Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:35:09 +08:00
commit 086c1eabf6
14 changed files with 1609 additions and 0 deletions

View File

@@ -0,0 +1,65 @@
---
name: asyncpg-detection
description: This skill should be used when the user asks to "detect asyncpg usage", "find asyncpg patterns", "scan for asyncpg imports", or "identify asyncpg database code in FastAPI projects". It automatically scans Python files to identify asyncpg imports, connection patterns, and query execution methods that need conversion to SQLAlchemy.
version: 1.0.0
---
# AsyncPG Detection for FastAPI Projects
This skill provides comprehensive detection of asyncpg usage patterns in FastAPI applications, identifying all code that needs to be converted to SQLAlchemy with asyncpg engine support.
## Detection Overview
Scan FastAPI projects for asyncpg patterns including imports, connection management, queries, transactions, and error handling. Generate detailed reports with line numbers and conversion recommendations.
## Core Detection Patterns
### Import Detection
Look for these import statements:
- `import asyncpg`
- `from asyncpg import`
- `import asyncpg as pg`
- `from asyncpg import Connection, Pool`
### Connection Patterns
Identify these asyncpg connection approaches:
- `asyncpg.connect()` calls
- `asyncpg.create_pool()` usage
- Manual connection string parsing
- Environment-based connection configuration
### Query Patterns
Detect these asyncpg execution methods:
- `connection.fetch()` for SELECT queries
- `connection.execute()` for INSERT/UPDATE/DELETE
- `connection.fetchval()` for single values
- `connection.fetchrow()` for single rows
- `connection.iter()` for result iteration
## Usage Instructions
To detect asyncpg usage in your FastAPI project:
1. **Run comprehensive scan**: Use the `/convert-asyncpg-to-sqlalchemy` command to scan all Python files in the project
2. **Analyze detection results**: Review the generated report for files containing asyncpg code
3. **Prioritize conversion**: Focus on files with the most asyncpg usage first
4. **Check for complex patterns**: Look for nested connections, transactions, and error handling that may require special attention
## Reporting Format
The detection generates reports with:
- **File list**: All files containing asyncpg imports
- **Pattern analysis**: Specific asyncpg methods found
- **Complexity assessment**: Files requiring manual intervention
- **Conversion recommendations**: Suggested SQLAlchemy equivalents
## Additional Resources
### Reference Files
- **`references/patterns-mapping.md`** - Complete asyncpg to SQLAlchemy pattern mapping
- **`references/complex-cases.md`** - Handling of complex asyncpg scenarios
- **`references/supabase-specific.md`** - Supabase-specific asyncpg patterns
### Examples
- **`examples/detection-report.md`** - Sample detection output
- **`examples/fastapi-project-structure.md`** - Example FastAPI project with asyncpg usage

View File

@@ -0,0 +1,135 @@
---
name: sqlalchemy-conversion
description: This skill should be used when the user asks to "convert asyncpg to SQLAlchemy", "convert database queries", "migrate asyncpg code", "transform asyncpg patterns to SQLAlchemy", or "update FastAPI database layer". It provides systematic conversion of asyncpg code to SQLAlchemy async patterns with proper error handling and transaction management.
version: 1.0.0
---
# SQLAlchemy Conversion for AsyncPG Migration
This skill provides systematic conversion of asyncpg database code to SQLAlchemy 2.0+ with async support, maintaining async performance while providing ORM benefits.
## Conversion Strategy
Convert asyncpg procedural code to SQLAlchemy declarative patterns while preserving async functionality and improving maintainability.
