Initial commit
This commit is contained in:
243
skills/markitdown/scripts/convert_with_ai.py
Executable file
243
skills/markitdown/scripts/convert_with_ai.py
Executable file
@@ -0,0 +1,243 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Convert documents to Markdown with AI-enhanced image descriptions.
|
||||
|
||||
This script demonstrates how to use MarkItDown with OpenRouter to generate
|
||||
detailed descriptions of images in documents (PowerPoint, PDFs with images, etc.)
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from markitdown import MarkItDown
|
||||
from openai import OpenAI
|
||||
|
||||
|
||||
# Predefined prompts for different use cases
|
||||
PROMPTS = {
|
||||
'scientific': """
|
||||
Analyze this scientific image or diagram. Provide:
|
||||
1. Type of visualization (graph, chart, microscopy, diagram, etc.)
|
||||
2. Key data points, trends, or patterns
|
||||
3. Axes labels, legends, and scales
|
||||
4. Notable features or findings
|
||||
5. Scientific context and significance
|
||||
Be precise, technical, and detailed.
|
||||
""".strip(),
|
||||
|
||||
'presentation': """
|
||||
Describe this presentation slide image. Include:
|
||||
1. Main visual elements and their arrangement
|
||||
2. Key points or messages conveyed
|
||||
3. Data or information presented
|
||||
4. Visual hierarchy and emphasis
|
||||
Keep the description clear and informative.
|
||||
""".strip(),
|
||||
|
||||
'general': """
|
||||
Describe this image in detail. Include:
|
||||
1. Main subjects and objects
|
||||
2. Visual composition and layout
|
||||
3. Text content (if any)
|
||||
4. Notable details
|
||||
5. Overall context and purpose
|
||||
Be comprehensive and accurate.
|
||||
""".strip(),
|
||||
|
||||
'data_viz': """
|
||||
Analyze this data visualization. Provide:
|
||||
1. Type of chart/graph (bar, line, scatter, pie, etc.)
|
||||
2. Variables and axes
|
||||
3. Data ranges and scales
|
||||
4. Key patterns, trends, or outliers
|
||||
5. Statistical insights
|
||||
Focus on quantitative accuracy.
|
||||
""".strip(),
|
||||
|
||||
'medical': """
|
||||
Describe this medical image. Include:
|
||||
1. Type of medical imaging (X-ray, MRI, CT, microscopy, etc.)
|
||||
2. Anatomical structures visible
|
||||
3. Notable findings or abnormalities
|
||||
4. Image quality and contrast
|
||||
5. Clinical relevance
|
||||
Be professional and precise.
|
||||
""".strip()
|
||||
}
|
||||
|
||||
|
||||
def convert_with_ai(
|
||||
input_file: Path,
|
||||
output_file: Path,
|
||||
api_key: str,
|
||||
model: str = "anthropic/claude-sonnet-4.5",
|
||||
prompt_type: str = "general",
|
||||
custom_prompt: str = None
|
||||
) -> bool:
|
||||
"""
|
||||
Convert a file to Markdown with AI image descriptions.
|
||||
|
||||
Args:
|
||||
input_file: Path to input file
|
||||
output_file: Path to output Markdown file
|
||||
api_key: OpenRouter API key
|
||||
model: Model name (default: anthropic/claude-sonnet-4.5)
|
||||
prompt_type: Type of prompt to use
|
||||
custom_prompt: Custom prompt (overrides prompt_type)
|
||||
|
||||
Returns:
|
||||
True if successful, False otherwise
|
||||
"""
|
||||
try:
|
||||
# Initialize OpenRouter client (OpenAI-compatible)
|
||||
client = OpenAI(
|
||||
api_key=api_key,
|
||||
base_url="https://openrouter.ai/api/v1"
|
||||
)
|
||||
|
||||
# Select prompt
|
||||
if custom_prompt:
|
||||
prompt = custom_prompt
|
||||
else:
|
||||
prompt = PROMPTS.get(prompt_type, PROMPTS['general'])
|
||||
|
||||
print(f"Using model: {model}")
|
||||
print(f"Prompt type: {prompt_type if not custom_prompt else 'custom'}")
|
||||
print(f"Converting: {input_file}")
|
||||
|
||||
# Create MarkItDown with AI support
|
||||
md = MarkItDown(
|
||||
llm_client=client,
|
||||
llm_model=model,
|
||||
llm_prompt=prompt
|
||||
)
|
||||
|
||||
# Convert file
|
||||
result = md.convert(str(input_file))
|
||||
|
||||
# Create output with metadata
|
||||
content = f"# {result.title or input_file.stem}\n\n"
|
||||
content += f"**Source**: {input_file.name}\n"
|
||||
content += f"**Format**: {input_file.suffix}\n"
|
||||
content += f"**AI Model**: {model}\n"
|
||||
