Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:32:16 +08:00
commit f3ffbc28d8
9 changed files with 949 additions and 0 deletions

View File

@@ -0,0 +1,149 @@
---
name: csv-data-summarizer
description: Analyzes CSV files, generates summary stats, and plots quick visualizations using Python and pandas.
metadata:
version: 2.1.0
dependencies: python>=3.8, pandas>=2.0.0, matplotlib>=3.7.0, seaborn>=0.12.0
---
# CSV Data Summarizer
This Skill analyzes CSV files and provides comprehensive summaries with statistical insights and visualizations.
## When to Use This Skill
Claude should use this Skill whenever the user:
- Uploads or references a CSV file
- Asks to summarize, analyze, or visualize tabular data
- Requests insights from CSV data
- Wants to understand data structure and quality
## How It Works
## ⚠️ CRITICAL BEHAVIOR REQUIREMENT ⚠️
**DO NOT ASK THE USER WHAT THEY WANT TO DO WITH THE DATA.**
**DO NOT OFFER OPTIONS OR CHOICES.**
**DO NOT SAY "What would you like me to help you with?"**
**DO NOT LIST POSSIBLE ANALYSES.**
**IMMEDIATELY AND AUTOMATICALLY:**
1. Run the comprehensive analysis
2. Generate ALL relevant visualizations
3. Present complete results
4. NO questions, NO options, NO waiting for user input
**THE USER WANTS A FULL ANALYSIS RIGHT AWAY - JUST DO IT.**
### Automatic Analysis Steps:
**The skill intelligently adapts to different data types and industries by inspecting the data first, then determining what analyses are most relevant.**
1. **Load and inspect** the CSV file into pandas DataFrame
2. **Identify data structure** - column types, date columns, numeric columns, categories
3. **Determine relevant analyses** based on what's actually in the data:
- **Sales/E-commerce data** (order dates, revenue, products): Time-series trends, revenue analysis, product performance
- **Customer data** (demographics, segments, regions): Distribution analysis, segmentation, geographic patterns
- **Financial data** (transactions, amounts, dates): Trend analysis, statistical summaries, correlations
- **Operational data** (timestamps, metrics, status): Time-series, performance metrics, distributions
- **Survey data** (categorical responses, ratings): Frequency analysis, cross-tabulations, distributions
- **Generic tabular data**: Adapts based on column types found
4. **Only create visualizations that make sense** for the specific dataset:
- Time-series plots ONLY if date/timestamp columns exist
- Correlation heatmaps ONLY if multiple numeric columns exist
- Category distributions ONLY if categorical columns exist
- Histograms for numeric distributions when relevant
5. **Generate comprehensive output** automatically including:
- Data overview (rows, columns, types)
- Key statistics and metrics relevant to the data type
- Missing data analysis
- Multiple relevant visualizations (only those that apply)
- Actionable insights based on patterns found in THIS specific dataset
6. **Present everything** in one complete analysis - no follow-up questions
**Example adaptations:**
- Healthcare data with patient IDs → Focus on demographics, treatment patterns, temporal trends
- Inventory data with stock levels → Focus on quantity distributions, reorder patterns, SKU analysis
- Web analytics with timestamps → Focus on traffic patterns, conversion metrics, time-of-day analysis
- Survey responses → Focus on response distributions, demographic breakdowns, sentiment patterns
### Behavior Guidelines
**CORRECT APPROACH - SAY THIS:**
- "I'll analyze this data comprehensively right now."
- "Here's the complete analysis with visualizations:"
- "I've identified this as [type] data and generated relevant insights:"
- Then IMMEDIATELY show the full analysis
**DO:**
- Immediately run the analysis script
- Generate ALL relevant charts automatically
- Provide complete insights without being asked
- Be thorough and complete in first response
- Act decisively without asking permission
**NEVER SAY THESE PHRASES:**
- "What would you like to do with this data?"
- "What would you like me to help you with?"
- "Here are some common options:"
- "Let me know what you'd like help with"
- "I can create a comprehensive analysis if you'd like!"
- Any sentence ending with "?" asking for user direction
- Any list of options or choices
- Any conditional "I can do X if you want"
**FORBIDDEN BEHAVIORS:**
- Asking what the user wants
- Listing options for the user to choose from
- Waiting for user direction before analyzing
- Providing partial analysis that requires follow-up
- Describing what you COULD do instead of DOING it
### Usage
The Skill provides a Python function `summarize_csv(file_path)` that:
- Accepts a path to a CSV file
- Returns a comprehensive text summary with statistics
- Generates multiple visualizations automatically based on data structure
### Example Prompts
> "Here's `sales_data.csv`. Can you summarize this file?"
> "Analyze this customer data CSV and show me trends."
> "What insights can you find in `orders.csv`?"
### Example Output
**Dataset Overview**
- 5,000 rows × 8 columns
- 3 numeric columns, 1 date column
**Summary Statistics**
- Average order value: $58.2
- Standard deviation: $12.4
- Missing values: 2% (100 cells)
**Insights**
- Sales show upward trend over time
- Peak activity in Q4
*(Attached: trend plot)*
## Files
- `analyze.py` - Core analysis logic
- `requirements.txt` - Python dependencies
- `resources/sample.csv` - Example dataset for testing
- `resources/README.md` - Additional documentation
## Notes
- Automatically detects date columns (columns containing 'date' in name)
- Handles missing data gracefully
- Generates visualizations only when date columns are present
- All numeric columns are included in statistical summary