## Core Conversion Patterns
### Import Replacement
Replace asyncpg imports with SQLAlchemy:
- `import asyncpg``from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine`
- `from asyncpg import Connection``from sqlalchemy.ext.asyncio import create_async_engine, async_sessionmaker`
### Engine Configuration
Convert connection setup:
```python
# Before (asyncpg)
engine = await asyncpg.create_pool(dsn)
# After (SQLAlchemy)
engine = create_async_engine(
DATABASE_URL,
echo=True,
poolclass=NullPool # For asyncpg compatibility
)
```
### Session Management
Replace connection objects with async sessions:
```python
# Before (asyncpg)
async def get_user(db, user_id):
async with db.acquire() as conn:
result = await conn.fetchrow("SELECT * FROM users WHERE id = $1", user_id)
return dict(result)
# After (SQLAlchemy)
async def get_user(session: AsyncSession, user_id: int):
result = await session.execute(
select(User).where(User.id == user_id)
)
return result.scalar_one()
```
## Query Conversion Guidelines
### SELECT Queries
Transform fetch operations to SQLAlchemy Core/ORM:
- `fetchall()``execute().scalars().all()`
- `fetchrow()``execute().scalar_one()` or `execute().first()`
- `fetchval()``execute().scalar()`
- `iter()``execute().yield_per()`
### INSERT Operations
Convert execute patterns:
```python
# Before (asyncpg)
await conn.execute(
"INSERT INTO users (name, email) VALUES ($1, $2)",
name, email
)
# After (SQLAlchemy ORM)
session.add(User(name=name, email=email))
await session.commit()
```
### Transaction Handling
Update transaction patterns:
```python
# Before (asyncpg)
async with conn.transaction():
await conn.execute("UPDATE users SET status = $1", status)
# After (SQLAlchemy)
async with session.begin():
await session.execute(
update(User).where(User.id == user_id).values(status=status)
)
```
## Usage Instructions
To convert asyncpg code:
1. **Analyze detected patterns**: Use detection results to understand current codebase structure
2. **Apply systematic conversion**: Follow the pattern mapping for each identified asyncpg usage
3. **Handle edge cases**: Refer to complex cases documentation for advanced scenarios
4. **Validate conversions**: Test converted code to ensure functionality is preserved
## Error Handling Conversion
### Exception Types
Update exception handling:
- `asyncpg.PostgresError``sqlalchemy.exc.DBAPIError`
- `asyncpg.InterfaceError``sqlalchemy.exc.InterfaceError`
- `asyncpg.exceptions` → Use SQLAlchemy's built-in exceptions
### Connection Errors
Implement robust error handling:
```python
# Before
try:
conn = await asyncpg.connect(dsn)
except asyncpg.PostgresError as e:
logger.error(f"Database connection failed: {e}")
# After
try:
engine = create_async_engine(DATABASE_URL)
async with engine.begin() as conn:
pass
except SQLAlchemyError as e:
logger.error(f"Database setup failed: {e}")
```
## Additional Resources
### Reference Files
- **`references/pattern-mapping.md`** - Comprehensive asyncpg to SQLAlchemy conversion mapping
- **`references/async-patterns.md`** - Async SQLAlchemy best practices
- **`references/error-handling.md`** - SQLAlchemy exception handling patterns
### Examples
- **`examples/conversion-comparison.md`** - Side-by-side asyncpg vs SQLAlchemy examples
- **`examples/migration-scripts.py`** - Automated conversion utilities
- **`examples/test-validation.py`** - Testing converted code patterns

View File

@@ -0,0 +1,459 @@
---
name: supabase-integration
description: This skill should be used when the user asks to "configure Supabase with SQLAlchemy", "set up Supabase async engine", "create Supabase models", "handle Supabase authentication with SQLAlchemy", or "integrate Supabase pooling with SQLAlchemy async patterns". It provides complete Supabase integration patterns for SQLAlchemy with async support, authentication, and connection pooling optimizations.
version: 1.0.0
---
# Supabase Integration for SQLAlchemy Async Projects
This skill provides comprehensive integration patterns for using SQLAlchemy with Supabase, including async engine configuration, authentication setup, connection pooling, and performance optimizations.
## Integration Overview
Configure SQLAlchemy to work seamlessly with Supabase PostgreSQL databases while maintaining async performance, proper authentication, and connection management optimizations for serverless environments.
