#!/usr/bin/env python3 """ Research Information Lookup Tool Uses Perplexity's Sonar Pro or Sonar Reasoning Pro models through OpenRouter. Automatically selects the appropriate model based on query complexity. """ import os import json import requests import time from datetime import datetime from typing import Dict, List, Optional, Any from urllib.parse import quote class ResearchLookup: """Research information lookup using Perplexity Sonar models via OpenRouter.""" # Complexity indicators for determining which model to use REASONING_KEYWORDS = [ 'compare', 'contrast', 'analyze', 'analysis', 'synthesis', 'meta-analysis', 'systematic review', 'evaluate', 'critique', 'trade-off', 'tradeoff', 'relationship', 'versus', 'vs', 'vs.', 'compared to', 'mechanism', 'why', 'how does', 'how do', 'explain', 'theoretical framework', 'implications', 'debate', 'controversy', 'conflicting', 'paradox', 'reconcile', 'integrate', 'multifaceted', 'complex interaction', 'causal relationship', 'underlying mechanism', 'interpret', 'reasoning', 'pros and cons', 'advantages and disadvantages', 'critical analysis', 'differences between', 'similarities', 'trade offs' ] def __init__(self, force_model: Optional[str] = None): """ Initialize the research lookup tool. Args: force_model: Optional model override ('pro' or 'reasoning'). If None, automatically selects based on query complexity. """ self.api_key = os.getenv("OPENROUTER_API_KEY") if not self.api_key: raise ValueError("OPENROUTER_API_KEY environment variable not set") self.base_url = "https://openrouter.ai/api/v1" self.model_pro = "perplexity/sonar-pro" # Fast, efficient lookup self.model_reasoning = "perplexity/sonar-reasoning-pro" # Deep analysis self.force_model = force_model self.headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", "HTTP-Referer": "https://scientific-writer.local", # Replace with your domain "X-Title": "Scientific Writer Research Tool" } def _assess_query_complexity(self, query: str) -> str: """ Assess query complexity to determine which model to use. Returns: 'reasoning' for complex analytical queries, 'pro' for straightforward lookups """ query_lower = query.lower() # Count reasoning keywords reasoning_count = sum(1 for keyword in self.REASONING_KEYWORDS if keyword in query_lower) # Count questions (multiple questions suggest complexity) question_count = query.count('?') # Check for multiple clauses (complexity indicators) clause_indicators = [' and ', ' or ', ' but ', ' however ', ' whereas ', ' although '] clause_count = sum(1 for indicator in clause_indicators if indicator in query_lower) # Complexity score complexity_score = ( reasoning_count * 3 + # Reasoning keywords heavily weighted question_count * 2 + # Multiple questions indicate complexity clause_count * 1.5 + # Multiple clauses suggest nuance (1 if len(query) > 150 else 0) # Long queries often more complex ) # Threshold for using reasoning model (lowered to 3 to catch single reasoning keywords) return 'reasoning' if complexity_score >= 3 else 'pro' def _select_model(self, query: str) -> str: """Select the appropriate model based on query complexity or force override.""" if self.force_model: return self.model_reasoning if self.force_model == 'reasoning' else self.model_pro complexity_level = self._assess_query_complexity(query) return self.model_reasoning if complexity_level == 'reasoning' else self.model_pro def _make_request(self, messages: List[Dict[str, str]], model: str, **kwargs) -> Dict[str, Any]: """Make a request to the OpenRouter API.""" data = { "model": model, "messages": messages, "max_tokens": 4000, "temperature": 0.1, # Low temperature for factual research "provider": { "order": ["Perplexity"], "allow_fallbacks": False }, **kwargs } try: response = requests.post( f"{self.base_url}/chat/completions", headers=self.headers, json=data, timeout=90 # Increased timeout for reasoning model ) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: raise Exception(f"API request failed: {str(e)}") def _format_research_prompt(self, query: str) -> str: """Format the query for optimal research results.""" return f"""You are an expert research assistant. Please provide comprehensive, accurate research information for the following query: "{query}" IMPORTANT INSTRUCTIONS: 1. Focus on ACADEMIC and SCIENTIFIC sources (peer-reviewed papers, reputable journals, institutional research) 2. Include RECENT information (prioritize 2020-2024 publications) 3. Provide COMPLETE citations with authors, title, journal/conference, year, and DOI when available 4. Structure your response with clear sections and proper attribution 5. Be comprehensive but concise - aim for 800-1200 words 6. Include key findings, methodologies, and implications when relevant 7. Note any controversies, limitations, or conflicting evidence RESPONSE FORMAT: - Start with a brief summary (2-3 sentences) - Present key findings and studies in organized sections - End with future directions or research gaps if applicable - Include 5-8 high-quality citations at the end Remember: This is for academic research purposes. Prioritize accuracy, completeness, and proper attribution.""" def lookup(self, query: str) -> Dict[str, Any]: """Perform a research lookup for the given query.""" timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # Select the appropriate model