10 KiB
Usage Examples and Workflows
Complete Workflow Examples
Example 1: Conference Presentation Package
Scenario: Preparing for a major conference presentation with website, poster, and video.
User Request: "I need to create a complete presentation package for my NeurIPS paper submission. Generate a website, poster, and video presentation."
Workflow:
# Step 1: Organize paper files
mkdir -p input/neurips2025_paper
cp main.tex input/neurips2025_paper/
cp -r figures/ input/neurips2025_paper/
cp -r tables/ input/neurips2025_paper/
cp bibliography.bib input/neurips2025_paper/
# Step 2: Generate all components
python pipeline_all.py \
--input-dir input/neurips2025_paper \
--output-dir output/ \
--model-choice 1 \
--generate-website \
--generate-poster \
--generate-video \
--poster-width-inches 48 \
--poster-height-inches 36 \
--enable-logo-search
# Step 3: Review outputs
ls -R output/neurips2025_paper/
# - website/index.html
# - poster/poster_final.pdf
# - video/final_video.mp4
Output:
- Interactive website showcasing research
- 4'×3' conference poster (print-ready)
- 12-minute presentation video
- Processing time: ~45 minutes (without talking-head)
Example 2: Quick Website for Preprint
Scenario: Creating an explorable homepage for a bioRxiv preprint.
User Request: "Convert my genomics preprint to an interactive website to accompany the bioRxiv submission."
Workflow:
# Using PDF input (LaTeX not available)
python pipeline_all.py \
--input-dir papers/genomics_preprint/ \
--output-dir output/genomics_web/ \
--model-choice 1 \
--generate-website
# Deploy to GitHub Pages or personal server
cd output/genomics_web/website/
# Add link to bioRxiv paper, data repositories, code
# Upload to hosting service
Tips:
- Include links to bioRxiv DOI
- Add GitHub repository links
- Include data availability section
- Embed interactive visualizations if possible
Example 3: Video Abstract for Journal Submission
Scenario: Creating a video abstract for a journal that encourages multimedia submissions.
User Request: "Generate a 5-minute video abstract for my Nature Communications submission."
Workflow:
# Generate concise video focusing on key findings
python pipeline_light.py \
--model_name_t gpt-4.1 \
--model_name_v gpt-4.1 \
--result_dir output/video_abstract/ \
--paper_latex_root papers/nature_comms/ \
--video-duration 300 \
--slides-per-minute 3
# Optional: Add custom intro/outro slides
# Optional: Include talking-head for introduction
Output:
- 5-minute video abstract
- Focus on visual results
- Clear, accessible narration
- Journal-ready format
Example 4: Multi-Paper Website Generation
Scenario: Creating websites for multiple papers from a research group.
User Request: "Generate websites for all 5 papers our lab published this year."
Workflow:
# Organize papers
mkdir -p batch_input/
# Create subdirectories: paper1/, paper2/, paper3/, paper4/, paper5/
# Each with their LaTeX sources
# Batch process
python pipeline_all.py \
--input-dir batch_input/ \
--output-dir batch_output/ \
--model-choice 1 \
--generate-website \
--enable-logo-search
# Creates:
# batch_output/paper1/website/
# batch_output/paper2/website/
# batch_output/paper3/website/
# batch_output/paper4/website/
# batch_output/paper5/website/
Best Practice:
- Use consistent naming conventions
- Process overnight for large batches
- Review each website for accuracy
- Deploy to unified lab website
Example 5: Poster for Virtual Conference
Scenario: Creating a digital poster for a virtual conference with interactive elements.
User Request: "Create a poster for the virtual ISMB conference with clickable links to code and data."
Workflow:
# Generate poster with QR codes and links
python pipeline_all.py \
--input-dir papers/ismb_submission/ \
--output-dir output/ismb_poster/ \
--model-choice 1 \
--generate-poster \
--poster-width-inches 48 \
--poster-height-inches 36 \
--enable-qr-codes
# Manually add QR codes to:
# - GitHub repository
# - Interactive results dashboard
# - Supplementary data
# - Video presentation
Digital Enhancements:
- PDF with embedded hyperlinks
- High-resolution PNG for virtual platform
- Separate PDF with video links for download
Example 6: Promotional Video Clip
Scenario: Creating a short promotional video for social media.
User Request: "Generate a 2-minute highlight video of our Cell paper for Twitter."
