Initial commit
This commit is contained in:
171
skills/venue-templates/assets/journals/nature_article.tex
Normal file
171
skills/venue-templates/assets/journals/nature_article.tex
Normal file
@@ -0,0 +1,171 @@
|
||||
% Nature Journal Article Template
|
||||
% For submission to Nature family journals
|
||||
% Last updated: 2024
|
||||
|
||||
\documentclass[12pt]{article}
|
||||
|
||||
% Packages
|
||||
\usepackage[margin=2.5cm]{geometry}
|
||||
\usepackage{times}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{lineno} % Line numbers for review
|
||||
\usepackage[super]{natbib} % Superscript citations
|
||||
|
||||
% Line numbering (required for submission)
|
||||
\linenumbers
|
||||
|
||||
% Title and Authors
|
||||
\title{Insert Your Title Here: Concise and Descriptive}
|
||||
|
||||
\author{
|
||||
First Author\textsuperscript{1}, Second Author\textsuperscript{1,2}, Third Author\textsuperscript{2,*}
|
||||
}
|
||||
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
% Affiliations
|
||||
\noindent
|
||||
\textsuperscript{1}Department Name, Institution Name, City, State/Province, Postal Code, Country \\
|
||||
\textsuperscript{2}Second Department/Institution \\
|
||||
\textsuperscript{*}Correspondence: [email protected]
|
||||
|
||||
% Abstract
|
||||
\begin{abstract}
|
||||
\noindent
|
||||
Write a concise abstract of 150-200 words summarizing the main findings, significance, and conclusions of your work. The abstract should be self-contained and understandable without reading the full paper. Focus on what you did, what you found, and why it matters. Avoid jargon and abbreviations where possible.
|
||||
\end{abstract}
|
||||
|
||||
% Main Text
|
||||
\section*{Introduction}
|
||||
% 2-3 paragraphs setting the context
|
||||
Provide background on the research area, establish the importance of the problem, and identify the knowledge gap your work addresses. Nature papers should emphasize broad significance beyond a narrow specialty.
|
||||
|
||||
State your main research question or objective clearly.
|
||||
|
||||
Briefly preview your approach and key findings.
|
||||
|
||||
\section*{Results}
|
||||
% Primary results section
|
||||
% Organize by finding, not by experiment
|
||||
% Reference figures/tables as you describe results
|
||||
|
||||
\subsection*{First major finding}
|
||||
Describe your first key result. Reference Figure~\ref{fig:example} to support your findings.
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
% Include your figure here
|
||||
% \includegraphics[width=0.7\textwidth]{figure1.pdf}
|
||||
\caption{{\bf Figure title in bold.} Detailed figure caption explaining what is shown, experimental conditions, sample sizes (n), statistical tests, and significance levels. Panels should be labeled (a), (b), etc. if multiple panels are present.}
|
||||
\label{fig:example}
|
||||
\end{figure}
|
||||
|
||||
\subsection*{Second major finding}
|
||||
Describe your second key result objectively, without interpretation.
|
||||
|
||||
\subsection*{Third major finding}
|
||||
Describe additional results as needed.
|
||||
|
||||
\section*{Discussion}
|
||||
% Interpret results, compare to literature, acknowledge limitations
|
||||
|
||||
\subsection*{Main findings and interpretation}
|
||||
Summarize your key findings and explain their significance. How do they advance our understanding?
|
||||
|
||||
\subsection*{Comparison to previous work}
|
||||
Compare and contrast your results with existing literature\cite{example2023}.
|
||||
|
||||
\subsection*{Implications}
|
||||
Discuss the broader implications of your work for the field and beyond.
|
||||
|
||||
\subsection*{Limitations and future directions}
|
||||
Honestly acknowledge limitations and suggest future research directions.
|
||||
|
||||
\section*{Conclusions}
|
||||
Provide a concise conclusion summarizing the main take-home messages of your work.
|
||||
|
||||
\section*{Methods}
|
||||
% Detailed methods allowing reproducibility
|
||||
% Can be placed after main text in Nature
|
||||
|
||||
\subsection*{Experimental design}
|
||||
Describe overall experimental design, including controls.
|
||||
|
||||
\subsection*{Sample preparation}
|
||||
Detail procedures for sample collection, preparation, and handling.
|
||||
|
||||
\subsection*{Data collection}
|
||||
Describe instrumentation, measurement procedures, and data collection protocols.
|
||||
|
||||
\subsection*{Data analysis}
|
||||
Explain analytical methods, statistical tests, and software used. State sample sizes, replication, and significance thresholds.
|
||||
|
||||
\subsection*{Ethical approval}
|
||||
Include relevant ethical approval statements (human subjects, animal use, biosafety).
|
||||
|
||||
\section*{Data availability}
|
||||
State where data supporting the findings can be accessed (repository, supplementary files, available on request).
|
||||
|
||||
\section*{Code availability}
|
||||
If applicable, provide information on code availability (GitHub, Zenodo, etc.).
|
||||
|
||||
\section*{Acknowledgements}
|
||||
Acknowledge funding sources, technical assistance, and other contributions. List grant numbers.
|
||||
|
||||
\section*{Author contributions}
|
||||
Describe contributions of each author using CRediT taxonomy or similar (conceptualization, methodology, investigation, writing, etc.).
|
||||
|
||||
\section*{Competing interests}
|
||||
Declare any financial or non-financial competing interests. If none, state "The authors declare no competing interests."
|
||||
|
||||
% References
|
||||
\bibliographystyle{naturemag} % Nature bibliography style
|
||||
\bibliography{references} % Your .bib file
|
||||
|
||||
% Alternatively, manually format references:
|
||||
\begin{thebibliography}{99}
|
||||
|
||||
\bibitem{example2023}
|
||||
Smith, J. D., Jones, M. L. \& Williams, K. R. Groundbreaking discovery in the field. \textit{Nature} \textbf{600}, 123--130 (2023).
