% NeurIPS Conference Paper Template % For submission to Neural Information Processing Systems (NeurIPS) % Last updated: 2024 % Note: Use the official neurips_2024.sty file from the conference website \documentclass{article} % Required packages (neurips_2024.sty provides most formatting) \usepackage{neurips_2024} % Official NeurIPS style file (download from conference site) % Recommended packages \usepackage{amsmath} \usepackage{amssymb} \usepackage{amsthm} \usepackage{graphicx} \usepackage{algorithm} \usepackage{algorithmic} \usepackage{hyperref} \usepackage{url} \usepackage{booktabs} % For better tables \usepackage{multirow} \usepackage{microtype} % Improved typography % Theorems, lemmas, etc. \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{proposition}{Proposition} \newtheorem{corollary}{Corollary} \newtheorem{definition}{Definition} % Title and Authors \title{Your Paper Title: Concise and Descriptive \\ (Maximum Two Lines)} % Authors - ANONYMIZED for initial submission % For initial submission (double-blind review): \author{ Anonymous Authors \\ Anonymous Institution(s) \\ } % For camera-ready version (after acceptance): % \author{ % First Author \\ % Department of Computer Science \\ % University Name \\ % City, State, Postal Code \\ % \texttt{first.author@university.edu} \\ % \And % Second Author \\ % Company/Institution Name \\ % Address \\ % \texttt{second.author@company.com} \\ % \And % Third Author \\ % Institution \\ % \texttt{third.author@institution.edu} % } \begin{document} \maketitle \begin{abstract} Write a concise abstract (150-250 words) summarizing your contributions. The abstract should clearly state: (1) the problem you address, (2) your approach/method, (3) key results/findings, and (4) significance/implications. Make it accessible to a broad machine learning audience. \end{abstract} \section{Introduction} \label{sec:introduction} Introduce the problem you're addressing and its significance in machine learning or AI. Motivate why this problem is important and challenging. \subsection{Background and Motivation} Provide necessary background for understanding your work. Explain the gap in current methods or knowledge. \subsection{Contributions} Clearly state your main contributions as a bulleted list: \begin{itemize} \item First contribution: e.g., "We propose a novel architecture for..." \item Second contribution: e.g., "We provide theoretical analysis showing..." \item Third contribution: e.g., "We demonstrate state-of-the-art performance on..." \end{itemize} \subsection{Paper Organization} Briefly describe the structure of the remainder of the paper. \section{Related Work} \label{sec:related} Discuss relevant prior work and how your work differs. Organize by themes or approaches rather than chronologically. Be fair and accurate in describing others' work. Cite key papers \cite{lecun2015deep, vaswani2017attention, devlin2019bert} and explain how your work builds upon or differs from them. \section{Problem Formulation} \label{sec:problem} Formally define the problem you're solving. Include mathematical notation and definitions. \subsection{Notation} Define your notation clearly. For example: \begin{itemize} \item $\mathcal{X}$: input space \item $\mathcal{Y}$: output space \item $f: \mathcal{X} \rightarrow \mathcal{Y}$: function to learn \item $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$: training dataset \end{itemize} \subsection{Objective} State your learning objective formally, e.g.: \begin{equation} \min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[ \mathcal{L}(f_\theta(x), y) \right] \end{equation} where $\mathcal{L}$ is the loss function and $\theta$ are model parameters. \section{Method} \label{sec:method} Describe your proposed method in detail. This is the core technical contribution of your paper. \subsection{Model Architecture} Describe the architecture of your model with sufficient detail for reproduction. Include figures if helpful. \begin{figure}[t] \centering % \includegraphics[width=0.8\textwidth]{architecture.pdf} \caption{Model architecture diagram. Describe the key components and data flow. Use colorblind-safe colors.