image-gen/SKILL.md Normal file
View File

@@ -0,0 +1,153 @@
---
name: image-gen
description: Generate images using Google's Nano Banana Pro (Gemini 3 Pro Image) with workflow-based prompting
triggers:
- "create image"
- "generate image"
- "make infographic"
- "create infographic"
- "generate diagram"
- "make diagram"
- "design visual"
- "create visual"
allowed-tools: Read, Write, Bash
version: 0.1.0
---
# Image Generation Skill
Generate professional images, infographics, and diagrams using Google's Nano Banana Pro model (gemini-3-pro-image-preview).
## Model Capabilities
**Nano Banana Pro** (released November 20, 2025):
- **Text rendering** - Accurate, legible text in images
- **Google Search grounding** - Real-time data (weather, stocks, etc.)
- **Multi-turn conversation** - Iterative refinement
- **Up to 14 reference images** - For composition and style transfer
- **Resolutions**: 1K, 2K, 4K
- **Aspect ratios**: 1:1, 2:3, 3:2, 4:3, 16:9, 21:9
## Scripts
All scripts use Python via `uv run` with inline dependencies.
### generate.py - Text to Image
```bash
uv run scripts/generate.py "prompt" output.png [aspect_ratio] [size]
```
**Examples:**
```bash
# Basic image
uv run scripts/generate.py "A cozy coffee shop in autumn" coffee.png
# Infographic with specific aspect ratio
uv run scripts/generate.py "Infographic explaining how neural networks work" nn.png 16:9 2K
# 4K professional image
uv run scripts/generate.py "Professional headshot, studio lighting" headshot.png 3:2 4K
```
### edit.py - Image Editing
```bash
uv run scripts/edit.py input.png "edit instructions" output.png
```
**Examples:**
```bash
# Edit existing image
uv run scripts/edit.py photo.png "Change the background to a beach sunset" edited.png
```
### compose.py - Multi-Image Composition
```bash
uv run scripts/compose.py "prompt" output.png --refs image1.png image2.png
```
**Examples:**
```bash
# Combine styles from multiple images
uv run scripts/compose.py "Combine these styles into a logo" logo.png --refs style1.png style2.png
```
## Workflows
Workflows provide structured approaches for specific visual types. Each workflow follows the PAI 6-step editorial process:
1. **Extract narrative** - Understand the complete story/concept
2. **Derive visual concept** - Single metaphor with 2-3 physical objects
3. **Apply aesthetic** - Define style, colors, mood
4. **Construct prompt** - Build detailed generation instructions
5. **Generate** - Execute via script
6. **Validate** - Check against criteria, regenerate if needed
### Available Workflows
- **infographic.md** - Data visualization, statistics, explainers
- **diagram.md** - Technical diagrams, flowcharts, architecture
## Workflow Usage
When generating images, follow the appropriate workflow:
### For Infographics
```markdown
1. What data/concept needs visualization?
2. What's the key insight or takeaway?
3. Aspect ratio: 16:9 (landscape) recommended
4. Include: clear hierarchy, minimal text, supporting icons
5. Generate at 2K minimum for text clarity
```
### For Diagrams
```markdown
1. What system/process is being illustrated?
2. What are the key components and relationships?
3. Style: flat colors, clean lines, minimal detail
4. Generate at 2K for label clarity
```
## Environment Setup
Requires `GEMINI_API_KEY` environment variable. This should be set from Geoffrey's secrets:
```bash
source ~/Library/Mobile\ Documents/com~apple~CloudDocs/Geoffrey/secrets/.env
```
## Best Practices
### Infographics
- Use simple, direct prompts: "Infographic explaining how X works"
- Model auto-includes relevant icons/logos
- 16:9 aspect ratio works best
- Generate at 2K+ for readable text
### General
- Multi-turn refinement: generate, then ask for specific changes
- Reference images improve consistency
- Be specific about style, mood, lighting
- SynthID watermark is automatic (Google provenance)
## Output Location
By default, save images to `/tmp/` or user-specified paths. For persistent storage, use:
```
~/Library/Mobile Documents/com~apple~CloudDocs/Geoffrey/images/
```
## Limitations
- No photorealistic humans (safety filter)
- No copyrighted characters
- Maximum 14 reference images for composition
- 4K only available with Nano Banana Pro
## Pricing
| Size | Cost per Image |
|------|---------------|
| 1K | Free tier / $0.04 |
| 2K | $0.134 |
| 4K | $0.24 |

View File

@@ -0,0 +1,139 @@
#!/usr/bin/env python3
# /// script
# dependencies = ["google-genai", "pillow", "python-dotenv"]
# ///
"""
Compose images using multiple reference images with Google's Nano Banana Pro.
