Files
gh-k-dense-ai-claude-scient…/skills/scientific-slides/assets/beamer_template_seminar.tex
2025-11-30 08:30:18 +08:00

871 lines
23 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
\documentclass[aspectratio=169,11pt]{beamer}
% Encoding
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
% Theme and colors
\usetheme{Madrid}
\usecolortheme{dolphin}
% Remove navigation symbols
\setbeamertemplate{navigation symbols}{}
% Section pages
\AtBeginSection[]{
\begin{frame}
\vfill
\centering
\begin{beamercolorbox}[sep=8pt,center,shadow=true,rounded=true]{title}
\usebeamerfont{title}\insertsectionhead\par%
\end{beamercolorbox}
\vfill
\end{frame}
}
% Graphics
\usepackage{graphicx}
\graphicspath{{./figures/}}
% Math
\usepackage{amsmath, amssymb, amsthm}
% Tables
\usepackage{booktabs}
\usepackage{multirow}
% Citations
\usepackage[style=authoryear,maxcitenames=2,backend=biber]{biblatex}
\addbibresource{references.bib}
\renewcommand*{\bibfont}{\tiny}
% Algorithms
\usepackage{algorithm}
\usepackage{algorithmic}
% Code
\usepackage{listings}
\lstset{
basicstyle=\ttfamily\small,
keywordstyle=\color{blue},
commentstyle=\color{green!60!black},
stringstyle=\color{orange},
numbers=left,
numberstyle=\tiny,
frame=single,
breaklines=true
}
% Custom colors
\definecolor{darkblue}{RGB}{0,75,135}
\definecolor{lightblue}{RGB}{100,150,200}
\setbeamercolor{structure}{fg=darkblue}
\setbeamercolor{title}{fg=darkblue}
\setbeamercolor{frametitle}{fg=darkblue}
% Title information
\title[Short Title for Footer]{Full Title of Your Research:\\Comprehensive and Descriptive}
\subtitle{Research Seminar Presentation}
\author[Your Name]{Your Name, PhD Candidate\\
Advisor: Prof. Advisor Name}
\institute[University]{
Department of Your Field\\
University Name\\
\vspace{0.2cm}
\texttt{yourname@university.edu}
}
\date{\today}
% Logo (optional)
% \logo{\includegraphics[height=0.8cm]{university_logo.png}}
\begin{document}
% Title slide
\begin{frame}[plain]
\titlepage
\end{frame}
% Outline
\begin{frame}{Outline}
\tableofcontents
\end{frame}
%==============================================
% INTRODUCTION
%==============================================
\section{Introduction}
\begin{frame}{Motivation}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{The Big Picture:}
\begin{itemize}
\item Why this research area matters
\item Real-world impact and applications
\item Current challenges in the field
\item Opportunity for advancement
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{motivation_figure.pdf}
\framebox[0.9\textwidth][c]{[Motivating Figure]}
\caption{Illustration of the problem or impact}
\end{figure}
\end{column}
\end{columns}
\vspace{0.5cm}
\begin{block}{Central Question}
How can we address this important challenge using novel approach X?
\end{block}
\end{frame}
\subsection{Background}
\begin{frame}{Prior Work: Overview}
\textbf{Historical Development:}
\begin{itemize}
\item Early work established foundation \cite{seminal1990}
\item Key advances in 2000s \cite{advance2005,advance2007}
\item Recent developments \cite{recent2020,recent2022}
\end{itemize}
\vspace{0.5cm}
\textbf{Current State of Knowledge:}
\begin{enumerate}
\item We know that X affects Y
\item Evidence suggests mechanism involves Z
\item However, questions remain about W
\end{enumerate}
\end{frame}
\begin{frame}{Knowledge Gap}
\begin{columns}[c]
\begin{column}{0.6\textwidth}
\textbf{What We Know:}
\begin{itemize}
\item Point 1: Established finding
\item Point 2: Replicated result
\item Point 3: General consensus
\end{itemize}
\vspace{0.5cm}
\textbf{What Remains Unknown:}
\begin{itemize}
\item \alert{Gap 1:} Critical unknown
\item \alert{Gap 2:} Methodological limitation
\item \alert{Gap 3:} Unexplored context
\end{itemize}
\end{column}
\begin{column}{0.4\textwidth}
\begin{alertblock}{The Problem}
Existing approaches fail to account for X, limiting our understanding of Y and preventing application to Z.
