Initial commit
This commit is contained in:
13
.claude-plugin/plugin.json
Normal file
13
.claude-plugin/plugin.json
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
{
|
||||||
|
"name": "Julia",
|
||||||
|
"description": "Julia模型编写与数据处理SKILLS",
|
||||||
|
"version": "0.0.0-2025.11.28",
|
||||||
|
"author": {
|
||||||
|
"name": "Dongdong Kong",
|
||||||
|
"email": "kongdd.sysu@gmail.com"
|
||||||
|
},
|
||||||
|
"skills": [
|
||||||
|
"./skills/julia-hydrotools",
|
||||||
|
"./skills/julia-numerical"
|
||||||
|
]
|
||||||
|
}
|
||||||
60
plugin.lock.json
Normal file
60
plugin.lock.json
Normal file
@@ -0,0 +1,60 @@
|
|||||||
|
{
|
||||||
|
"$schema": "internal://schemas/plugin.lock.v1.json",
|
||||||
|
"pluginId": "gh:kongdd/Skills_for_Your_AI_Student:julia",
|
||||||
|
"normalized": {
|
||||||
|
"repo": null,
|
||||||
|
"ref": "refs/tags/v20251128.0",
|
||||||
|
"commit": "002282baeb41e5c33ccc00e03f278105edea206b",
|
||||||
|
"treeHash": "c09443e36bc20692f3d629162d704619d5d6477890c4cd4fd42421c39801397d",
|
||||||
|
"generatedAt": "2025-11-28T10:19:55.831931Z",
|
||||||
|
"toolVersion": "publish_plugins.py@0.2.0"
|
||||||
|
},
|
||||||
|
"origin": {
|
||||||
|
"remote": "git@github.com:zhongweili/42plugin-data.git",
|
||||||
|
"branch": "master",
|
||||||
|
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
|
||||||
|
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
|
||||||
|
},
|
||||||
|
"manifest": {
|
||||||
|
"name": "Julia",
|
||||||
|
"description": "Julia模型编写与数据处理SKILLS"
|
||||||
|
},
|
||||||
|
"content": {
|
||||||
|
"files": [
|
||||||
|
{
|
||||||
|
"path": "README.md",
|
||||||
|
"sha256": "37b58e2c2120cdfab5b993f6c22e9e96632cf225e753a7f97bfefae7c4185bda"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"path": ".claude-plugin/plugin.json",
|
||||||
|
"sha256": "582230d774c71dd2b1575ac516f13e7a5612e2f0f386754ae97089f540b60296"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"path": "skills/julia-numerical/examples.jl",
|
||||||
|
"sha256": "918c3df7fc48fde70bd5bb75f7c6636ff68f5331a61cbe8c1eea666a69662c8d"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"path": "skills/julia-numerical/SKILL.md",
|
||||||
|
"sha256": "381dd118c82ee8631e462c3ab1e137e2cd286d4f0102435036a5265daa88cc11"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"path": "skills/julia-numerical/test_basic.jl",
|
||||||
|
"sha256": "1a47c402edbd91a12024411967d2a427331e6cc9e4cad81e38d10118caf86a85"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"path": "skills/julia-hydrotools/examples.jl",
|
||||||
|
"sha256": "2962c429ca92208da63123ab7234245e19b7710d58fca256f364a741b19fac05"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"path": "skills/julia-hydrotools/SKILL.md",
|
||||||
|
