Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:14 +08:00
commit 1dd5bee3b4
335 changed files with 147360 additions and 0 deletions

View File

@@ -0,0 +1,870 @@
\documentclass[aspectratio=169,11pt]{beamer}
% Encoding
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
% Theme and colors
\usetheme{Madrid}
\usecolortheme{dolphin}
% Remove navigation symbols
\setbeamertemplate{navigation symbols}{}
% Section pages
\AtBeginSection[]{
\begin{frame}
\vfill
\centering
\begin{beamercolorbox}[sep=8pt,center,shadow=true,rounded=true]{title}
\usebeamerfont{title}\insertsectionhead\par%
\end{beamercolorbox}
\vfill
\end{frame}
}
% Graphics
\usepackage{graphicx}
\graphicspath{{./figures/}}
% Math
\usepackage{amsmath, amssymb, amsthm}
% Tables
\usepackage{booktabs}
\usepackage{multirow}
% Citations
\usepackage[style=authoryear,maxcitenames=2,backend=biber]{biblatex}
\addbibresource{references.bib}
\renewcommand*{\bibfont}{\tiny}
% Algorithms
\usepackage{algorithm}
\usepackage{algorithmic}
% Code
\usepackage{listings}
\lstset{
basicstyle=\ttfamily\small,
keywordstyle=\color{blue},
commentstyle=\color{green!60!black},
stringstyle=\color{orange},
numbers=left,
numberstyle=\tiny,
frame=single,
breaklines=true
}
% Custom colors
\definecolor{darkblue}{RGB}{0,75,135}
\definecolor{lightblue}{RGB}{100,150,200}
\setbeamercolor{structure}{fg=darkblue}
\setbeamercolor{title}{fg=darkblue}
\setbeamercolor{frametitle}{fg=darkblue}
% Title information
\title[Short Title for Footer]{Full Title of Your Research:\\Comprehensive and Descriptive}
\subtitle{Research Seminar Presentation}
\author[Your Name]{Your Name, PhD Candidate\\
Advisor: Prof. Advisor Name}
\institute[University]{
Department of Your Field\\
University Name\\
\vspace{0.2cm}
\texttt{yourname@university.edu}
}
\date{\today}
% Logo (optional)
% \logo{\includegraphics[height=0.8cm]{university_logo.png}}
\begin{document}
% Title slide
\begin{frame}[plain]
\titlepage
\end{frame}
% Outline
\begin{frame}{Outline}
\tableofcontents
\end{frame}
%==============================================
% INTRODUCTION
%==============================================
\section{Introduction}
\begin{frame}{Motivation}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{The Big Picture:}
\begin{itemize}
\item Why this research area matters
\item Real-world impact and applications
\item Current challenges in the field
\item Opportunity for advancement
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{motivation_figure.pdf}
\framebox[0.9\textwidth][c]{[Motivating Figure]}
\caption{Illustration of the problem or impact}
\end{figure}
\end{column}
\end{columns}
\vspace{0.5cm}
\begin{block}{Central Question}
How can we address this important challenge using novel approach X?
\end{block}
\end{frame}
\subsection{Background}
\begin{frame}{Prior Work: Overview}
\textbf{Historical Development:}
\begin{itemize}
\item Early work established foundation \cite{seminal1990}
\item Key advances in 2000s \cite{advance2005,advance2007}
\item Recent developments \cite{recent2020,recent2022}
\end{itemize}
\vspace{0.5cm}
\textbf{Current State of Knowledge:}
\begin{enumerate}
\item We know that X affects Y
\item Evidence suggests mechanism involves Z
\item However, questions remain about W
\end{enumerate}
\end{frame}
\begin{frame}{Knowledge Gap}
\begin{columns}[c]
\begin{column}{0.6\textwidth}
\textbf{What We Know:}
\begin{itemize}
\item Point 1: Established finding
\item Point 2: Replicated result
\item Point 3: General consensus
\end{itemize}
\vspace{0.5cm}
\textbf{What Remains Unknown:}
\begin{itemize}
\item \alert{Gap 1:} Critical unknown
\item \alert{Gap 2:} Methodological limitation
\item \alert{Gap 3:} Unexplored context
\end{itemize}
\end{column}
\begin{column}{0.4\textwidth}
\begin{alertblock}{The Problem}
Existing approaches fail to account for X, limiting our understanding of Y and preventing application to Z.