based on query complexity selected_model = self._select_model(query) model_type = "reasoning" if "reasoning" in selected_model else "standard" print(f"[Research] Using {selected_model} (detected complexity: {model_type})") # Format the research prompt research_prompt = self._format_research_prompt(query) # Prepare messages for the API with system message for academic mode messages = [ { "role": "system", "content": "You are an academic research assistant. Focus exclusively on scholarly sources: peer-reviewed journals, academic papers, research institutions, and reputable scientific publications. Prioritize recent academic literature (2020-2024) and provide complete citations with DOIs. Use academic/scholarly search mode." }, {"role": "user", "content": research_prompt} ] try: # Make the API request with selected model response = self._make_request(messages, model=selected_model) # Extract the response content if "choices" in response and len(response["choices"]) > 0: choice = response["choices"][0] if "message" in choice and "content" in choice["message"]: content = choice["message"]["content"] # Extract citations if present (basic regex extraction) citations = self._extract_citations(content) return { "success": True, "query": query, "response": content, "citations": citations, "timestamp": timestamp, "model": selected_model, "model_type": model_type, "usage": response.get("usage", {}) } else: raise Exception("Invalid response format from API") else: raise Exception("No response choices received from API") except Exception as e: return { "success": False, "query": query, "error": str(e), "timestamp": timestamp, "model": selected_model, "model_type": model_type } def _extract_citations(self, text: str) -> List[Dict[str, str]]: """Extract potential citations from the response text.""" # This is a simple citation extractor - in practice, you might want # to use a more sophisticated approach or rely on the model's structured output citations = [] # Look for common citation patterns import re # Pattern for author et al. year author_pattern = r'([A-Z][a-z]+(?:\s+[A-Z]\.)*(?:\s+et\s+al\.)?)\s*\((\d{4})\)' matches = re.findall(author_pattern, text) for author, year in matches: citations.append({ "authors": author, "year": year, "type": "extracted" }) # Look for DOI patterns doi_pattern = r'doi:\s*([^\s\)\]]+)' doi_matches = re.findall(doi_pattern, text, re.IGNORECASE) for doi in doi_matches: citations.append({ "doi": doi.strip(), "type": "doi" }) return citations def batch_lookup(self, queries: List[str], delay: float = 1.0) -> List[Dict[str, Any]]: """Perform multiple research lookups with optional delay between requests.""" results = [] for i, query in enumerate(queries): if i > 0 and delay > 0: time.sleep(delay) # Rate limiting result = self.lookup(query) results.append(result) # Print progress print(f"[Research] Completed query {i+1}/{len(queries)}: {query[:50]}...") return results def get_model_info(self) -> Dict[str, Any]: """Get information about available models from OpenRouter.""" try: response = requests.get( f"{self.base_url}/models", headers=self.headers, timeout=30 ) response.raise_for_status() return response.json() except Exception as e: return {"error": str(e)} def main(): """Command-line interface for testing the research lookup tool.""" import argparse parser = argparse.ArgumentParser(description="Research Information Lookup Tool") parser.add_argument("query", nargs="?", help="Research query to look up") parser.add_argument("--model-info", action="store_true", help="Show available models") parser.add_argument("--batch", nargs="+", help="Run multiple queries") parser.add_argument("--force-model", choices=['pro', 'reasoning'], help="Force use of specific model (pro=fast lookup, reasoning=deep analysis)") args = parser.parse_args() # Check for API key if not os.getenv("OPENROUTER_API_KEY"): print("Error: OPENROUTER_API_KEY environment variable not set") print("Please set it in your .env file or export it:") print(" export OPENROUTER_API_KEY='your_openrouter_api_key'") return 1 try: research = ResearchLookup(force_model=args.force_model) if args.model_info: print("Available models from OpenRouter:") models = research.get_model_info() if "data" in models: for model in models["data"]: if "perplexity" in model["id"].lower(): print(f" - {model['id']}: {model.get('name', 'N/A')}") return 0 if not args.query and not args.batch: parser.print_help() return 1 if args.batch: print(f"Running batch research for {len(args.batch)} queries...") results = research.batch_lookup(args.batch) else: print(f"Researching: {args.query}") results = [research.lookup(args.query)] # Display results for i, result in enumerate(results): if result["success"]: print(f"\n{'='*80}") print(f"Query {i+1}: {result['query']}") print(f"Timestamp: {result['timestamp']}") print(f"Model: {result['model']} ({result.get('model_type', 'unknown')})") print(f"{'='*80}") print(result["response"]) if result["citations"]: print(f"\nExtracted Citations ({len(result['citations'])}):") for j, citation in enumerate(result["citations"]): print(f" {j+1}. {citation}") if result["usage"]: print(f"\nUsage: {result['usage']}") else: print(f"\nError in query {i+1}: {result['error']}") return 0 except Exception as e: print(f"Error: {str(e)}") return 1 if __name__ == "__main__": exit(main())