"sha256": "1615b3e2fb09ba38cee4304f3f4f8d2a8da51e1411fe4ceb219002177e71350d"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"dirSha256": "c09443e36bc20692f3d629162d704619d5d6477890c4cd4fd42421c39801397d"
|
||||||
|
},
|
||||||
|
"security": {
|
||||||
|
"scannedAt": null,
|
||||||
|
"scannerVersion": null,
|
||||||
|
"flags": []
|
||||||
|
}
|
||||||
|
}
|
||||||
32
skills/julia-hydrotools/SKILL.md
Normal file
32
skills/julia-hydrotools/SKILL.md
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
---
|
||||||
|
name: julia-hydrotools
|
||||||
|
description: 计算短波辐射、长波辐射、潜在蒸散发、日出日落时间、湿度的基本变量处理。
|
||||||
|
---
|
||||||
|
|
||||||
|
# 1 运行环境说明
|
||||||
|
|
||||||
|
- 在Julia中运行
|
||||||
|
|
||||||
|
- 在julia中首先加载包,`using HydroTools`
|
||||||
|
|
||||||
|
- 若没有包加载出错,则安装之,`using Pkg; Pkg.add("HydroTools")`
|
||||||
|
|
||||||
|
|
||||||
|
## 1.1 函数说明
|
||||||
|
|
||||||
|
- `cal_Rsi_toa(lat, J)`: daily extraterrestrial radiation in MJ m-2 day-1
|
||||||
|
+ `lat`: latitude in deg
|
||||||
|
+ `J`: doy of year
|
||||||
|
> 注意lat和J是scalar
|
||||||
|
> 如果是vector,按照Julia的语法,采用`cal_Rsi_toa.(lat, J)`调用
|
||||||
|
+ 默认返回单位是`MJ d-1`,若想转为`W m-2`,需要调用[MJ2W]函数,告诉用户返回的数字单位
|
||||||
|
|
||||||
|
|
||||||
|
## 1.2 文件保存
|
||||||
|
|
||||||
|
文件保存采用Julia包`DataFrames`,`RTableTools`
|
||||||
|
|
||||||
|
```julia
|
||||||
|
using RTableTools
|
||||||
|
fwrite(df, "out.csv") # df is a DataFrame
|
||||||
|
```
|
||||||
22
skills/julia-hydrotools/examples.jl
Normal file
22
skills/julia-hydrotools/examples.jl
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
using HydroTools
|
||||||
|
using Dates
|
||||||
|
|
||||||
|
lat = 20.0
|
||||||
|
doy = 120
|
||||||
|
|
||||||
|
ws = HourAngleSunSet(lat, doy)
|
||||||
|
# doy
|
||||||
|
cal_Rsi_toa(lat, doy)
|
||||||
|
|
||||||
|
# date
|
||||||
|
date = Date(2010, 6, 12)
|
||||||
|
doy = dayofyear(date)
|
||||||
|
cal_Rsi_toa(lat, doy)
|
||||||
|
|
||||||
|
# datetime
|
||||||
|
time = DateTime(2010, 6, 12)
|
||||||
|
doy = dayofyear(date)
|
||||||
|
Rsi = cal_Rsi_toa(lat, doy) # [MJ d-1 m-2]
|
||||||
|
|
||||||
|
|
||||||
|
MJ2W(Rsi) # [MJ d-1 m-2] to [W m-2]
|
||||||
120
skills/julia-numerical/SKILL.md
Normal file
120
skills/julia-numerical/SKILL.md
Normal file
@@ -0,0 +1,120 @@
|
|||||||
|
---
|
||||||
|
name: julia-numerical
|
||||||
|
description: Execute numerical calculations and mathematical computations using Julia. Use this skill for matrix operations, linear algebra, numerical integration, optimization, statistics, and scientific computing tasks.
|
||||||
|
---
|
||||||
|
|
||||||
|
# Julia Numerical Calculation Skill
|
||||||
|
|
||||||
|
This skill enables you to execute numerical calculations using Julia, a high-performance programming language designed for numerical and scientific computing.