\end{alertblock}
\end{column}
\end{columns}
\end{frame}
\subsection{Research Questions}
\begin{frame}{Research Objectives}
\begin{exampleblock}{Overall Goal}
To investigate how X influences Y under conditions Z, and develop a framework for understanding mechanism W.
\end{exampleblock}
\vspace{0.5cm}
\textbf{Specific Aims:}
\begin{enumerate}
\item \textbf{Aim 1:} Characterize relationship between X and Y
\begin{itemize}
\item Hypothesis: X positively correlates with Y
\end{itemize}
\item \textbf{Aim 2:} Identify mechanism W mediating X→Y
\begin{itemize}
\item Hypothesis: W explains the X-Y relationship
\end{itemize}
\item \textbf{Aim 3:} Test generalizability to context Z
\begin{itemize}
\item Hypothesis: Effect persists across conditions
\end{itemize}
\end{enumerate}
\end{frame}
%==============================================
% METHODS
%==============================================
\section{Methods}
\subsection{Study Design}
\begin{frame}{Overall Approach}
\begin{figure}
\centering
% \includegraphics[width=0.9\textwidth]{study_design.pdf}
\framebox[0.8\textwidth][c]{[Study Design Schematic]}
\caption{Three-phase experimental design}
\end{figure}
\begin{itemize}
\item \textbf{Phase 1:} Observational study (n = 150)
\item \textbf{Phase 2:} Controlled experiment (n = 80)
\item \textbf{Phase 3:} Validation in new context (n = 120)
\end{itemize}
\end{frame}
\subsection{Participants and Materials}
\begin{frame}{Sample Characteristics}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{Inclusion Criteria:}
\begin{itemize}
\item Age 18-65 years
\item Criterion 2
\item Criterion 3
\end{itemize}
\vspace{0.3cm}
\textbf{Exclusion Criteria:}
\begin{itemize}
\item Confound 1
\item Confound 2
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{table}
\centering
\caption{Sample demographics}
\small
\begin{tabular}{lc}
\toprule
\textbf{Variable} & \textbf{Value} \\
\midrule
N & 150 \\
Age (years) & 32.5 $\pm$ 8.2 \\
Female (\%) & 58 \\
Education (years) & 15.2 $\pm$ 2.1 \\
\bottomrule
\end{tabular}
\end{table}
\end{column}
\end{columns}
\vspace{0.3cm}
\footnotesize Recruitment: University community and online platforms
\end{frame}
\subsection{Procedures}
\begin{frame}{Experimental Procedure}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{Session 1 (60 min):}
\begin{enumerate}
\item Informed consent
\item Baseline measures
\item Training phase (20 min)
\item Test phase (30 min)
\end{enumerate}
\vspace{0.5cm}
\textbf{Session 2 (45 min):}
\begin{enumerate}
\setcounter{enumi}{4}
\item Follow-up measures
\item Manipulation (15 min)
\item Final assessment (25 min)
\end{enumerate}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{procedure_timeline.pdf}
\framebox[0.9\textwidth][c]{[Timeline Diagram]}
\caption{Experimental timeline}
\end{figure}
\vspace{0.5cm}
\begin{alertblock}{Key Innovation}
Novel manipulation technique combining approach A with method B
\end{alertblock}
\end{column}
\end{columns}
\end{frame}
\subsection{Analysis}
\begin{frame}{Statistical Analysis Plan}
\textbf{Primary Analyses:}
\begin{itemize}
\item \textbf{Aim 1:} Linear regression: $Y = \beta_0 + \beta_1 X + \epsilon$
\item \textbf{Aim 2:} Mediation analysis using bootstrapping (5000 iterations)
\item \textbf{Aim 3:} Mixed-effects model accounting for context effects
\end{itemize}
\vspace{0.5cm}
\textbf{Secondary Analyses:}
\begin{itemize}
\item Sensitivity analyses with different covariates
\item Subgroup analyses by demographic factors
\item Exploratory analyses of individual differences
\end{itemize}
\vspace{0.5cm}
\begin{block}{Software}
R 4.2.1 (lme4, lavaan packages); Python 3.10 (scikit-learn); SPSS 28
\end{block}
\end{frame}
%==============================================
% RESULTS
%==============================================
\section{Results}
\subsection{Preliminary Analyses}
\begin{frame}{Data Quality and Assumptions}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{Data Screening:}
\begin{itemize}
\item Missing data: < 5\% per variable
\item Outliers: 3 cases removed
\item Assumptions: All met
\end{itemize}
\vspace{0.3cm}
\textbf{Descriptive Statistics:}
\begin{itemize}
\item Variable X: $M = 45.2$, $SD = 8.1$
\item Variable Y: $M = 67.8$, $SD = 12.3$
\item Correlation: $r = 0.54$, $p < .001$
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{descriptives.pdf}