} \label{fig:architecture} \end{figure} \subsection{Training Procedure} Explain how you train the model, including: \begin{algorithm}[t] \caption{Training Algorithm} \label{alg:training} \begin{algorithmic}[1] \STATE \textbf{Input:} Training data $\mathcal{D}$, learning rate $\alpha$ \STATE \textbf{Output:} Trained parameters $\theta$ \STATE Initialize $\theta$ randomly \FOR{epoch $= 1$ to $T$} \FOR{batch $(x, y)$ in $\mathcal{D}$} \STATE Compute loss: $\mathcal{L} = \mathcal{L}(f_\theta(x), y)$ \STATE Update: $\theta \leftarrow \theta - \alpha \nabla_\theta \mathcal{L}$ \ENDFOR \ENDFOR \RETURN $\theta$ \end{algorithmic} \end{algorithm} \subsection{Key Components} Describe key technical innovations or components in detail. \section{Theoretical Analysis} \label{sec:theory} If applicable, provide theoretical analysis of your method. \begin{theorem} \label{thm:main} State your main theoretical result here. \end{theorem} \begin{proof} Provide proof or sketch of proof. Full proofs can go in the appendix. \end{proof} \section{Experiments} \label{sec:experiments} Describe your experimental setup and results. \subsection{Experimental Setup} \textbf{Datasets:} Describe datasets used (e.g., ImageNet, CIFAR-10, etc.). \textbf{Baselines:} List baseline methods for comparison. \textbf{Implementation Details:} Provide implementation details including hyperparameters, hardware, training time. \textbf{Evaluation Metrics:} Define metrics used (accuracy, F1, AUC, etc.). \subsection{Main Results} Present your main experimental results. \begin{table}[t] \centering \caption{Performance comparison on benchmark datasets. Bold indicates best performance. Results reported as mean ± std over 3 runs.} \label{tab:main_results} \begin{tabular}{lcccc} \toprule Method & Dataset 1 & Dataset 2 & Dataset 3 & Average \\ \midrule Baseline 1 & 85.3 ± 0.5 & 72.1 ± 0.8 & 90.2 ± 0.3 & 82.5 \\ Baseline 2 & 87.2 ± 0.4 & 74.5 ± 0.6 & 91.1 ± 0.5 & 84.3 \\ \textbf{Our Method} & \textbf{91.7 ± 0.3} & \textbf{79.8 ± 0.5} & \textbf{94.3 ± 0.2} & \textbf{88.6} \\ \bottomrule \end{tabular} \end{table} \subsection{Ablation Studies} Conduct ablation studies to understand which components contribute to performance. \subsection{Analysis} Provide deeper analysis of results, failure cases, limitations, etc. \section{Discussion} \label{sec:discussion} Discuss your findings, limitations, and broader implications. \subsection{Limitations} Honestly acknowledge limitations of your work. \subsection{Broader Impacts} Discuss potential positive and negative societal impacts (required by NeurIPS). \section{Conclusion} \label{sec:conclusion} Summarize your main contributions and findings. Suggest future research directions. % Acknowledgments (add after acceptance, not in submission version) \section*{Acknowledgments} Thank collaborators, funding sources (with grant numbers), and compute resources. Not included in double-blind submission. % References \bibliographystyle{plainnat} % or other NeurIPS-compatible style \bibliography{references} % Your .bib file % Appendix (optional, unlimited pages) \appendix \section{Additional Proofs} \label{app:proofs} Provide full proofs of theorems here. \section{Additional Experimental Results} \label{app:experiments} Include additional experiments, more ablations, qualitative results, etc. \section{Hyperparameters} \label{app:hyperparameters} List all hyperparameters used in experiments for reproducibility. \begin{table}[h] \centering \caption{Hyperparameters used in all experiments} \begin{tabular}{ll} \toprule Hyperparameter & Value \\ \midrule Learning rate & 0.001 \\ Batch size & 64 \\ Optimizer & Adam \\ Weight decay & 0.0001 \\ Epochs & 100 \\ \bottomrule \end{tabular} \end{table} \section{Code and Data} \label{app:code} Provide links to code repository (anonymized for review, e.g., anonymous GitHub): \begin{itemize} \item Code: \url{https://anonymous.4open.science/r/project-XXXX} \item Data: Available upon request / at [repository] \end{itemize} \end{document} % Notes for Authors: % 1. Main paper: 8 pages maximum (excluding references and appendix) % 2. References: unlimited pages % 3. Appendix: unlimited pages (reviewed at discretion of reviewers) % 4. Use double-blind anonymization for initial submission % 5. Include broader impact statement % 6. Code submission strongly encouraged (anonymous for review) % 7. Use official neurips_2024.sty file (download from NeurIPS website) % 8. Font: Times, 10pt (enforced by style file) % 9. Figures should be colorblind-friendly % 10. Ensure reproducibility: report seeds, hyperparameters, dataset splits