Workflow:
# Generate short, engaging video
python pipeline_light.py \
--model_name_t gpt-4.1 \
--model_name_v gpt-4.1 \
--result_dir output/promo_video/ \
--paper_latex_root papers/cell_paper/ \
--video-duration 120 \
--presentation-style public
# Post-process:
# - Extract key 30-second clip for Twitter
# - Add captions for sound-off viewing
# - Optimize file size for social media
Social Media Optimization:
- Square format (1:1) for Instagram
- Horizontal format (16:9) for Twitter/LinkedIn
- Vertical format (9:16) for TikTok/Stories
- Add text overlays for key findings
Common Use Case Patterns
Pattern 1: LaTeX Paper → Full Package
Input: LaTeX source with all assets Output: Website + Poster + Video Time: 45-90 minutes Best for: Major publications, conference presentations
python pipeline_all.py \
--input-dir [latex_dir] \
--output-dir [output_dir] \
--model-choice 1 \
--generate-website \
--generate-poster \
--generate-video
Pattern 2: PDF → Interactive Website
Input: Published PDF paper Output: Explorable website Time: 15-30 minutes Best for: Post-publication promotion, preprint enhancement
python pipeline_all.py \
--input-dir [pdf_dir] \
--output-dir [output_dir] \
--model-choice 1 \
--generate-website
Pattern 3: LaTeX → Conference Poster
Input: LaTeX paper Output: Print-ready poster (custom size) Time: 10-20 minutes Best for: Conference poster sessions
python pipeline_all.py \
--input-dir [latex_dir] \
--output-dir [output_dir] \
--model-choice 1 \
--generate-poster \
--poster-width-inches [width] \
--poster-height-inches [height]
Pattern 4: LaTeX → Presentation Video
Input: LaTeX paper Output: Narrated presentation video Time: 20-60 minutes (without talking-head) Best for: Video abstracts, online presentations, course materials
python pipeline_light.py \
--model_name_t gpt-4.1 \
--model_name_v gpt-4.1 \
--result_dir [output_dir] \
--paper_latex_root [latex_dir]
Platform-Specific Outputs
Twitter/X Promotional Content
The system auto-detects Twitter targeting for numeric folder names:
# Create Twitter-optimized content
mkdir -p input/001_twitter_post/
# System generates English promotional content
Generated Output:
- Short, engaging summary
- Key figure highlights
- Hashtag recommendations
- Thread-ready format
Xiaohongshu (小红书) Content
For Chinese social media, use alphanumeric folder names:
# Create Xiaohongshu-optimized content
mkdir -p input/xhs_genomics/
# System generates Chinese promotional content
Generated Output:
- Chinese language content
- Platform-appropriate formatting
- Visual-first presentation
- Engagement optimizations
Troubleshooting Common Scenarios
Scenario: Large Paper (>50 pages)
Challenge: Processing time and content selection Solution:
# Option 1: Focus on key sections
# Edit LaTeX to comment out less critical sections
# Option 2: Process in parts
# Generate website for overview
# Generate separate detailed videos for methods/results
# Option 3: Use faster model for initial pass
# Review and regenerate critical components with better model
Scenario: Complex Mathematical Content
Challenge: Equations may not render perfectly Solution:
- Use LaTeX input (not PDF) for best equation handling
- Review generated content for equation accuracy
- Manually adjust complex equations if needed
- Consider using figure screenshots for critical equations
Scenario: Non-Standard Paper Structure
Challenge: Paper doesn't follow standard IMRAD format Solution:
- Provide custom section guidance in paper metadata
- Review generated structure and adjust
- Use more powerful model (GPT-4.1) for better adaptation
- Consider manual section annotation in LaTeX comments
Scenario: Limited API Budget
Challenge: Reducing costs while maintaining quality Solution:
# Use GPT-3.5-turbo for simple papers
python pipeline_all.py \
--input-dir [paper_dir] \
--output-dir [output_dir] \
--model-choice 3
# Generate only needed components
# Website-only (cheapest)
# Poster-only (moderate)
# Video without talking-head (moderate)
Scenario: Tight Deadline
Challenge: Need outputs quickly Solution:
# Parallel processing if multiple papers
# Use faster models (GPT-3.5-turbo)
# Generate only essential component first
# Skip optional features (logo search, talking-head)
python pipeline_light.py \
--model_name_t gpt-3.5-turbo \
--model_name_v gpt-3.5-turbo \
--result_dir [output_dir] \
--paper_latex_root [latex_dir]
Priority Order:
- Website (fastest, most versatile)
- Poster (moderate speed, print deadline)
- Video (slowest, can be generated later)
Quality Optimization Tips
For Best Website Results
- Use LaTeX input with all assets
- Include high-resolution figures
- Ensure paper has clear section structure
- Enable logo search for professional appearance
- Review and test all interactive elements
For Best Poster Results
- Provide high-resolution figures (300+ DPI)
- Specify exact poster dimensions needed
- Include institution branding information
- Use professional color scheme
- Test print small preview before full poster
For Best Video Results
- Use LaTeX for clearest content extraction
- Specify target duration appropriately
- Review script before video generation
- Choose appropriate presentation style
- Test audio quality and pacing
For Best Overall Results
- Start with clean, well-organized LaTeX source
- Use GPT-4 or GPT-4.1 for highest quality
- Review all outputs before finalizing
- Iterate on any component that needs adjustment
- Combine components for cohesive presentation package