\framebox[0.9\textwidth][c]{[Descriptive Plots]}
\caption{Variable distributions}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\subsection{Aim 1 Results}
\begin{frame}{Aim 1: X Predicts Y}
\begin{columns}[c]
\begin{column}{0.6\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{aim1_result.pdf}
\framebox[0.9\textwidth][c]{[Regression Plot]}
\caption{Relationship between X and Y ($R^2 = 0.29$, $p < .001$)}
\end{figure}
\end{column}
\begin{column}{0.4\textwidth}
\begin{table}
\centering
\caption{Regression results}
\tiny
\begin{tabular}{lccc}
\toprule
\textbf{Predictor} & $\boldsymbol{\beta}$ & \textbf{SE} & \textbf{$p$} \\
\midrule
Intercept & 12.45 & 3.21 & < .001 \\
X & 0.54 & 0.08 & < .001 \\
Age & 0.12 & 0.05 & .018 \\
Gender & 2.34 & 1.12 & .038 \\
\bottomrule
\end{tabular}
\end{table}
\vspace{0.3cm}
\begin{block}{Key Finding}
X significantly predicts Y, controlling for demographics
\end{block}
\end{column}
\end{columns}
\end{frame}
\subsection{Aim 2 Results}
\begin{frame}{Aim 2: Mediation by W}
\begin{figure}
\centering
% \includegraphics[width=0.8\textwidth]{mediation_model.pdf}
\framebox[0.7\textwidth][c]{[Mediation Diagram]}
\caption{Mediation analysis showing W mediates X→Y relationship}
\end{figure}
\begin{itemize}
\item \textbf{Direct effect:} $c' = 0.31$, $p = .021$ (reduced from $c = 0.54$)
\item \textbf{Indirect effect:} $ab = 0.23$, 95\% CI [0.14, 0.35]
\item \textbf{Proportion mediated:} 43\% of total effect
\end{itemize}
\vspace{0.3cm}
\alert{W partially mediates the relationship between X and Y}
\end{frame}
\subsection{Aim 3 Results}
\begin{frame}{Aim 3: Generalization to Context Z}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{aim3_context1.pdf}
\framebox[0.9\textwidth][c]{[Context 1]}
\caption{Original context}
\end{figure}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{aim3_context2.pdf}
\framebox[0.9\textwidth][c]{[Context 2]}
\caption{New context Z}
\end{figure}
\end{column}
\end{columns}
\vspace{0.5cm}
\textbf{Mixed-Effects Model Results:}
\begin{itemize}
\item Main effect of X: $\beta = 0.51$, $p < .001$
\item Context × X interaction: $\beta = -0.08$, $p = .231$ (ns)
\item \alert{Effect generalizes across contexts}
\end{itemize}
\end{frame}
\subsection{Additional Analyses}
\begin{frame}{Sensitivity and Robustness Checks}
\textbf{Alternative Specifications:}
\begin{itemize}
\item Result robust to different model specifications
\item Consistent across multiple imputation methods
\item Findings hold with/without covariates
\end{itemize}
\vspace{0.5cm}
\textbf{Subgroup Analyses:}
\begin{table}
\centering
\caption{Effect sizes by subgroup}
\small
\begin{tabular}{lccc}
\toprule
\textbf{Subgroup} & \textbf{$n$} & $\boldsymbol{\beta}$ & \textbf{$p$} \\
\midrule
Young (< 30) & 67 & 0.58 & < .001 \\
Older ($\geq$ 30) & 83 & 0.49 & < .001 \\
Male & 63 & 0.52 & < .001 \\
Female & 87 & 0.55 & < .001 \\
\bottomrule
\end{tabular}
\end{table}
Effect consistent across demographic groups
\end{frame}
%==============================================
% DISCUSSION
%==============================================
\section{Discussion}
\subsection{Summary of Findings}
\begin{frame}{Key Results Recap}
\begin{exampleblock}{Main Findings}
\begin{enumerate}
\item X significantly predicts Y ($\beta = 0.54$, $p < .001$), explaining 29\% of variance
\item W mediates 43\% of the X→Y relationship
\item Effect generalizes to new context Z
\item Results robust across subgroups and specifications
\end{enumerate}
\end{exampleblock}
\vspace{0.5cm}
\textbf{These findings:}
\begin{itemize}
\item Support our hypotheses
\item Provide evidence for mechanism W
\item Extend previous work to new domains
\item Have implications for theory and practice
\end{itemize}
\end{frame}
\subsection{Interpretation}
\begin{frame}{Relation to Previous Research}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{Consistent With:}
\begin{itemize}
\item Prior findings on X→Y \cite{jones2020}
\item Theoretical predictions \cite{smith2019}
\item Meta-analytic trends \cite{meta2021}
\end{itemize}
\vspace{0.5cm}
\textbf{Extensions Beyond:}
\begin{itemize}
\item Identifies mechanism W (new)
\item Tests in context Z (novel)
\item Larger sample than prior work
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\textbf{Resolves Contradictions:}
\begin{itemize}