|
||||||
|
|
||||||
|
## When to Use
|
||||||
|
|
||||||
|
Use this skill when you need to:
|
||||||
|
- Perform matrix operations and linear algebra
|
||||||
|
- Solve differential equations
|
||||||
|
- Execute numerical integration or optimization
|
||||||
|
- Calculate statistical measures
|
||||||
|
- Handle large-scale numerical computations
|
||||||
|
- Work with complex mathematical operations
|
||||||
|
|
||||||
|
## Setup
|
||||||
|
|
||||||
|
Before using this skill, ensure Julia is installed on your system:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# On macOS (using Homebrew)
|
||||||
|
brew install julia
|
||||||
|
|
||||||
|
# On Linux (Ubuntu/Debian)
|
||||||
|
sudo apt-get install julia
|
||||||
|
|
||||||
|
# On Windows (using Chocolatey)
|
||||||
|
choco install julia
|
||||||
|
|
||||||
|
# Or download from https://julialang.org/downloads/
|
||||||
|
```
|
||||||
|
|
||||||
|
## Basic Examples
|
||||||
|
|
||||||
|
### Linear Algebra
|
||||||
|
|
||||||
|
```julia
|
||||||
|
using LinearAlgebra
|
||||||
|
|
||||||
|
# Create matrices
|
||||||
|
A = [1 2; 3 4]
|
||||||
|
B = [5 6; 7 8]
|
||||||
|
|
||||||
|
# Matrix multiplication
|
||||||
|
C = A * B
|
||||||
|
|
||||||
|
# Eigenvalues and eigenvectors
|
||||||
|
eigenvals, eigenvecs = eigen(A)
|
||||||
|
|
||||||
|
# Matrix inverse
|
||||||
|
A_inv = inv(A)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Numerical Integration
|
||||||
|
|
||||||
|
```julia
|
||||||
|
using QuadGK
|
||||||
|
|
||||||
|
# Define a function
|
||||||
|
f(x) = sin(x) * exp(-x)
|
||||||
|
|
||||||
|
# Integrate from 0 to ∞
|
||||||
|
result, error = quadgk(f, 0, Inf)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Optimization
|
||||||
|
|
||||||
|
```julia
|
||||||
|
using Optim
|
||||||
|
|
||||||
|
# Define objective function
|
||||||
|
f(x) = (x[1] - 2)^2 + (x[2] - 3)^2
|
||||||
|
|
||||||
|
# Minimize
|
||||||
|
result = optimize(f, [0.0, 0.0])
|
||||||
|
```
|
||||||
|
|
||||||
|
### Statistics
|
||||||
|
|
||||||
|
```julia
|
||||||
|
using Statistics
|
||||||
|
|
||||||
|
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
||||||
|
|
||||||
|
# Statistical measures
|
||||||
|
mean_val = mean(data)
|
||||||
|
std_val = std(data)
|
||||||
|
var_val = var(data)
|
||||||
|
median_val = median(data)
|
||||||
|
```
|
||||||
|
|
||||||
|
## How to Use This Skill
|
||||||
|
|
||||||
|
When you ask me to perform a numerical calculation:
|
||||||
|
1. I'll identify the appropriate Julia packages needed
|
||||||
|
2. Write Julia code to solve the problem
|
||||||
|
3. Execute the code
|
||||||
|
4. Return results and explanations
|
||||||
|
|
||||||
|
## Common Julia Packages
|
||||||
|
|
||||||
|
- **LinearAlgebra**: Matrix operations and linear algebra
|
||||||
|
- **Statistics**: Statistical functions
|
||||||
|
- **QuadGK**: Numerical integration
|
||||||
|
- **Optim**: Optimization algorithms
|
||||||
|
- **DifferentialEquations**: Solving differential equations
|
||||||
|
- **Plots**: Visualization
|
||||||
|
- **Distributions**: Probability distributions
|
||||||
|
- **Random**: Random number generation
|
||||||
|
|
||||||
|
## Notes
|
||||||
|
|
||||||
|
- Julia is JIT-compiled, so first runs may include compilation time
|
||||||
|
- Use `.jl` files for organizing longer scripts
|
||||||
|
- Install packages with `using Pkg; Pkg.add("PackageName")`
|
||||||
|