## Supabase Engine Configuration
### Async Engine Setup
Configure SQLAlchemy async engine for Supabase:
```python
from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine, async_sessionmaker
from sqlalchemy.orm import DeclarativeBase, sessionmaker
import os
# Supabase connection string
SUPABASE_URL = f"postgresql+asyncpg://postgres.{SUPABASE_PROJECT_ID}:{SUPABASE_PASSWORD}@aws-0-{SUPABASE_REGION}.pooler.supabase.com:6543/postgres"
# Async engine optimized for Supabase
engine = create_async_engine(
SUPABASE_URL,
echo=True,
pool_size=20,
max_overflow=0,
pool_pre_ping=True,
pool_recycle=300,
connect_args={
"server_settings": {
"application_name": "fastapi_supabase_app",
"search_path": "public, extensions"
}
}
)
# Async session factory
AsyncSessionFactory = async_sessionmaker(
engine,
class_=AsyncSession,
expire_on_commit=False
)
```
### Environment-Based Configuration
Set up flexible configuration for different environments:
```python
# config/database.py
from pydantic_settings import BaseSettings
from typing import Optional
class DatabaseSettings(BaseSettings):
supabase_url: str
supabase_key: str
supabase_service_key: Optional[str] = None
pool_size: int = 10
max_overflow: int = 0
class Config:
env_prefix = "DB_"
case_sensitive = False
@property
def async_url(self) -> str:
return self.supabase_url.replace("postgresql://", "postgresql+asyncpg://")
# Dependency injection for FastAPI
async def get_db_session() -> AsyncSession:
async with AsyncSessionFactory() as session:
try:
yield session
await session.commit()
except Exception:
await session.rollback()
raise
finally:
await session.close()
```
## Authentication Integration
### Row Level Security (RLS) Integration
Handle Supabase RLS with SQLAlchemy:
```python
from fastapi import Request, HTTPException
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
import jwt
security = HTTPBearer()
async def get_supabase_user(request: Request) -> dict:
"""Extract and validate Supabase JWT token"""
authorization = request.headers.get("Authorization")
if not authorization or not authorization.startswith("Bearer "):
raise HTTPException(status_code=401, detail="Missing or invalid token")
token = authorization.split(" ")[1]
try:
# Decode Supabase JWT
payload = jwt.decode(
token,
SUPABASE_JWT_SECRET,
algorithms=["HS256"],
options={"verify_aud": False}
)
return payload
except jwt.ExpiredSignatureError:
raise HTTPException(status_code=401, detail="Token expired")
except jwt.InvalidTokenError:
raise HTTPException(status_code=401, detail="Invalid token")
async def get_db_with_auth(request: Request) -> AsyncSession:
"""Get database session with RLS context"""
session = AsyncSessionFactory()
# Set RLS user context
user = await get_supabase_user(request)
await session.execute(
text("SET request.jwt.claims.user_id = :user_id"),
{"user_id": user.get("sub")}
)
await session.execute(
text("SET request.jwt.claims.role = :role"),
{"role": user.get("role", "authenticated")}
)
return session
```
### Service Key Integration
Use Supabase service key for admin operations:
```python
from supabase import create_client, Client
class SupabaseAdminClient:
def __init__(self, supabase_url: str, service_key: str):
self.supabase: Client = create_client(supabase_url, service_key)
async def upload_file(self, bucket: str, path: str, file_content: bytes) -> dict:
"""Upload file to Supabase Storage"""
return self.supabase.storage.from_(bucket).upload(path, file_content)
async def sign_url(self, bucket: str, path: str, expires_in: int = 3600) -> str:
"""Generate signed URL for file access"""
return self.supabase.storage.from_(bucket).create_signed_url(path, expires_in)
# FastAPI dependency
async def get_supabase_admin() -> SupabaseAdminClient:
return SupabaseAdminClient(SUPABASE_URL, SUPABASE_SERVICE_KEY)
```
## Performance Optimization
### Connection Pooling for Serverless
Optimize for Supabase connection limits:
```python
# config/pooling.py
from sqlalchemy.ext.asyncio import create_async_engine
from sqlalchemy.pool import QueuePool
import asyncio
class SupabaseEngineManager:
def __init__(self, supabase_url: str, max_connections: int = 20):
self.engine = create_async_engine(
supabase_url,
poolclass=QueuePool,
pool_size=max_connections - 5, # Leave room for admin connections
max_overflow=5,
pool_pre_ping=True,
pool_recycle=300, # 5 minutes
pool_timeout=30,
connect_args={
"command_timeout": 10,
"server_settings": {
"application_name": "fastapi_supabase_app",
"jit": "off" # Disable JIT for serverless
}
}
)
self._background_heartbeater = None
async def start_heartbeat(self):