\item Explains why Study A found X
\item Reconciles Studies B and C
\item Clarifies conditions for effect
\end{itemize}
\vspace{0.5cm}
\begin{alertblock}{Novel Contribution}
First study to demonstrate W as mediator and show generalization to Z
\end{alertblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Mechanisms and Explanations}
\textbf{Why does X affect Y through W?}
\vspace{0.3cm}
\begin{enumerate}
\item<1-> \textbf{Hypothesis 1:} X activates process W
\begin{itemize}
\item<1-> Evidence: Temporal precedence in data
\item<1-> Consistent with neurobiological models
\end{itemize}
\vspace{0.3cm}
\item<2-> \textbf{Hypothesis 2:} W is necessary for Y
\begin{itemize}
\item<2-> Evidence: Mediation analysis results
\item<2-> Supported by experimental manipulations
\end{itemize}
\vspace{0.3cm}
\item<3-> \textbf{Integrated Model:} X → W → Y pathway
\begin{itemize}
\item<3-> Explains 43\% of total effect
\item<3-> Other pathways remain to be identified
\end{itemize}
\end{enumerate}
\end{frame}
\subsection{Implications}
\begin{frame}{Theoretical Implications}
\textbf{Advances to Theory:}
\begin{itemize}
\item Refines existing framework by identifying W
\item Suggests revision of Model XYZ
\item Provides testable predictions for future work
\item Integrates previously separate literatures
\end{itemize}
\vspace{0.5cm}
\textbf{Broader Scientific Impact:}
\begin{itemize}
\item Methodology can be applied to related domains
\item Framework generalizable to other contexts
\item Opens new research directions
\end{itemize}
\end{frame}
\begin{frame}{Practical Applications}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{Clinical/Applied:}
\begin{itemize}
\item Intervention target: W
\item Assessment tool: Measure X
\item Treatment planning: Consider Z
\item Expected benefit: Improvement in Y
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\textbf{Policy Implications:}
\begin{itemize}
\item Recommendation 1
\item Recommendation 2
\item Implementation considerations
\item Cost-benefit analysis
\end{itemize}
\end{column}
\end{columns}
\vspace{0.5cm}
\begin{exampleblock}{Translational Path}
Findings suggest feasibility of intervention targeting W to improve Y in population experiencing X
\end{exampleblock}
\end{frame}
\subsection{Limitations and Future Directions}
\begin{frame}{Limitations}
\textbf{Study Limitations:}
\begin{enumerate}
\item \textbf{Cross-sectional design}: Cannot establish causality definitively
\begin{itemize}
\item Future: Longitudinal or experimental design
\end{itemize}
\item \textbf{Sample characteristics}: University students, may limit generalizability
\begin{itemize}
\item Future: Community sample, diverse populations
\end{itemize}
\item \textbf{Measurement}: Self-report bias possible for some variables
\begin{itemize}
\item Future: Incorporate objective measures
\end{itemize}
\item \textbf{Unmeasured confounds}: Other factors could explain relationships
\begin{itemize}
\item Future: Control for additional variables
\end{itemize}
\end{enumerate}
\end{frame}
\begin{frame}{Future Research Directions}
\begin{block}{Immediate Next Steps}
\begin{itemize}
\item Replicate in independent sample
\item Test causal model experimentally
\item Examine boundary conditions
\end{itemize}
\end{block}
\vspace{0.5cm}
\textbf{Longer-Term Goals:}
\begin{itemize}
\item Develop intervention based on findings
\item Investigate neural mechanisms
\item Explore individual differences
\item Translate to applied settings
\end{itemize}
\vspace{0.5cm}
\textbf{Collaborations Sought:}
\begin{itemize}
\item Experts in domain A for validation
\item Clinical partners for translation
\item Methodologists for advanced analyses
\end{itemize}
\end{frame}
%==============================================
% CONCLUSION
%==============================================
\section{Conclusion}
\begin{frame}{Conclusions}
\begin{exampleblock}{Key Contributions}
\begin{enumerate}
\item Demonstrated robust X→Y relationship
\item Identified W as mediating mechanism
\item Showed generalizability across contexts
\item Provided framework for future research
\end{enumerate}
\end{exampleblock}
\vspace{0.5cm}
\begin{block}{Take-Home Message}
Our findings reveal that X influences Y through mechanism W, providing new understanding of this important process and suggesting potential intervention targets.