Usage:
uv run compose.py "prompt" output.png --refs image1.png image2.png [...]
Arguments:
prompt - Text description of desired composition
output - Output file path (PNG)
--refs - Flag followed by 1-14 reference images
Examples:
uv run compose.py "Combine these styles into a cohesive logo" logo.png --refs style1.png style2.png
uv run compose.py "Create a collage with these photos" collage.png --refs photo1.png photo2.png photo3.png
"""
import sys
import os
import json
from pathlib import Path
from dotenv import load_dotenv
from google import genai
from google.genai.types import GenerateContentConfig, Part
from PIL import Image
# Load API key from Geoffrey secrets
SECRETS_PATH = Path.home() / "Library/Mobile Documents/com~apple~CloudDocs/Geoffrey/secrets/.env"
if SECRETS_PATH.exists():
load_dotenv(SECRETS_PATH)
def main():
if len(sys.argv) < 4 or "--refs" not in sys.argv:
print("Usage: uv run compose.py \"prompt\" output.png --refs image1.png image2.png [...]")
print("\nSupports up to 14 reference images.")
sys.exit(1)
prompt = sys.argv[1]
output_path = sys.argv[2]
# Parse reference images after --refs flag
refs_index = sys.argv.index("--refs")
ref_paths = sys.argv[refs_index + 1:]
if not ref_paths:
print("Error: No reference images provided after --refs")
sys.exit(1)
if len(ref_paths) > 14:
print(f"Error: Maximum 14 reference images supported, got {len(ref_paths)}")
sys.exit(1)
# Validate all reference images exist
for path in ref_paths:
if not os.path.exists(path):
print(f"Error: Reference image not found: {path}")
sys.exit(1)
# Initialize client
api_key = os.environ.get("GEMINI_API_KEY")
if not api_key:
print("Error: GEMINI_API_KEY environment variable not set")
sys.exit(1)
client = genai.Client(api_key=api_key)
# Load reference images
print(f"Loading {len(ref_paths)} reference images...")
ref_images = []
for path in ref_paths:
img = Image.open(path)
ref_images.append(img)
print(f" Loaded: {path}")
# Configure generation
config = GenerateContentConfig(
response_modalities=["TEXT", "IMAGE"]
)
print(f"\nComposing image...")
print(f" Prompt: {prompt[:100]}{'...' if len(prompt) > 100 else ''}")
try:
# Build content with all reference images and prompt
content_parts = []
for img in ref_images:
content_parts.append(Part.from_image(img))
content_parts.append(prompt)
response = client.models.generate_content(
model="gemini-3-pro-image-preview",
contents=content_parts,
config=config
)
# Extract and save composed image
saved = False
text_response = ""
for part in response.candidates[0].content.parts:
if hasattr(part, 'inline_data') and part.inline_data:
image = part.as_image()
output_file = Path(output_path)
output_file.parent.mkdir(parents=True, exist_ok=True)
image.save(output_path)
saved = True
print(f"\nComposed image saved: {output_path}")
elif hasattr(part, 'text') and part.text:
text_response = part.text
if text_response:
print(f"\nModel response: {text_response}")
if not saved:
print("\nError: No composed image was generated")
sys.exit(1)
result = {
"success": True,
"output": output_path,
"reference_count": len(ref_paths),
"text_response": text_response
}
print(f"\n{json.dumps(result)}")
except Exception as e:
print(f"\nError composing image: {e}")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,120 @@
#!/usr/bin/env python3
# /// script
# dependencies = ["google-genai", "pillow", "python-dotenv"]
# ///
"""
Edit existing images using Google's Nano Banana Pro.