View File

@@ -0,0 +1,182 @@
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
def summarize_csv(file_path):
"""
Comprehensively analyzes a CSV file and generates multiple visualizations.
Args:
file_path (str): Path to the CSV file
Returns:
str: Formatted comprehensive analysis of the dataset
"""
df = pd.read_csv(file_path)
summary = []
charts_created = []
# Basic info
summary.append("=" * 60)
summary.append("📊 DATA OVERVIEW")
summary.append("=" * 60)
summary.append(f"Rows: {df.shape[0]:,} | Columns: {df.shape[1]}")
summary.append(f"\nColumns: {', '.join(df.columns.tolist())}")
# Data types
summary.append(f"\n📋 DATA TYPES:")
for col, dtype in df.dtypes.items():
summary.append(f"{col}: {dtype}")
# Missing data analysis
missing = df.isnull().sum().sum()
missing_pct = (missing / (df.shape[0] * df.shape[1])) * 100
summary.append(f"\n🔍 DATA QUALITY:")
if missing:
summary.append(f"Missing values: {missing:,} ({missing_pct:.2f}% of total data)")
summary.append("Missing by column:")
for col in df.columns:
col_missing = df[col].isnull().sum()
if col_missing > 0:
col_pct = (col_missing / len(df)) * 100
summary.append(f"{col}: {col_missing:,} ({col_pct:.1f}%)")
else:
summary.append("✓ No missing values - dataset is complete!")
# Numeric analysis
numeric_cols = df.select_dtypes(include='number').columns.tolist()
if numeric_cols:
summary.append(f"\n📈 NUMERICAL ANALYSIS:")
summary.append(str(df[numeric_cols].describe()))
# Correlations if multiple numeric columns
if len(numeric_cols) > 1:
summary.append(f"\n🔗 CORRELATIONS:")
corr_matrix = df[numeric_cols].corr()
summary.append(str(corr_matrix))
# Create correlation heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0,
square=True, linewidths=1)
plt.title('Correlation Heatmap')
plt.tight_layout()
plt.savefig('correlation_heatmap.png', dpi=150)
plt.close()
charts_created.append('correlation_heatmap.png')
# Categorical analysis
categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
categorical_cols = [c for c in categorical_cols if 'id' not in c.lower()]
if categorical_cols:
summary.append(f"\n📊 CATEGORICAL ANALYSIS:")
for col in categorical_cols[:5]: # Limit to first 5
value_counts = df[col].value_counts()
summary.append(f"\n{col}:")
for val, count in value_counts.head(10).items():
pct = (count / len(df)) * 100
summary.append(f"{val}: {count:,} ({pct:.1f}%)")
# Time series analysis
date_cols = [c for c in df.columns if 'date' in c.lower() or 'time' in c.lower()]
if date_cols:
summary.append(f"\n📅 TIME SERIES ANALYSIS:")
date_col = date_cols[0]
df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
date_range = df[date_col].max() - df[date_col].min()
summary.append(f"Date range: {df[date_col].min()} to {df[date_col].max()}")