\end{block}
\vspace{0.5cm}
\textbf{Impact:}
\begin{itemize}
\item Theoretical advancement in understanding X→Y
\item Practical implications for interventions
\item Foundation for future research program
\end{itemize}
\end{frame}
\begin{frame}[plain]
\begin{center}
{\LARGE \textbf{Thank You}}
\vspace{1cm}
{\Large Questions \& Discussion}
\vspace{1.5cm}
\begin{columns}
\begin{column}{0.6\textwidth}
\textbf{Contact Information:}\\
Your Name\\
Department of Your Field\\
University Name\\
\texttt{yourname@university.edu}\\
\url{https://yourlab.university.edu}
\end{column}
\begin{column}{0.4\textwidth}
% QR code to lab website or paper
% \includegraphics[width=4cm]{qrcode_website.png}\\
% {\small Scan for more info}
\end{column}
\end{columns}
\vspace{1cm}
{\footnotesize
\textbf{Acknowledgments:}\\
Funding: NSF Grant \#12345, NIH Grant R01-67890\\
Lab Members: Person A, Person B, Person C\\
Collaborators: Prof. X (University Y), Dr. Z (Institution W)
}
\end{center}
\end{frame}
%==============================================
% BACKUP SLIDES
%==============================================
\appendix
\begin{frame}{Backup: Full Regression Table}
\begin{table}
\centering
\caption{Complete regression results with all covariates}
\footnotesize
\begin{tabular}{lcccc}
\toprule
\textbf{Predictor} & $\boldsymbol{\beta}$ & \textbf{SE} & \textbf{$t$} & \textbf{$p$} \\
\midrule
Intercept & 12.45 & 3.21 & 3.88 & < .001 \\
X (primary predictor) & 0.54 & 0.08 & 6.75 & < .001 \\
Age & 0.12 & 0.05 & 2.40 & .018 \\
Gender (female) & 2.34 & 1.12 & 2.09 & .038 \\
Education & 0.45 & 0.31 & 1.45 & .149 \\
Covariate Z & -0.18 & 0.09 & -2.00 & .047 \\
\midrule
$R^2$ & \multicolumn{4}{c}{0.35} \\
Adjusted $R^2$ & \multicolumn{4}{c}{0.32} \\
$F$(5,144) & \multicolumn{4}{c}{15.48, $p < .001$} \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}{Backup: Alternative Analysis}
\begin{figure}
\centering
% \includegraphics[width=0.75\textwidth]{sensitivity_analysis.pdf}
\framebox[0.7\textwidth][c]{[Sensitivity Analysis Results]}
\caption{Results robust across different model specifications}
\end{figure}
\end{frame}
\begin{frame}{Backup: Detailed Methods}
\textbf{Measurement Details:}
\begin{itemize}
\item \textbf{Variable X:} Scale name (Author, Year)
\begin{itemize}
\item 12 items, 5-point Likert scale
\item Cronbach's $\alpha = 0.89$
\item Example item: "Statement here"
\end{itemize}
\item \textbf{Variable Y:} Assessment tool
\begin{itemize}
\item Performance-based measure
\item Inter-rater reliability: ICC = 0.92
\item Range: 0-100
\end{itemize}
\item \textbf{Mediator W:} Experimental manipulation check
\begin{itemize}
\item Manipulation successful: $t(149) = 8.45$, $p < .001$
\item Effect size: $d = 1.38$
\end{itemize}
\end{itemize}
\end{frame}
%==============================================
% REFERENCES
%==============================================
\begin{frame}[allowframebreaks]{References}
\printbibliography
\end{frame}
\end{document}