\end{alertblock}
\end{column}
\end{columns}
\end{frame}
\subsection{Research Questions}
\begin{frame}{Research Objectives}
\begin{exampleblock}{Overall Goal}
To investigate how X influences Y under conditions Z, and develop a framework for understanding mechanism W.
\end{exampleblock}
\vspace{0.5cm}
\textbf{Specific Aims:}
\begin{enumerate}
\item \textbf{Aim 1:} Characterize relationship between X and Y
\begin{itemize}
\item Hypothesis: X positively correlates with Y
\end{itemize}
\item \textbf{Aim 2:} Identify mechanism W mediating X→Y
\begin{itemize}
\item Hypothesis: W explains the X-Y relationship
\end{itemize}
\item \textbf{Aim 3:} Test generalizability to context Z
\begin{itemize}
\item Hypothesis: Effect persists across conditions
\end{itemize}
\end{enumerate}
\end{frame}
%==============================================
% METHODS
%==============================================
\section{Methods}
\subsection{Study Design}
\begin{frame}{Overall Approach}
\begin{figure}
\centering
% \includegraphics[width=0.9\textwidth]{study_design.pdf}
\framebox[0.8\textwidth][c]{[Study Design Schematic]}
\caption{Three-phase experimental design}
\end{figure}
\begin{itemize}
\item \textbf{Phase 1:} Observational study (n = 150)
\item \textbf{Phase 2:} Controlled experiment (n = 80)
\item \textbf{Phase 3:} Validation in new context (n = 120)
\end{itemize}
\end{frame}
\subsection{Participants and Materials}
\begin{frame}{Sample Characteristics}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{Inclusion Criteria:}
\begin{itemize}
\item Age 18-65 years
\item Criterion 2
\item Criterion 3
\end{itemize}
\vspace{0.3cm}
\textbf{Exclusion Criteria:}
\begin{itemize}
\item Confound 1
\item Confound 2
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{table}
\centering
\caption{Sample demographics}
\small
\begin{tabular}{lc}
\toprule
\textbf{Variable} & \textbf{Value} \\
\midrule
N & 150 \\
Age (years) & 32.5 $\pm$ 8.2 \\
Female (\%) & 58 \\
Education (years) & 15.2 $\pm$ 2.1 \\
\bottomrule
\end{tabular}
\end{table}
\end{column}
\end{columns}
\vspace{0.3cm}
\footnotesize Recruitment: University community and online platforms
\end{frame}
\subsection{Procedures}
\begin{frame}{Experimental Procedure}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{Session 1 (60 min):}
\begin{enumerate}
\item Informed consent
\item Baseline measures
\item Training phase (20 min)
\item Test phase (30 min)
\end{enumerate}
\vspace{0.5cm}
\textbf{Session 2 (45 min):}
\begin{enumerate}
\setcounter{enumi}{4}
\item Follow-up measures
\item Manipulation (15 min)
\item Final assessment (25 min)
\end{enumerate}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{procedure_timeline.pdf}
\framebox[0.9\textwidth][c]{[Timeline Diagram]}
\caption{Experimental timeline}
\end{figure}
\vspace{0.5cm}
\begin{alertblock}{Key Innovation}
Novel manipulation technique combining approach A with method B
\end{alertblock}
\end{column}
\end{columns}
\end{frame}
\subsection{Analysis}
\begin{frame}{Statistical Analysis Plan}
\textbf{Primary Analyses:}
\begin{itemize}
\item \textbf{Aim 1:} Linear regression: $Y = \beta_0 + \beta_1 X + \epsilon$
\item \textbf{Aim 2:} Mediation analysis using bootstrapping (5000 iterations)
\item \textbf{Aim 3:} Mixed-effects model accounting for context effects
\end{itemize}
\vspace{0.5cm}
\textbf{Secondary Analyses:}
\begin{itemize}
\item Sensitivity analyses with different covariates
\item Subgroup analyses by demographic factors
\item Exploratory analyses of individual differences
\end{itemize}
\vspace{0.5cm}
\begin{block}{Software}
R 4.2.1 (lme4, lavaan packages); Python 3.10 (scikit-learn); SPSS 28
\end{block}
\end{frame}
%==============================================
% RESULTS
%==============================================
\section{Results}
\subsection{Preliminary Analyses}
\begin{frame}{Data Quality and Assumptions}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{Data Screening:}
\begin{itemize}
\item Missing data: < 5\% per variable
\item Outliers: 3 cases removed
\item Assumptions: All met
\end{itemize}
\vspace{0.3cm}
\textbf{Descriptive Statistics:}
\begin{itemize}
\item Variable X: $M = 45.2$, $SD = 8.1$
\item Variable Y: $M = 67.8$, $SD = 12.3$
\item Correlation: $r = 0.54$, $p < .001$
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{descriptives.pdf}