- Results are returned as Julia objects that are converted to readable format
|
||||||
155
skills/julia-numerical/examples.jl
Normal file
155
skills/julia-numerical/examples.jl
Normal file
@@ -0,0 +1,155 @@
|
|||||||
|
# Julia Numerical Calculation Examples
|
||||||
|
# This file contains common numerical computation patterns
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# Linear Algebra Examples
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
function linear_algebra_examples()
|
||||||
|
using LinearAlgebra
|
||||||
|
|
||||||
|
println("=== Linear Algebra Examples ===")
|
||||||
|
|
||||||
|
# Matrix creation and basic operations
|
||||||
|
A = [1 2 3; 4 5 6; 7 8 10]
|
||||||
|
b = [1, 2, 3]
|
||||||
|
|
||||||
|
println("Matrix A:")
|
||||||
|
println(A)
|
||||||
|
|
||||||
|
# Solve linear system Ax = b
|
||||||
|
x = A \ b
|
||||||
|
println("\nSolution to Ax = b:")
|
||||||
|
println(x)
|
||||||
|
|
||||||
|
# Eigenvalues
|
||||||
|
eigenvals, eigenvecs = eigen(A)
|
||||||
|
println("\nEigenvalues:")
|
||||||
|
println(eigenvals)
|
||||||
|
|
||||||
|
# Singular value decomposition
|
||||||
|
U, S, V = svd(A)
|
||||||
|
println("\nSingular values:")
|
||||||
|
println(S)
|
||||||
|
|
||||||
|
# Determinant and norm
|
||||||
|
println("\nDeterminant: ", det(A))
|
||||||
|
println("Frobenius norm: ", norm(A))
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# Numerical Integration Examples
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
function integration_examples()
|
||||||
|
using QuadGK
|
||||||
|
|
||||||
|
println("\n=== Numerical Integration Examples ===")
|
||||||
|
|
||||||
|
# Integrate sin(x) from 0 to π
|
||||||
|
f1(x) = sin(x)
|
||||||
|
result1, error1 = quadgk(f1, 0, π)
|
||||||
|
println("∫sin(x)dx from 0 to π = ", result1)
|
||||||
|
println("Estimated error: ", error1)
|
||||||
|
|
||||||
|
# Integrate exp(-x^2) from -∞ to ∞ (Gaussian)
|
||||||
|
f2(x) = exp(-x^2)
|
||||||
|
result2, error2 = quadgk(f2, -Inf, Inf)
|
||||||
|
println("\n∫exp(-x²)dx from -∞ to ∞ = ", result2)
|
||||||
|
println("Theoretical value: ", sqrt(π))
|
||||||
|
|
||||||
|
# Integrate 1/(1+x^2) from 0 to 1
|
||||||
|
f3(x) = 1/(1 + x^2)
|
||||||
|
result3, error3 = quadgk(f3, 0, 1)
|
||||||
|
println("\n∫1/(1+x²)dx from 0 to 1 = ", result3)
|
||||||
|
println("Theoretical value (π/4): ", π/4)
|
||||||
|
end
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# Optimization Examples
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
function optimization_examples()
|
||||||
|
using Optim
|
||||||
|
|
||||||
|
println("\n=== Optimization Examples ===")
|
||||||
|
|
||||||
|
# Simple quadratic function
|
||||||
|
f(x) = (x[1] - 2)^2 + (x[2] - 3)^2
|
||||||
|
|
||||||
|
result = optimize(f, [0.0, 0.0])
|
||||||
|
println("Minimize f(x,y) = (x-2)² + (y-3)²")
|
||||||
|
println("Minimum found at: ", Optim.minimizer(result))
|
||||||
|
println("Minimum value: ", Optim.minimum(result))
|
||||||
|
|
||||||
|
# Rosenbrock function (more challenging)
|
||||||
|
rosenbrock(x) = (1 - x[1])^2 + 100(x[2] - x[1]^2)^2
|
||||||
|
|
||||||
|
result2 = optimize(rosenbrock, [0.0, 0.0])
|
||||||
|
println("\nMinimize Rosenbrock function")
|
||||||
|
println("Minimum found at: ", Optim.minimizer(result2))
|
||||||
|
println("Minimum value: ", Optim.minimum(result2))
|
||||||
|
end
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# Statistics Examples