Usage:
uv run edit.py input.png "edit instructions" output.png
Arguments:
input - Input image file path
instructions - Text description of edits to make
output - Output file path (PNG)
Examples:
uv run edit.py photo.png "Change background to sunset" edited.png
uv run edit.py logo.png "Make the text larger and blue" logo_v2.png
"""
import sys
import os
import json
from pathlib import Path
from dotenv import load_dotenv
from google import genai
from google.genai.types import GenerateContentConfig, Part
from PIL import Image
# Load API key from Geoffrey secrets
SECRETS_PATH = Path.home() / "Library/Mobile Documents/com~apple~CloudDocs/Geoffrey/secrets/.env"
if SECRETS_PATH.exists():
load_dotenv(SECRETS_PATH)
def main():
if len(sys.argv) < 4:
print("Usage: uv run edit.py input.png \"edit instructions\" output.png")
sys.exit(1)
input_path = sys.argv[1]
instructions = sys.argv[2]
output_path = sys.argv[3]
# Validate input exists
if not os.path.exists(input_path):
print(f"Error: Input file not found: {input_path}")
sys.exit(1)
# Initialize client
api_key = os.environ.get("GEMINI_API_KEY")
if not api_key:
print("Error: GEMINI_API_KEY environment variable not set")
sys.exit(1)
client = genai.Client(api_key=api_key)
# Load input image
print(f"Loading input image: {input_path}")
input_image = Image.open(input_path)
# Configure generation
config = GenerateContentConfig(
response_modalities=["TEXT", "IMAGE"]
)
print(f"Editing image...")
print(f" Instructions: {instructions[:100]}{'...' if len(instructions) > 100 else ''}")
try:
# Create content with image and instructions
response = client.models.generate_content(
model="gemini-3-pro-image-preview",
contents=[
Part.from_image(input_image),
f"Edit this image: {instructions}"
],
config=config
)
# Extract and save edited image
saved = False
text_response = ""
for part in response.candidates[0].content.parts:
if hasattr(part, 'inline_data') and part.inline_data:
image = part.as_image()
output_file = Path(output_path)
output_file.parent.mkdir(parents=True, exist_ok=True)
image.save(output_path)
saved = True
print(f"\nEdited image saved: {output_path}")
elif hasattr(part, 'text') and part.text:
text_response = part.text
if text_response:
print(f"\nModel response: {text_response}")
if not saved:
print("\nError: No edited image was generated")
sys.exit(1)
result = {
"success": True,
"input": input_path,
"output": output_path,
"text_response": text_response
}
print(f"\n{json.dumps(result)}")
except Exception as e:
print(f"\nError editing image: {e}")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,135 @@
#!/usr/bin/env python3
# /// script
# dependencies = ["google-genai", "pillow", "python-dotenv"]
# ///
"""
Generate images using Google's Nano Banana Pro (Gemini 3 Pro Image).
Usage:
uv run generate.py "prompt" output.png [aspect_ratio] [size]
Arguments:
prompt - Text description of the image to generate
output - Output file path (PNG)
aspect_ratio - Optional: 1:1, 2:3, 3:2, 4:3, 16:9, 21:9 (default: 1:1)
size - Optional: 1K, 2K, 4K (default: 2K)
Examples:
uv run generate.py "A cozy coffee shop" coffee.png
uv run generate.py "Infographic about AI" ai.png 16:9 2K
"""
import sys
import os
import json
from pathlib import Path
from dotenv import load_dotenv
from google import genai
from google.genai.types import GenerateContentConfig
# Load API key from Geoffrey secrets
SECRETS_PATH = Path.home() / "Library/Mobile Documents/com~apple~CloudDocs/Geoffrey/secrets/.env"
if SECRETS_PATH.exists():
load_dotenv(SECRETS_PATH)
def main():
if len(sys.argv) < 3:
print("Usage: uv run generate.py \"prompt\" output.png [aspect_ratio] [size]")
print("\nAspect ratios: 1:1, 2:3, 3:2, 4:3, 16:9, 21:9")
print("Sizes: 1K, 2K, 4K")
sys.exit(1)
prompt = sys.argv[1]
output_path = sys.argv[2]
aspect_ratio = sys.argv[3] if len(sys.argv) > 3 else "1:1"
image_size = sys.argv[4] if len(sys.argv) > 4 else "2K"
# Validate aspect ratio
valid_ratios = ["1:1", "2:3", "3:2", "4:3", "16:9", "21:9"]
if aspect_ratio not in valid_ratios:
print(f"Invalid aspect ratio: {aspect_ratio}")
print(f"Valid options: {', '.join(valid_ratios)}")
sys.exit(1)
# Validate size
valid_sizes = ["1K", "2K", "4K"]
if image_size not in valid_sizes:
print(f"Invalid size: {image_size}")
print(f"Valid options: {', '.join(valid_sizes)}")
sys.exit(1)
# Initialize client (uses GEMINI_API_KEY env var)
api_key = os.environ.get("GEMINI_API_KEY")
if not api_key:
print("Error: GEMINI_API_KEY environment variable not set")
sys.exit(1)
client = genai.Client(api_key=api_key)
# Configure generation
config = GenerateContentConfig(
response_modalities=["TEXT", "IMAGE"],
image_config={
"aspect_ratio": aspect_ratio,
"image_size": image_size
}
)
print(f"Generating image...")