\framebox[0.9\textwidth][c]{[Descriptive Plots]}
\caption{Variable distributions}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\subsection{Aim 1 Results}
\begin{frame}{Aim 1: X Predicts Y}
\begin{columns}[c]
\begin{column}{0.6\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{aim1_result.pdf}
\framebox[0.9\textwidth][c]{[Regression Plot]}
\caption{Relationship between X and Y ($R^2 = 0.29$, $p < .001$)}
\end{figure}
\end{column}
\begin{column}{0.4\textwidth}
\begin{table}
\centering
\caption{Regression results}
\tiny
\begin{tabular}{lccc}
\toprule
\textbf{Predictor} & $\boldsymbol{\beta}$ & \textbf{SE} & \textbf{$p$} \\
\midrule
Intercept & 12.45 & 3.21 & < .001 \\
X & 0.54 & 0.08 & < .001 \\
Age & 0.12 & 0.05 & .018 \\
Gender & 2.34 & 1.12 & .038 \\
\bottomrule
\end{tabular}
\end{table}
\vspace{0.3cm}
\begin{block}{Key Finding}
X significantly predicts Y, controlling for demographics
\end{block}
\end{column}
\end{columns}
\end{frame}
\subsection{Aim 2 Results}
\begin{frame}{Aim 2: Mediation by W}
\begin{figure}
\centering
% \includegraphics[width=0.8\textwidth]{mediation_model.pdf}
\framebox[0.7\textwidth][c]{[Mediation Diagram]}
\caption{Mediation analysis showing W mediates X→Y relationship}
\end{figure}
\begin{itemize}
\item \textbf{Direct effect:} $c' = 0.31$, $p = .021$ (reduced from $c = 0.54$)
\item \textbf{Indirect effect:} $ab = 0.23$, 95\% CI [0.14, 0.35]
\item \textbf{Proportion mediated:} 43\% of total effect
\end{itemize}
\vspace{0.3cm}
\alert{W partially mediates the relationship between X and Y}
\end{frame}
\subsection{Aim 3 Results}
\begin{frame}{Aim 3: Generalization to Context Z}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{aim3_context1.pdf}
\framebox[0.9\textwidth][c]{[Context 1]}
\caption{Original context}
\end{figure}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
% \includegraphics[width=\textwidth]{aim3_context2.pdf}
\framebox[0.9\textwidth][c]{[Context 2]}
\caption{New context Z}
\end{figure}
\end{column}
\end{columns}
\vspace{0.5cm}
\textbf{Mixed-Effects Model Results:}
\begin{itemize}
\item Main effect of X: $\beta = 0.51$, $p < .001$
\item Context × X interaction: $\beta = -0.08$, $p = .231$ (ns)
\item \alert{Effect generalizes across contexts}
\end{itemize}
\end{frame}
\subsection{Additional Analyses}
\begin{frame}{Sensitivity and Robustness Checks}
\textbf{Alternative Specifications:}
\begin{itemize}
\item Result robust to different model specifications
\item Consistent across multiple imputation methods
\item Findings hold with/without covariates
\end{itemize}
\vspace{0.5cm}
\textbf{Subgroup Analyses:}
\begin{table}
\centering
\caption{Effect sizes by subgroup}
\small
\begin{tabular}{lccc}
\toprule
\textbf{Subgroup} & \textbf{$n$} & $\boldsymbol{\beta}$ & \textbf{$p$} \\
\midrule
Young (< 30) & 67 & 0.58 & < .001 \\
Older ($\geq$ 30) & 83 & 0.49 & < .001 \\
Male & 63 & 0.52 & < .001 \\
Female & 87 & 0.55 & < .001 \\
\bottomrule
\end{tabular}
\end{table}
Effect consistent across demographic groups
\end{frame}
%==============================================
% DISCUSSION
%==============================================
\section{Discussion}
\subsection{Summary of Findings}
\begin{frame}{Key Results Recap}
\begin{exampleblock}{Main Findings}
\begin{enumerate}
\item X significantly predicts Y ($\beta = 0.54$, $p < .001$), explaining 29\% of variance
\item W mediates 43\% of the X→Y relationship
\item Effect generalizes to new context Z
\item Results robust across subgroups and specifications
\end{enumerate}
\end{exampleblock}
\vspace{0.5cm}
\textbf{These findings:}
\begin{itemize}
\item Support our hypotheses
\item Provide evidence for mechanism W
\item Extend previous work to new domains
\item Have implications for theory and practice
\end{itemize}
\end{frame}
\subsection{Interpretation}
\begin{frame}{Relation to Previous Research}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{Consistent With:}
\begin{itemize}
\item Prior findings on X→Y \cite{jones2020}
\item Theoretical predictions \cite{smith2019}
\item Meta-analytic trends \cite{meta2021}
\end{itemize}
\vspace{0.5cm}
\textbf{Extensions Beyond:}
\begin{itemize}
\item Identifies mechanism W (new)
\item Tests in context Z (novel)
\item Larger sample than prior work
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\textbf{Resolves Contradictions:}
\begin{itemize}
