10 KiB
10 KiB
MarkItDown Example Usage
This document provides practical examples of using MarkItDown in various scenarios.
Basic Examples
1. Simple File Conversion
from markitdown import MarkItDown
md = MarkItDown()
# Convert a PDF
result = md.convert("research_paper.pdf")
print(result.text_content)
# Convert a Word document
result = md.convert("manuscript.docx")
print(result.text_content)
# Convert a PowerPoint
result = md.convert("presentation.pptx")
print(result.text_content)
2. Save to File
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("document.pdf")
with open("output.md", "w", encoding="utf-8") as f:
f.write(result.text_content)
3. Convert from Stream
from markitdown import MarkItDown
md = MarkItDown()
with open("document.pdf", "rb") as f:
result = md.convert_stream(f, file_extension=".pdf")
print(result.text_content)
Scientific Workflows
Convert Research Papers
from markitdown import MarkItDown
from pathlib import Path
md = MarkItDown()
# Convert all papers in a directory
papers_dir = Path("research_papers/")
output_dir = Path("markdown_papers/")
output_dir.mkdir(exist_ok=True)
for paper in papers_dir.glob("*.pdf"):
result = md.convert(str(paper))
# Save with original filename
output_file = output_dir / f"{paper.stem}.md"
output_file.write_text(result.text_content)
print(f"Converted: {paper.name}")
Extract Tables from Excel
from markitdown import MarkItDown
md = MarkItDown()
# Convert Excel to Markdown tables
result = md.convert("experimental_data.xlsx")
# The result contains Markdown-formatted tables
print(result.text_content)
# Save for further processing
with open("data_tables.md", "w") as f:
f.write(result.text_content)
Process Presentation Slides
from markitdown import MarkItDown
from openai import OpenAI
# With AI descriptions for images
client = OpenAI()
md = MarkItDown(
llm_client=client,
llm_model="anthropic/claude-sonnet-4.5",
llm_prompt="Describe this scientific slide, focusing on data and key findings"
)
result = md.convert("conference_talk.pptx")
# Save with metadata
output = f"""# Conference Talk
{result.text_content}
"""
with open("talk_notes.md", "w") as f:
f.write(output)
AI-Enhanced Conversions
Detailed Image Descriptions
from markitdown import MarkItDown
from openai import OpenAI
# Initialize OpenRouter client
client = OpenAI(
api_key="your-openrouter-api-key",
base_url="https://openrouter.ai/api/v1"
)
# Scientific diagram analysis
scientific_prompt = """
Analyze this scientific figure. Describe:
- Type of visualization (graph, microscopy, diagram, etc.)
- Key data points and trends
- Axes, labels, and legends
- Scientific significance
Be technical and precise.
"""
md = MarkItDown(
llm_client=client,
llm_model="anthropic/claude-sonnet-4.5", # recommended for scientific vision
llm_prompt=scientific_prompt
)
# Convert paper with figures
result = md.convert("paper_with_figures.pdf")
print(result.text_content)
Different Prompts for Different Files
from markitdown import MarkItDown
from openai import OpenAI
# Initialize OpenRouter client
client = OpenAI(
api_key="your-openrouter-api-key",
base_url="https://openrouter.ai/api/v1"
)
# Scientific papers - use Claude for technical analysis
scientific_md = MarkItDown(
llm_client=client,
llm_model="anthropic/claude-sonnet-4.5",
llm_prompt="Describe scientific figures with technical precision"
)
# Presentations - use GPT-4o for visual understanding
presentation_md = MarkItDown(
llm_client=client,
llm_model="anthropic/claude-sonnet-4.5",
llm_prompt="Summarize slide content and key visual elements"
)
# Use appropriate instance for each file
paper_result = scientific_md.convert("research.pdf")
slides_result = presentation_md.convert("talk.pptx")
Batch Processing
Process Multiple Files
from markitdown import MarkItDown
from pathlib import Path
md = MarkItDown()
files_to_convert = [
"paper1.pdf",
"data.xlsx",
"presentation.pptx",
"notes.docx"
]
for file in files_to_convert:
try:
result = md.convert(file)
output = Path(file).stem + ".md"
with open(output, "w") as f:
f.write(result.text_content)
print(f"✓ {file} -> {output}")
except Exception as e:
print(f"✗ Error converting {file}: {e}")
Parallel Processing
from markitdown import MarkItDown
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor
def convert_file(filepath):
md = MarkItDown()
result = md.convert(filepath)
output = Path(filepath).stem + ".md"
with open(output, "w") as f:
f.write(result.text_content)
return filepath, output
files = list(Path("documents/").glob("*.pdf"))
with ThreadPoolExecutor(max_workers=4) as executor:
results = executor.map(convert_file, [str(f) for f in files])
for input_file, output_file in results:
print(f"Converted: {input_file} -> {output_file}")
Integration Examples
Literature Review Pipeline
from markitdown import MarkItDown
from pathlib import Path
import json
md = MarkItDown()
# Convert papers and create metadata
papers_dir = Path("literature/")
output_dir = Path("literature_markdown/")
output_dir.mkdir(exist_ok=True)
catalog = []
for paper in papers_dir.glob("*.pdf"):
result = md.convert(str(paper))
# Save Markdown
md_file = output_dir / f"{paper.stem}.md"
md_file.write_text(result.text_content)
# Store metadata
catalog.append({
"title": result.title or paper.stem,
"source": paper.name,
"markdown": str(md_file),
"word_count": len(result.text_content.split())
})
# Save catalog
with open(output_dir / "catalog.json", "w") as f:
json.dump(catalog, f, indent=2)
Data Extraction Pipeline
from markitdown import MarkItDown
import re
md = MarkItDown()
# Convert Excel data to Markdown
result = md.convert("experimental_results.xlsx")
# Extract tables (Markdown tables start with |)
tables = []
current_table = []
in_table = False
for line in result.text_content.split('\n'):
if line.strip().startswith('|'):
in_table = True
current_table.append(line)
elif in_table:
if current_table:
tables.append('\n'.join(current_table))
current_table = []
in_table = False
# Process each table
for i, table in enumerate(tables):
print(f"Table {i+1}:")
print(table)
print("\n" + "="*50 + "\n")
YouTube Transcript Analysis
from markitdown import MarkItDown
md = MarkItDown()
# Get transcript
video_url = "https://www.youtube.com/watch?v=VIDEO_ID"
result = md.convert(video_url)
# Save transcript
with open("lecture_transcript.md", "w") as f:
f.write(f"# Lecture Transcript\n\n")
f.write(f"**Source**: {video_url}\n\n")
f.write(result.text_content)
Error Handling
Robust Conversion
from markitdown import MarkItDown
from pathlib import Path
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
md = MarkItDown()
def safe_convert(filepath):
"""Convert file with error handling."""
try:
result = md.convert(filepath)
output = Path(filepath).stem + ".md"
with open(output, "w") as f:
f.write(result.text_content)
logger.info(f"Successfully converted {filepath}")
return True
except FileNotFoundError:
logger.error(f"File not found: {filepath}")
return False
except ValueError as e:
logger.error(f"Invalid file format for {filepath}: {e}")
return False
except Exception as e:
logger.error(f"Unexpected error converting {filepath}: {e}")
return False
# Use it
files = ["paper.pdf", "data.xlsx", "slides.pptx"]
results = [safe_convert(f) for f in files]
print(f"Successfully converted {sum(results)}/{len(files)} files")
Advanced Use Cases
Custom Metadata Extraction
from markitdown import MarkItDown
import re
from datetime import datetime
md = MarkItDown()
def convert_with_metadata(filepath):
result = md.convert(filepath)
# Extract metadata from content
metadata = {
"file": filepath,
"title": result.title,
"converted_at": datetime.now().isoformat(),
"word_count": len(result.text_content.split()),
"char_count": len(result.text_content)
}
# Try to find author
author_match = re.search(r'(?:Author|By):\s*(.+?)(?:\n|$)', result.text_content)
if author_match:
metadata["author"] = author_match.group(1).strip()
# Create formatted output
output = f"""---
title: {metadata['title']}
author: {metadata.get('author', 'Unknown')}
source: {metadata['file']}
converted: {metadata['converted_at']}
words: {metadata['word_count']}
---
{result.text_content}
"""
return output, metadata
# Use it
content, meta = convert_with_metadata("paper.pdf")
print(meta)
Format-Specific Processing
from markitdown import MarkItDown
from pathlib import Path
md = MarkItDown()
def process_by_format(filepath):
path = Path(filepath)
result = md.convert(filepath)
if path.suffix == '.pdf':
# Add PDF-specific metadata
output = f"# PDF Document: {path.stem}\n\n"
output += result.text_content
elif path.suffix == '.xlsx':
# Add table count
table_count = result.text_content.count('|---')
output = f"# Excel Data: {path.stem}\n\n"
output += f"**Tables**: {table_count}\n\n"
output += result.text_content
elif path.suffix == '.pptx':
# Add slide count
slide_count = result.text_content.count('## Slide')
output = f"# Presentation: {path.stem}\n\n"
output += f"**Slides**: {slide_count}\n\n"
output += result.text_content
else:
output = result.text_content
return output
# Use it
content = process_by_format("presentation.pptx")
print(content)