content += f"**Prompt Type**: {prompt_type if not custom_prompt else 'custom'}\n\n"
|
||||
content += "---\n\n"
|
||||
content += result.text_content
|
||||
|
||||
# Write output
|
||||
output_file.parent.mkdir(parents=True, exist_ok=True)
|
||||
output_file.write_text(content, encoding='utf-8')
|
||||
|
||||
print(f"✓ Successfully converted to: {output_file}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
print(f"✗ Error: {str(e)}", file=sys.stderr)
|
||||
return False
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert documents to Markdown with AI-enhanced image descriptions",
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog=f"""
|
||||
Available prompt types:
|
||||
scientific - For scientific diagrams, graphs, and charts
|
||||
presentation - For presentation slides
|
||||
general - General-purpose image description
|
||||
data_viz - For data visualizations and charts
|
||||
medical - For medical imaging
|
||||
|
||||
Examples:
|
||||
# Convert a scientific paper
|
||||
python convert_with_ai.py paper.pdf output.md --prompt-type scientific
|
||||
|
||||
# Convert a presentation with custom model
|
||||
python convert_with_ai.py slides.pptx slides.md --model anthropic/claude-sonnet-4.5 --prompt-type presentation
|
||||
|
||||
# Use custom prompt with Claude Sonnet 4.5
|
||||
python convert_with_ai.py diagram.png diagram.md --model anthropic/claude-sonnet-4.5 --custom-prompt "Describe this technical diagram"
|
||||
|
||||
# Set API key via environment variable
|
||||
export OPENROUTER_API_KEY="sk-or-v1-..."
|
||||
python convert_with_ai.py image.jpg image.md
|
||||
|
||||
Environment Variables:
|
||||
OPENROUTER_API_KEY OpenRouter API key (required if not passed via --api-key)
|
||||
|
||||
Popular Models (use with --model):
|
||||
anthropic/claude-sonnet-4.5 - Claude Sonnet 4.5 (recommended, vision support)
|
||||
anthropic/claude-3.5-sonnet - Claude 3.5 Sonnet (vision support)
|
||||
openai/gpt-4o - GPT-4 Omni (vision support)
|
||||
openai/gpt-4-vision - GPT-4 Vision
|
||||
google/gemini-pro-vision - Gemini Pro Vision
|
||||
"""
|
||||
)
|
||||
|
||||
parser.add_argument('input', type=Path, help='Input file')
|
||||
parser.add_argument('output', type=Path, help='Output Markdown file')
|
||||
parser.add_argument(
|
||||
'--api-key', '-k',
|
||||
help='OpenRouter API key (or set OPENROUTER_API_KEY env var)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--model', '-m',
|
||||
default='anthropic/claude-sonnet-4.5',
|
||||
help='Model to use via OpenRouter (default: anthropic/claude-sonnet-4.5)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--prompt-type', '-t',
|
||||
choices=list(PROMPTS.keys()),
|
||||
default='general',
|
||||
help='Type of prompt to use (default: general)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--custom-prompt', '-p',
|
||||
help='Custom prompt (overrides --prompt-type)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--list-prompts', '-l',
|
||||
action='store_true',
|
||||
help='List available prompt types and exit'
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# List prompts and exit
|
||||
if args.list_prompts:
|
||||
print("Available prompt types:\n")
|
||||
for name, prompt in PROMPTS.items():
|
||||
print(f"[{name}]")
|
||||
print(prompt)
|
||||
print("\n" + "="*60 + "\n")
|
||||
sys.exit(0)
|
||||
|
||||
# Get API key
|
||||
api_key = args.api_key or os.environ.get('OPENROUTER_API_KEY')
|
||||
if not api_key:
|
||||
print("Error: OpenRouter API key required. Set OPENROUTER_API_KEY environment variable or use --api-key")
|
||||
print("Get your API key at: https://openrouter.ai/keys")
|
||||
sys.exit(1)
|
||||
|
||||
# Validate input file
|
||||
if not args.input.exists():
|
||||
print(f"Error: Input file '{args.input}' does not exist")
|
||||
sys.exit(1)
|
||||
|
||||
# Convert file
|
||||
success = convert_with_ai(
|
||||
input_file=args.input,
|
||||
output_file=args.output,
|
||||
api_key=api_key,
|
||||
model=args.model,
|
||||
prompt_type=args.prompt_type,
|
||||
custom_prompt=args.custom_prompt
|
||||
)
|
||||
|
||||
sys.exit(0 if success else 1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user