"""Keep connections alive in serverless environments"""
async def heartbeat():
while True:
await asyncio.sleep(240) # 4 minutes
async with self.engine.connect() as conn:
await conn.execute(text("SELECT 1"))
self._background_heartbeater = asyncio.create_task(heartbeat())
async def stop_heartbeat(self):
if self._background_heartbeater:
self._background_heartbeater.cancel()
try:
await self._background_heartbeater
except asyncio.CancelledError:
pass
```
### Lazy Loading Implementation
Implement efficient lazy loading for large schemas:
```python
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy import select, text
from typing import Type, TypeVar, Generic
from pydantic import BaseModel
T = TypeVar('T')
class LazyLoader(Generic[T]):
def __init__(self, model: Type[T], session: AsyncSession):
self.model = model
self.session = session
self._loaded = None
self._query = None
def where(self, *criteria):
"""Add where conditions to query"""
self._query = select(self.model).where(*criteria)
return self
async def load(self) -> list[T]:
"""Execute the query and cache results"""
if self._loaded is None:
if self._query is None:
self._query = select(self.model)
result = await self.session.execute(self._query)
self._loaded = result.scalars().all()
return self._loaded
async def first(self) -> T | None:
"""Load first result only"""
if self._query is None:
self._query = select(self.model)
result = await self.session.execute(self._query.limit(1))
return result.scalar_one_or_none()
# Usage in FastAPI endpoints
@app.get("/users/{user_id}")
async def get_user(user_id: int, session: AsyncSession = Depends(get_db_session)):
lazy_users = LazyLoader(User, session)
user = await lazy_users.where(User.id == user_id).first()
if not user:
raise HTTPException(status_code=404, detail="User not found")
return user
```
## Model Generation
### Supabase Schema Reflection
Generate SQLAlchemy models from Supabase schema:
```python
from sqlalchemy.ext.asyncio import AsyncEngine
from sqlalchemy import inspect, text
from sqlalchemy.orm import DeclarativeBase
from typing import Dict, List
async def reflect_supabase_schema(engine: AsyncEngine, schema: str = "public") -> Dict[str, dict]:
"""Reflect Supabase database schema"""
async with engine.connect() as conn:
# Get table information
tables_query = text("""
SELECT table_name, column_name, data_type, is_nullable, column_default
FROM information_schema.columns
WHERE table_schema = :schema
ORDER BY table_name, ordinal_position
""")
result = await conn.execute(tables_query, {"schema": schema})
columns = result.fetchall()
# Get foreign key constraints
fk_query = text("""
SELECT
tc.table_name,
kcu.column_name,
ccu.table_name AS foreign_table_name,
ccu.column_name AS foreign_column_name
FROM information_schema.table_constraints tc
JOIN information_schema.key_column_usage kcu
ON tc.constraint_name = kcu.constraint_name
JOIN information_schema.constraint_column_usage ccu
ON ccu.constraint_name = tc.constraint_name
WHERE tc.constraint_type = 'FOREIGN KEY'
AND tc.table_schema = :schema
""")
fk_result = await conn.execute(fk_query, {"schema": schema})
foreign_keys = fk_result.fetchall()
# Process and return schema information
schema_info = {}
for table_name, column_name, data_type, is_nullable, column_default in columns:
if table_name not in schema_info:
schema_info[table_name] = {
"columns": {},
"foreign_keys": []
}
schema_info[table_name]["columns"][column_name] = {
"type": data_type,
"nullable": is_nullable == "YES",
"default": column_default
}
# Add foreign key information
for table_name, column_name, fk_table, fk_column in foreign_keys:
schema_info[table_name]["foreign_keys"].append({
"column": column_name,
"references": f"{fk_table}.{fk_column}"
})
return schema_info
# Model generation
async def generate_sqlalchemy_models(schema_info: Dict[str, dict], base_class: DeclarativeBase) -> str:
"""Generate SQLAlchemy model classes from schema info"""
model_code = []
for table_name, table_info in schema_info.items():
class_name = "".join(word.capitalize() for word in table_name.split("_"))
# Column definitions
columns = []
primary_key_columns = []
for column_name, column_info in table_info["columns"]..items():
col_def = _generate_column_definition(column_name, column_info)
columns.append(col_def)
# Detect primary keys (common patterns in Supabase)
if column_name in ["id", f"{table_name}_id"] or column_info.get("default", "").startswith("nextval"):
primary_key_columns.append(column_name)
# Foreign key relationships
relationships = []
for fk in table_info["foreign_keys"]:
fk_table, fk_column = fk["references"].split(".")
