Files
gh-k-dense-ai-claude-scient…/skills/research-lookup/scripts/research_lookup.py
2025-11-30 08:30:14 +08:00

262 lines
9.6 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Research Information Lookup Tool
Uses Perplexity's Sonar Pro model through OpenRouter for academic research queries.
"""
import os
import json
import requests
import time
from datetime import datetime
from typing import Dict, List, Optional, Any
from urllib.parse import quote
class ResearchLookup:
"""Research information lookup using Perplexity Sonar Pro via OpenRouter."""
def __init__(self):
"""Initialize the research lookup tool."""
self.api_key = os.getenv("OPENROUTER_API_KEY")
if not self.api_key:
raise ValueError("OPENROUTER_API_KEY environment variable not set")
self.base_url = "https://openrouter.ai/api/v1"
self.model = "perplexity/sonar-reasoning-pro" # Perplexity Sonar Pro with online search
self.headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
"HTTP-Referer": "https://scientific-writer.local", # Replace with your domain
"X-Title": "Scientific Writer Research Tool"
}
def _make_request(self, messages: List[Dict[str, str]], **kwargs) -> Dict[str, Any]:
"""Make a request to the OpenRouter API."""
data = {
"model": self.model,
"messages": messages,
"max_tokens": 8000,
"temperature": 0.1, # Low temperature for factual research
**kwargs
}
try:
response = requests.post(
f"{self.base_url}/chat/completions",
headers=self.headers,
json=data,
timeout=60
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
raise Exception(f"API request failed: {str(e)}")
def _format_research_prompt(self, query: str) -> str:
"""Format the query for optimal research results."""
return f"""You are an expert research assistant. Please provide comprehensive, accurate research information for the following query: "{query}"
IMPORTANT INSTRUCTIONS:
1. Focus on ACADEMIC and SCIENTIFIC sources (peer-reviewed papers, reputable journals, institutional research)
2. Include RECENT information (prioritize 2020-2024 publications)
3. Provide COMPLETE citations with authors, title, journal/conference, year, and DOI when available
4. Structure your response with clear sections and proper attribution
5. Be comprehensive but concise - aim for 800-1200 words
6. Include key findings, methodologies, and implications when relevant
7. Note any controversies, limitations, or conflicting evidence
RESPONSE FORMAT:
- Start with a brief summary (2-3 sentences)
- Present key findings and studies in organized sections
- End with future directions or research gaps if applicable
- Include 5-8 high-quality citations at the end
Remember: This is for academic research purposes. Prioritize accuracy, completeness, and proper attribution."""
def lookup(self, query: str) -> Dict[str, Any]:
"""Perform a research lookup for the given query."""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Format the research prompt
research_prompt = self._format_research_prompt(query)
# Prepare messages for the API with system message for academic mode
messages = [
{
"role": "system",
"content": "You are an academic research assistant. Focus exclusively on scholarly sources: peer-reviewed journals, academic papers, research institutions, and reputable scientific publications. Prioritize recent academic literature (2020-2024) and provide complete citations with DOIs. Use academic/scholarly search mode."
},
{"role": "user", "content": research_prompt}
]
try:
# Make the API request
response = self._make_request(messages)
# Extract the response content
if "choices" in response and len(response["choices"]) > 0:
choice = response["choices"][0]
if "message" in choice and "content" in choice["message"]:
content = choice["message"]["content"]
# Extract citations if present (basic regex extraction)
citations = self._extract_citations(content)
return {
"success": True,
"query": query,
"response": content,
"citations": citations,
"timestamp": timestamp,
"model": self.model,
"usage": response.get("usage", {})
}
else:
raise Exception("Invalid response format from API")
else:
raise Exception("No response choices received from API")
except Exception as e:
return {
"success": False,
"query": query,
"error": str(e),
"timestamp": timestamp,
"model": self.model
}
def _extract_citations(self, text: str) -> List[Dict[str, str]]:
"""Extract potential citations from the response text."""
# This is a simple citation extractor - in practice, you might want
# to use a more sophisticated approach or rely on the model's structured output
citations = []
# Look for common citation patterns
import re
# Pattern for author et al. year
author_pattern = r'([A-Z][a-z]+(?:\s+[A-Z]\.)*(?:\s+et\s+al\.)?)\s*\((\d{4})\)'
matches = re.findall(author_pattern, text)
for author, year in matches:
citations.append({
"authors": author,
"year": year,
"type": "extracted"
})
# Look for DOI patterns
doi_pattern = r'doi:\s*([^\s\)\]]+)'
doi_matches = re.findall(doi_pattern, text, re.IGNORECASE)
for doi in doi_matches:
citations.append({
"doi": doi.strip(),
"type": "doi"
})
return citations
def batch_lookup(self, queries: List[str], delay: float = 1.0) -> List[Dict[str, Any]]:
"""Perform multiple research lookups with optional delay between requests."""
results = []
for i, query in enumerate(queries):
if i > 0 and delay > 0:
time.sleep(delay) # Rate limiting
result = self.lookup(query)
results.append(result)
# Print progress
print(f"[Research] Completed query {i+1}/{len(queries)}: {query[:50]}...")
return results
def get_model_info(self) -> Dict[str, Any]:
"""Get information about available models from OpenRouter."""
try:
response = requests.get(
f"{self.base_url}/models",
headers=self.headers,
timeout=30
)
response.raise_for_status()
return response.json()
except Exception as e:
return {"error": str(e)}
def main():
"""Command-line interface for testing the research lookup tool."""
import argparse
parser = argparse.ArgumentParser(description="Research Information Lookup Tool")
parser.add_argument("query", nargs="?", help="Research query to look up")
parser.add_argument("--model-info", action="store_true", help="Show available models")
parser.add_argument("--batch", nargs="+", help="Run multiple queries")
args = parser.parse_args()
# Check for API key
if not os.getenv("OPENROUTER_API_KEY"):
print("Error: OPENROUTER_API_KEY environment variable not set")
print("Please set it in your .env file or export it:")
print(" export OPENROUTER_API_KEY='your_openrouter_api_key'")
return 1
try:
research = ResearchLookup()
if args.model_info:
print("Available models from OpenRouter:")
models = research.get_model_info()
if "data" in models:
for model in models["data"]:
if "perplexity" in model["id"].lower():
print(f" - {model['id']}: {model.get('name', 'N/A')}")
return 0
if not args.query and not args.batch:
print("Error: No query provided. Use --model-info to see available models.")
return 1
if args.batch:
print(f"Running batch research for {len(args.batch)} queries...")
results = research.batch_lookup(args.batch)
else:
print(f"Researching: {args.query}")
results = [research.lookup(args.query)]
# Display results
for i, result in enumerate(results):
if result["success"]:
print(f"\n{'='*80}")
print(f"Query {i+1}: {result['query']}")
print(f"Timestamp: {result['timestamp']}")
print(f"Model: {result['model']}")
print(f"{'='*80}")
print(result["response"])
if result["citations"]:
print(f"\nExtracted Citations ({len(result['citations'])}):")
for j, citation in enumerate(result["citations"]):
print(f" {j+1}. {citation}")
if result["usage"]:
print(f"\nUsage: {result['usage']}")
else:
print(f"\nError in query {i+1}: {result['error']}")
return 0
except Exception as e:
print(f"Error: {str(e)}")
return 1
if __name__ == "__main__":
exit(main())