print(f" Prompt: {prompt[:100]}{'...' if len(prompt) > 100 else ''}")
print(f" Aspect ratio: {aspect_ratio}")
print(f" Size: {image_size}")
try:
response = client.models.generate_content(
model="gemini-3-pro-image-preview",
contents=[prompt],
config=config
)
# Extract and save image
saved = False
text_response = ""
for part in response.candidates[0].content.parts:
if hasattr(part, 'inline_data') and part.inline_data:
# Save image
image = part.as_image()
# Ensure output directory exists
output_file = Path(output_path)
output_file.parent.mkdir(parents=True, exist_ok=True)
image.save(output_path)
saved = True
print(f"\nImage saved: {output_path}")
elif hasattr(part, 'text') and part.text:
text_response = part.text
if text_response:
print(f"\nModel response: {text_response}")
if not saved:
print("\nError: No image was generated")
print("The model may have declined due to content policy.")
sys.exit(1)
# Output JSON for programmatic use
result = {
"success": True,
"output": output_path,
"aspect_ratio": aspect_ratio,
"size": image_size,
"text_response": text_response
}
print(f"\n{json.dumps(result)}")
except Exception as e:
print(f"\nError generating image: {e}")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,214 @@
# Diagram Workflow
Create technical diagrams, flowcharts, architecture diagrams, and process visualizations.
## When to Use
- System architecture documentation
- Process flows and workflows
- Technical explanations
- Decision trees
- Network topologies
- Component relationships
## 6-Step Process
### Step 1: Extract Narrative
**Goal:** Understand the system or process being illustrated.
Questions to answer:
- What system/process is being shown?
- What are the key components?
- What are the relationships between components?
- What is the flow direction (if any)?
- What level of detail is needed?
**Output:** Component list and relationship description.
### Step 2: Derive Visual Concept
**Goal:** Choose the right diagram type.
**Diagram types:**
| Type | Use When |
|------|----------|
| Flowchart | Sequential processes with decisions |
| Architecture | System components and connections |
| Sequence | Time-ordered interactions |
| Network | Interconnected nodes |
| Hierarchy | Parent-child relationships |
| Venn | Overlapping categories |
**Output:** Diagram type and layout direction.
### Step 3: Apply Aesthetic
**Goal:** Define visual style for clarity.
Recommended for diagrams:
- **Colors:** Limited palette (3-5 colors max)
- **Style:** Flat, clean, no gradients
- **Lines:** Consistent weight, clear arrows
- **Shapes:** Simple geometric (rectangles, circles)
- **Labels:** Sans-serif, high contrast
**Color coding conventions:**
- Blue: Primary components
- Green: Success/positive flow
- Red: Error/warning
- Orange: External systems
- Gray: Supporting elements
**Output:** Color scheme and style notes.
### Step 4: Construct Prompt
**Goal:** Build the generation prompt.
**Template:**
```
Create a [diagram type] showing [system/process].
Components:
- [Component 1]: [description]
- [Component 2]: [description]
- [Component 3]: [description]
Relationships:
- [Component 1] connects to [Component 2] via [connection type]
- [Component 2] sends data to [Component 3]
Layout: [direction - left-to-right, top-to-bottom, etc.]