fk_class_name = "".join(word.capitalize() for word in fk_table.split("_"))
relationship_name = fk_table if fk_table.endswith("s") else f"{fk_table}s"
if column_name.endswith("_id"):
relationship_name = column_name[:-3] + ("s" if not column_name[:-3].endswith("s") else "")
relationships.append(
f' {relationship_name} = relationship("{fk_class_name}", back_populates="{table_name}")'
)
# Generate the complete class
model_class = f"""
class {class_name}({base_class.__name__}):
__tablename__ = "{table_name}"
{chr(10).join(columns)}
"""
if primary_key_columns:
pk_declaration = f" __table_args__ = (PrimaryKeyConstraint({', '.join(map(lambda c: f'\"{c}\"', primary_key_columns))}),)"
model_class += pk_declaration + "\n"
if relationships:
model_class += "\n" + "\n".join(relationships) + "\n"
model_code.append(model_class)
return "\n".join(model_code)
def _generate_column_definition(name: str, info: dict) -> str:
"""Generate SQLAlchemy column definition"""
type_mapping = {
"text": "Text",
"varchar": "String",
"character varying": "String",
"integer": "Integer",
"bigint": "BigInteger",
"decimal": "Numeric",
"numeric": "Numeric",
"real": "Float",
"double precision": "Float",
"boolean": "Boolean",
"date": "Date",
"timestamp": "DateTime",
"timestamp with time zone": "DateTime(timezone=True)",
"uuid": "UUID",
"jsonb": "JSON",
"json": "JSON"
}
sql_type = type_mapping.get(info["type"].lower(), "String")
nullable_str = "" if info["nullable"] else ", nullable=False"
default_str = ""
if info["default"]:
if info["default"].startswith("nextval"):
default_str = ", autoincrement=True"
elif "uuid_generate" in info["default"]:
default_str = ", server_default=text('uuid_generate_v4()')"
elif "now()" in info["default"]:
default_str = ", server_default=text('now()')"
return f' {name} = Column({sql_type}{nullable_str}{default_str})'
```
## Usage Instructions
To integrate Supabase with SQLAlchemy:
1. **Configure async engine**: Set up SQLAlchemy async engine with Supabase connection string
2. **Implement authentication**: Handle JWT tokens and RLS policies
3. **Optimize connection pooling**: Configure for serverless environments
4. **Generate models**: Use schema reflection to create SQLAlchemy models
5. **Test integration**: Validate queries and authentication work correctly
## Error Handling
### Supabase-Specific Errors
Handle Supabase-specific error scenarios:
```python
from sqlalchemy.exc import SQLAlchemyError, OperationalError, InterfaceError
async def handle_supabase_errors(func):
"""Decorator for handling Supabase-specific errors"""
async def wrapper(*args, **kwargs):
try:
return await func(*args, **kwargs)
except OperationalError as e:
if "connection" in str(e).lower():
# Retry connection errors
await asyncio.sleep(1)
return await func(*args, **kwargs)
raise
except SQLAlchemyError as e:
logger.error(f"Supabase database error: {e}")
raise
return wrapper
```
## Additional Resources
### Reference Files
- **`references/supabase-connection.md`** - Supabase connection configuration patterns
- **`references/rls-integration.md`** - Row Level Security with SQLAlchemy
- **`references/performance-optimization.md`** - Performance tuning for Supabase
### Examples
- **`examples/supabase-fastapi-setup.py`** - Complete FastAPI + Supabase + SQLAlchemy setup
- **`examples/async-patterns.py`** - Async patterns for Supabase integration
- **`examples/schema-generation.py`** - Automated model generation from Supabase schema