\item Explains why Study A found X
\item Reconciles Studies B and C
\item Clarifies conditions for effect
\end{itemize}
\vspace{0.5cm}
\begin{alertblock}{Novel Contribution}
First study to demonstrate W as mediator and show generalization to Z
\end{alertblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Mechanisms and Explanations}
\textbf{Why does X affect Y through W?}
\vspace{0.3cm}
\begin{enumerate}
\item<1-> \textbf{Hypothesis 1:} X activates process W
\begin{itemize}
\item<1-> Evidence: Temporal precedence in data
\item<1-> Consistent with neurobiological models
\end{itemize}
\vspace{0.3cm}
\item<2-> \textbf{Hypothesis 2:} W is necessary for Y
\begin{itemize}
\item<2-> Evidence: Mediation analysis results
\item<2-> Supported by experimental manipulations
\end{itemize}
\vspace{0.3cm}
\item<3-> \textbf{Integrated Model:} X → W → Y pathway
\begin{itemize}
\item<3-> Explains 43\% of total effect
\item<3-> Other pathways remain to be identified
\end{itemize}
\end{enumerate}
\end{frame}
\subsection{Implications}
\begin{frame}{Theoretical Implications}
\textbf{Advances to Theory:}
\begin{itemize}
\item Refines existing framework by identifying W
\item Suggests revision of Model XYZ
\item Provides testable predictions for future work
\item Integrates previously separate literatures
\end{itemize}
\vspace{0.5cm}
\textbf{Broader Scientific Impact:}
\begin{itemize}
\item Methodology can be applied to related domains
\item Framework generalizable to other contexts
\item Opens new research directions
\end{itemize}
\end{frame}
\begin{frame}{Practical Applications}
\begin{columns}[T]
\begin{column}{0.5\textwidth}
\textbf{Clinical/Applied:}
\begin{itemize}
\item Intervention target: W
\item Assessment tool: Measure X
\item Treatment planning: Consider Z
\item Expected benefit: Improvement in Y
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\textbf{Policy Implications:}
\begin{itemize}
\item Recommendation 1
\item Recommendation 2
\item Implementation considerations
\item Cost-benefit analysis
\end{itemize}
\end{column}
\end{columns}
\vspace{0.5cm}
\begin{exampleblock}{Translational Path}
Findings suggest feasibility of intervention targeting W to improve Y in population experiencing X
\end{exampleblock}
\end{frame}
\subsection{Limitations and Future Directions}
\begin{frame}{Limitations}
\textbf{Study Limitations:}
\begin{enumerate}
\item \textbf{Cross-sectional design}: Cannot establish causality definitively
\begin{itemize}
\item Future: Longitudinal or experimental design
\end{itemize}
\item \textbf{Sample characteristics}: University students, may limit generalizability
\begin{itemize}
\item Future: Community sample, diverse populations
\end{itemize}
\item \textbf{Measurement}: Self-report bias possible for some variables
\begin{itemize}
\item Future: Incorporate objective measures
\end{itemize}
\item \textbf{Unmeasured confounds}: Other factors could explain relationships
\begin{itemize}
\item Future: Control for additional variables
\end{itemize}
\end{enumerate}
\end{frame}
\begin{frame}{Future Research Directions}
\begin{block}{Immediate Next Steps}
\begin{itemize}
\item Replicate in independent sample
\item Test causal model experimentally
\item Examine boundary conditions
\end{itemize}
\end{block}
\vspace{0.5cm}
\textbf{Longer-Term Goals:}
\begin{itemize}
\item Develop intervention based on findings
\item Investigate neural mechanisms
\item Explore individual differences
\item Translate to applied settings
\end{itemize}
\vspace{0.5cm}
\textbf{Collaborations Sought:}
\begin{itemize}
\item Experts in domain A for validation
\item Clinical partners for translation
\item Methodologists for advanced analyses
\end{itemize}
\end{frame}
%==============================================
% CONCLUSION
%==============================================
\section{Conclusion}
\begin{frame}{Conclusions}
\begin{exampleblock}{Key Contributions}
\begin{enumerate}
\item Demonstrated robust X→Y relationship
\item Identified W as mediating mechanism
\item Showed generalizability across contexts
\item Provided framework for future research
\end{enumerate}
\end{exampleblock}
\vspace{0.5cm}
\begin{block}{Take-Home Message}
Our findings reveal that X influences Y through mechanism W, providing new understanding of this important process and suggesting potential intervention targets.