Style: [aesthetic from Step 3]
Labels to include:
- [Label 1]
- [Label 2]
```
**Output:** Complete prompt.
### Step 5: Generate
**Command:**
```bash
uv run scripts/generate.py "[prompt]" output.png [aspect_ratio] 2K
```
**Aspect ratio by diagram type:**
- Flowcharts: 3:2 or 16:9 (horizontal flow)
- Architecture: 4:3 or 1:1 (balanced)
- Sequence: 2:3 (vertical flow)
- Network: 1:1 (balanced)
**Settings:**
- Size: **2K minimum** for label clarity
- Model: gemini-3-pro-image-preview
### Step 6: Validate
**Validation criteria:**
| Criterion | Check |
|-----------|-------|
| Completeness | All components present |
| Accuracy | Relationships correctly shown |
| Readability | All labels legible |
| Flow clarity | Direction is obvious |
| Consistency | Shapes/colors used consistently |
| Simplicity | No unnecessary elements |
**If validation fails:**
- Identify missing or incorrect elements
- Adjust prompt
- Regenerate (max 3 iterations)
## Example Workflow
**Request:** Create a diagram showing a CI/CD pipeline.
### Step 1: Extract Narrative
"CI/CD pipeline with: code commit, build, test, deploy to staging, deploy to production. Shows automated flow with manual approval gates."
Components:
- Git repository
- Build server
- Test suite
- Staging environment
- Production environment
- Approval gates
### Step 2: Visual Concept
Flowchart, left-to-right horizontal flow. Linear pipeline with branching for approval.
### Step 3: Aesthetic
- Blue: Pipeline stages
- Green: Success indicators
- Orange: Approval gates
- Gray: Arrows/connectors
- Style: Flat rectangles with rounded corners, clear directional arrows
### Step 4: Prompt
```
Create a flowchart showing a CI/CD pipeline.
Components:
- Git Repository: Code source
- Build Server: Compiles code
- Test Suite: Runs automated tests
- Staging: Pre-production environment
- Production: Live environment
- Approval Gate: Manual review step
Flow:
- Git Repository -> Build Server -> Test Suite -> Staging -> Approval Gate -> Production
Layout: Horizontal left-to-right flow
Style: Flat design with rounded rectangles. Blue for pipeline stages, green checkmarks for success, orange for approval gate, gray arrows between stages.
Labels: "Code", "Build", "Test", "Stage", "Approve", "Deploy"
```
### Step 5: Generate
```bash
uv run scripts/generate.py "Create a flowchart showing a CI/CD pipeline..." cicd.png 16:9 2K
```
### Step 6: Validate
- All 6 stages present
- Flow direction clear
- Labels readable
- Approval gate distinguished
## Tips for Better Results
1. **Keep it simple** - Fewer components = clearer diagram
2. **Be explicit about connections** - State what connects to what
3. **Specify layout direction** - Avoid ambiguous layouts
4. **Use consistent terminology** - Same names throughout prompt
5. **Include all labels** - List exact text for each component
## Common Issues
| Issue | Solution |
|-------|----------|
| Missing components | List every component explicitly |
| Unclear flow | State direction and connections |
| Overlapping elements | Reduce components or use larger aspect ratio |
| Inconsistent styling | Be more explicit about shapes/colors |
| Wrong diagram type | Reconsider which type fits best |
## Alternative: Mermaid Diagrams
For simple diagrams, consider generating Mermaid code instead:
- More precise control
- Version-controllable
- Easily editable
Use image generation for:
- Visual appeal matters
- Marketing/presentation use
- Complex custom styling

View File

@@ -0,0 +1,176 @@
# Infographic Workflow
Create data visualizations, explainers, and statistical infographics using the 6-step editorial process.
## When to Use
- Explaining concepts or processes
- Visualizing data or statistics
- Creating how-to guides
- Summarizing reports or research
- Making comparisons
## 6-Step Process
### Step 1: Extract Narrative
**Goal:** Understand the complete story being told.
Questions to answer:
- What is the main concept or data being explained?
- What is the key insight or takeaway?
- Who is the target audience?
- What action should viewers take?