summary.append(f"Span: {date_range.days} days")
# Create time-series plots for numeric columns
if numeric_cols:
fig, axes = plt.subplots(min(3, len(numeric_cols)), 1,
figsize=(12, 4 * min(3, len(numeric_cols))))
if len(numeric_cols) == 1:
axes = [axes]
for idx, num_col in enumerate(numeric_cols[:3]):
ax = axes[idx] if len(numeric_cols) > 1 else axes[0]
daily_data = df.groupby(date_col)[num_col].agg(['mean', 'sum', 'count'])
daily_data['mean'].plot(ax=ax, label='Average', linewidth=2)
ax.set_title(f'{num_col} Over Time')
ax.set_xlabel('Date')
ax.set_ylabel(num_col)
ax.legend()
ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('time_series_analysis.png', dpi=150)
plt.close()
charts_created.append('time_series_analysis.png')
# Distribution plots for numeric columns
if numeric_cols:
n_cols = min(4, len(numeric_cols))
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
axes = axes.flatten()
for idx, col in enumerate(numeric_cols[:4]):
axes[idx].hist(df[col].dropna(), bins=30, edgecolor='black', alpha=0.7)
axes[idx].set_title(f'Distribution of {col}')
axes[idx].set_xlabel(col)
axes[idx].set_ylabel('Frequency')
axes[idx].grid(True, alpha=0.3)
# Hide unused subplots
for idx in range(len(numeric_cols[:4]), 4):
axes[idx].set_visible(False)
plt.tight_layout()
plt.savefig('distributions.png', dpi=150)
plt.close()
charts_created.append('distributions.png')
# Categorical distributions
if categorical_cols:
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
axes = axes.flatten()
for idx, col in enumerate(categorical_cols[:4]):
value_counts = df[col].value_counts().head(10)
axes[idx].barh(range(len(value_counts)), value_counts.values)
axes[idx].set_yticks(range(len(value_counts)))
axes[idx].set_yticklabels(value_counts.index)
axes[idx].set_title(f'Top Values in {col}')
axes[idx].set_xlabel('Count')
axes[idx].grid(True, alpha=0.3, axis='x')
# Hide unused subplots
for idx in range(len(categorical_cols[:4]), 4):
axes[idx].set_visible(False)
plt.tight_layout()
plt.savefig('categorical_distributions.png', dpi=150)
plt.close()
charts_created.append('categorical_distributions.png')
# Summary of visualizations
if charts_created:
summary.append(f"\n📊 VISUALIZATIONS CREATED:")
for chart in charts_created:
summary.append(f"{chart}")
summary.append("\n" + "=" * 60)
summary.append("✅ COMPREHENSIVE ANALYSIS COMPLETE")
summary.append("=" * 60)
return "\n".join(summary)
if __name__ == "__main__":
# Test with sample data
import sys
if len(sys.argv) > 1:
file_path = sys.argv[1]
else:
file_path = "resources/sample.csv"
print(summarize_csv(file_path))

View File

@@ -0,0 +1,4 @@
pandas>=2.0.0
matplotlib>=3.7.0
seaborn>=0.12.0