\end{block}
\vspace{0.5cm}
\textbf{Impact:}
\begin{itemize}
\item Theoretical advancement in understanding X→Y
\item Practical implications for interventions
\item Foundation for future research program
\end{itemize}
\end{frame}
\begin{frame}[plain]
\begin{center}
{\LARGE \textbf{Thank You}}
\vspace{1cm}
{\Large Questions \& Discussion}
\vspace{1.5cm}
\begin{columns}
\begin{column}{0.6\textwidth}
\textbf{Contact Information:}\\
Your Name\\
Department of Your Field\\
University Name\\
\texttt{yourname@university.edu}\\
\url{https://yourlab.university.edu}
\end{column}
\begin{column}{0.4\textwidth}
% QR code to lab website or paper
% \includegraphics[width=4cm]{qrcode_website.png}\\
% {\small Scan for more info}
\end{column}
\end{columns}
\vspace{1cm}
{\footnotesize
\textbf{Acknowledgments:}\\
Funding: NSF Grant \#12345, NIH Grant R01-67890\\
Lab Members: Person A, Person B, Person C\\
Collaborators: Prof. X (University Y), Dr. Z (Institution W)
}
\end{center}
\end{frame}
%==============================================
% BACKUP SLIDES
%==============================================
\appendix
\begin{frame}{Backup: Full Regression Table}
\begin{table}
\centering
\caption{Complete regression results with all covariates}
\footnotesize
\begin{tabular}{lcccc}
\toprule
\textbf{Predictor} & $\boldsymbol{\beta}$ & \textbf{SE} & \textbf{$t$} & \textbf{$p$} \\
\midrule
Intercept & 12.45 & 3.21 & 3.88 & < .001 \\
X (primary predictor) & 0.54 & 0.08 & 6.75 & < .001 \\
Age & 0.12 & 0.05 & 2.40 & .018 \\
Gender (female) & 2.34 & 1.12 & 2.09 & .038 \\
Education & 0.45 & 0.31 & 1.45 & .149 \\
Covariate Z & -0.18 & 0.09 & -2.00 & .047 \\
\midrule
$R^2$ & \multicolumn{4}{c}{0.35} \\
Adjusted $R^2$ & \multicolumn{4}{c}{0.32} \\
$F$(5,144) & \multicolumn{4}{c}{15.48, $p < .001$} \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}{Backup: Alternative Analysis}
\begin{figure}
\centering
% \includegraphics[width=0.75\textwidth]{sensitivity_analysis.pdf}
\framebox[0.7\textwidth][c]{[Sensitivity Analysis Results]}
\caption{Results robust across different model specifications}
\end{figure}
\end{frame}
\begin{frame}{Backup: Detailed Methods}
\textbf{Measurement Details:}
\begin{itemize}
\item \textbf{Variable X:} Scale name (Author, Year)
\begin{itemize}
\item 12 items, 5-point Likert scale
\item Cronbach's $\alpha = 0.89$
\item Example item: "Statement here"
\end{itemize}
\item \textbf{Variable Y:} Assessment tool
\begin{itemize}
\item Performance-based measure
\item Inter-rater reliability: ICC = 0.92
\item Range: 0-100
\end{itemize}
\item \textbf{Mediator W:} Experimental manipulation check
\begin{itemize}
\item Manipulation successful: $t(149) = 8.45$, $p < .001$
\item Effect size: $d = 1.38$
\end{itemize}
\end{itemize}
\end{frame}
%==============================================
% REFERENCES
%==============================================
\begin{frame}[allowframebreaks]{References}
\printbibliography
\end{frame}
\end{document}