**Output:** 2-3 sentence summary of the narrative.
### Step 2: Derive Visual Concept
**Goal:** Translate narrative into a single visual metaphor.
Guidelines:
- Choose 2-3 physical objects that represent the concept
- Prefer familiar, universal metaphors
- Avoid abstract shapes without meaning
- Consider spatial relationships (hierarchy, flow, comparison)
**Examples:**
- Data growth → Plant/tree growing
- Security → Shield/lock
- Process → Pipeline/conveyor belt
- Comparison → Balance scale
**Output:** Visual metaphor description.
### Step 3: Apply Aesthetic
**Goal:** Define the visual style.
Recommended for infographics:
- **Colors:** Muted palette with 1-2 accent colors
- **Style:** Flat design, clean lines
- **Typography:** Sans-serif, clear hierarchy
- **Layout:** Clear sections, visual flow
- **Icons:** Simple, consistent style
**Output:** Style description (2-3 sentences).
### Step 4: Construct Prompt
**Goal:** Build the generation prompt.
**Template:**
```
Create an infographic explaining [topic].
Visual concept: [metaphor from Step 2]
Key elements:
- [Main data point or concept]
- [Supporting element 1]
- [Supporting element 2]
Style: [aesthetic from Step 3]
Layout: [horizontal/vertical], [sections description]
Text to include:
- Title: "[title]"
- Key stat: "[number or fact]"
- [Other text elements]
```
**Output:** Complete prompt.
### Step 5: Generate
**Command:**
```bash
uv run scripts/generate.py "[prompt]" output.png 16:9 2K
```
**Settings for infographics:**
- Aspect ratio: **16:9** (landscape) - best for infographics
- Size: **2K minimum** - ensures text readability
- Model: gemini-3-pro-image-preview (Nano Banana Pro)
### Step 6: Validate
**Validation criteria:**
| Criterion | Check |
|-----------|-------|
| Text legibility | All text is readable at 100% zoom |
| Data accuracy | Numbers/facts are displayed correctly |
| Visual hierarchy | Eye naturally flows through content |
| Color contrast | Sufficient contrast for accessibility |
| Completeness | All key elements are present |
| Brand alignment | Matches intended style |
**If validation fails:**
- Identify specific issues
- Modify prompt to address them
- Regenerate
- Maximum 3 iterations
## Example Workflow
**Request:** Create an infographic about how neural networks learn.
### Step 1: Extract Narrative
"Neural networks learn by adjusting connection weights through forward propagation and backpropagation. Key insight: the process is iterative and improves over time. Audience: Technical beginners."
### Step 2: Visual Concept
"A network of interconnected nodes with signals flowing through, showing adjustment dials on connections. Like a city's road network with traffic lights being adjusted."
### Step 3: Aesthetic
"Flat design with dark blue background, bright connection lines in cyan and orange. Minimal, clean style with clear node shapes."
### Step 4: Prompt
```
Create an infographic explaining how neural networks learn.
Visual concept: Network of connected nodes with adjustment dials on connections, signals flowing through like traffic.
Key elements:
- Input layer with data entering
- Hidden layers with connection weights
- Output layer with result
- Feedback loop showing backpropagation
Style: Dark blue background, cyan and orange accents, flat design, clean minimalist style.
Layout: Horizontal flow from left (input) to right (output), with backpropagation arrow below.
Text to include:
- Title: "How Neural Networks Learn"
- Labels: "Input", "Hidden Layers", "Output", "Backpropagation"
```
### Step 5: Generate
```bash
uv run scripts/generate.py "Create an infographic explaining how neural networks learn..." neural_network.png 16:9 2K
```
### Step 6: Validate
- Text readable
- Flow is clear left-to-right
- Colors have good contrast
- All labels present
## Tips for Better Results
1. **Simple prompts often work best** - "Infographic explaining X" can produce excellent results
2. **Model understands context** - It will add relevant icons/imagery automatically
3. **Be specific about text** - Include exact wording for titles and labels
4. **Iterate with conversation** - Ask for specific changes after initial generation
5. **Use reference images** - For style consistency across multiple infographics
## Common Issues
| Issue | Solution |
|-------|----------|
| Text too small | Increase size to 4K or reduce text amount |
| Cluttered layout | Simplify to fewer elements |
| Wrong style | Be more explicit about aesthetic |
| Missing elements | List all required elements explicitly |