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
function statistics_examples()
|
||||||
|
using Statistics
|
||||||
|
|
||||||
|
println("\n=== Statistics Examples ===")
|
||||||
|
|
||||||
|
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20]
|
||||||
|
|
||||||
|
println("Data: ", data)
|
||||||
|
println("\nStatistical measures:")
|
||||||
|
println("Mean: ", mean(data))
|
||||||
|
println("Median: ", median(data))
|
||||||
|
println("Standard deviation: ", std(data))
|
||||||
|
println("Variance: ", var(data))
|
||||||
|
println("Minimum: ", minimum(data))
|
||||||
|
println("Maximum: ", maximum(data))
|
||||||
|
println("Range: ", maximum(data) - minimum(data))
|
||||||
|
|
||||||
|
# Quantiles
|
||||||
|
println("\nQuantiles:")
|
||||||
|
println("25th percentile: ", quantile(data, 0.25))
|
||||||
|
println("50th percentile: ", quantile(data, 0.50))
|
||||||
|
println("75th percentile: ", quantile(data, 0.75))
|
||||||
|
end
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# Root Finding Examples
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
function root_finding_examples()
|
||||||
|
using Roots
|
||||||
|
|
||||||
|
println("\n=== Root Finding Examples ===")
|
||||||
|
|
||||||
|
# Find root of f(x) = x^3 - 2
|
||||||
|
f(x) = x^3 - 2
|
||||||
|
root = find_zero(f, 1.0)
|
||||||
|
println("Root of x³ - 2 = 0: ", root)
|
||||||
|
println("Verification: f(root) = ", f(root))
|
||||||
|
|
||||||
|
# Find root of f(x) = sin(x) - 0.5
|
||||||
|
f2(x) = sin(x) - 0.5
|
||||||
|
root2 = find_zero(f2, 0.5)
|
||||||
|
println("\nRoot of sin(x) - 0.5 = 0: ", root2)
|
||||||
|
println("Verification: f(root) = ", f2(root2))
|
||||||
|
end
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# Main execution
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
if abspath(PROGRAM_FILE) == @__FILE__
|
||||||
|
linear_algebra_examples()
|
||||||
|
integration_examples()
|
||||||
|
optimization_examples()
|
||||||
|
statistics_examples()
|
||||||
|
root_finding_examples()
|
||||||
|
end
|
||||||
34
skills/julia-numerical/test_basic.jl
Normal file
34
skills/julia-numerical/test_basic.jl
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
# Basic Julia numerical test
|
||||||
|
using LinearAlgebra
|
||||||
|
using Statistics
|
||||||
|
|
||||||
|
println("Testing Julia Numerical Calculation Skill")
|
||||||
|
println("==========================================\n")
|
||||||
|
|
||||||
|
# Test 1: Basic arithmetic
|
||||||
|
println("Test 1: Basic Arithmetic")
|
||||||
|
result = 2 + 2 * 3
|
||||||
|
println("2 + 2 * 3 = ", result)
|
||||||
|
|
||||||
|
# Test 2: Vector operations
|
||||||
|
println("\nTest 2: Vector Operations")
|
||||||
|
v1 = [1, 2, 3]
|
||||||
|
v2 = [4, 5, 6]
|
||||||
|
dot_product = dot(v1, v2)
|
||||||
|
println("dot([1,2,3], [4,5,6]) = ", dot_product)
|
||||||
|
|
||||||
|
# Test 3: Matrix operations
|
||||||
|
println("\nTest 3: Matrix Operations")
|
||||||
|
A = [1 2; 3 4]
|
||||||
|
println("Matrix A:")
|
||||||
|
println(A)
|
||||||
|
println("det(A) = ", det(A))
|
||||||
|
|
||||||
|
# Test 4: Statistics
|
||||||
|
println("\nTest 4: Statistics")
|
||||||
|
data = [10, 20, 30, 40, 50]
|
||||||
|
println("Data: ", data)
|
||||||
|
println("mean = ", mean(data))
|
||||||
|
println("std = ", std(data))
|
||||||
|
|
||||||
|
println("\n✓ All basic tests passed!")
|
||||||
Reference in New Issue
Block a user