|
||||
|
||||
\bibitem{author2022}
|
||||
Author, A. A. \& Coauthor, B. B. Another important paper. \textit{Nat. Methods} \textbf{19}, 456--
|
||||
|
||||
460 (2022).
|
||||
|
||||
% Add more references as needed
|
||||
|
||||
\end{thebibliography}
|
||||
|
||||
% Figure Legends (if not included with figures)
|
||||
\section*{Figure Legends}
|
||||
|
||||
\textbf{Figure 1 | Figure title.} Comprehensive figure legend describing all panels, experimental conditions, sample sizes, and statistical analyses.
|
||||
|
||||
\textbf{Figure 2 | Second figure title.} Another detailed legend.
|
||||
|
||||
% Extended Data Figures (optional - supplementary figures)
|
||||
\section*{Extended Data}
|
||||
|
||||
\textbf{Extended Data Figure 1 | Supplementary data title.} Description of supplementary figure supporting main findings.
|
||||
|
||||
\end{document}
|
||||
|
||||
% Notes for Authors:
|
||||
% 1. Nature articles are typically ~3,000 words excluding Methods, References, Figure Legends
|
||||
% 2. Use superscript numbered citations (1, 2, 3)
|
||||
% 3. Figures should be high resolution (300+ dpi for photos, 1000 dpi for line art)
|
||||
% 4. Submit figures as separate files (TIFF, EPS, or PDF)
|
||||
% 5. Double-space the manuscript for review
|
||||
% 6. Include line numbers using \linenumbers
|
||||
% 7. Follow Nature's specific author guidelines for your target journal
|
||||
% 8. Methods section can be quite detailed and placed after main text
|
||||
% 9. Check word limits and specific requirements for your Nature family journal
|
||||
|
||||
283
skills/venue-templates/assets/journals/neurips_article.tex
Normal file
283
skills/venue-templates/assets/journals/neurips_article.tex
Normal file
@@ -0,0 +1,283 @@
|
||||
% NeurIPS Conference Paper Template
|
||||
% For submission to Neural Information Processing Systems (NeurIPS)
|
||||
% Last updated: 2024
|
||||
% Note: Use the official neurips_2024.sty file from the conference website
|
||||
|
||||
\documentclass{article}
|
||||
|
||||
% Required packages (neurips_2024.sty provides most formatting)
|
||||
\usepackage{neurips_2024} % Official NeurIPS style file (download from conference site)
|
||||
|
||||
% Recommended packages
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{amsthm}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{algorithm}
|
||||
\usepackage{algorithmic}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{url}
|
||||
\usepackage{booktabs} % For better tables
|
||||
\usepackage{multirow}
|
||||
\usepackage{microtype} % Improved typography
|
||||
|
||||
% Theorems, lemmas, etc.
|
||||
\newtheorem{theorem}{Theorem}
|
||||
\newtheorem{lemma}{Lemma}
|
||||
\newtheorem{proposition}{Proposition}
|
||||
\newtheorem{corollary}{Corollary}
|
||||
\newtheorem{definition}{Definition}
|
||||
|
||||
% Title and Authors
|
||||
\title{Your Paper Title: Concise and Descriptive \\ (Maximum Two Lines)}
|
||||
|
||||
% Authors - ANONYMIZED for initial submission
|
||||
% For initial submission (double-blind review):
|
||||
\author{
|
||||
Anonymous Authors \\
|
||||
Anonymous Institution(s) \\
|
||||
}
|
||||
|
||||
% For camera-ready version (after acceptance):
|
||||
% \author{
|
||||
% First Author \\
|
||||
% Department of Computer Science \\
|
||||
% University Name \\
|
||||
% City, State, Postal Code \\
|
||||
% \texttt{first.author@university.edu} \\
|
||||
% \And
|
||||
% Second Author \\
|
||||
% Company/Institution Name \\
|
||||
% Address \\
|
||||
% \texttt{second.author@company.com} \\
|
||||
% \And
|
||||
% Third Author \\
|
||||
% Institution \\
|
||||
% \texttt{third.author@institution.edu}
|
||||
% }
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\begin{abstract}
|
||||
Write a concise abstract (150-250 words) summarizing your contributions. The abstract should clearly state: (1) the problem you address, (2) your approach/method, (3) key results/findings, and (4) significance/implications. Make it accessible to a broad machine learning audience.
|
||||
\end{abstract}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:introduction}
|
||||
|
||||
Introduce the problem you're addressing and its significance in machine learning or AI. Motivate why this problem is important and challenging.
|
||||
|
||||
\subsection{Background and Motivation}
|
||||
Provide necessary background for understanding your work. Explain the gap in current methods or knowledge.
|
||||
|
||||
\subsection{Contributions}
|
||||
Clearly state your main contributions as a bulleted list:
|
||||
\begin{itemize}
|
||||
\item First contribution: e.g., "We propose a novel architecture for..."
|
||||
\item Second contribution: e.g., "We provide theoretical analysis showing..."
|
||||
\item Third contribution: e.g., "We demonstrate state-of-the-art performance on..."
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Paper Organization}
|
||||
Briefly describe the structure of the remainder of the paper.
|
||||
|
||||
\section{Related Work}
|
||||
\label{sec:related}
|
||||
|
||||
Discuss relevant prior work and how your work differs. Organize by themes or approaches rather than chronologically. Be fair and accurate in describing others' work.
|
||||
|
||||
Cite key papers \cite{lecun2015deep, vaswani2017attention, devlin2019bert} and explain how your work builds upon or differs from them.
|
||||
|
||||
\section{Problem Formulation}
|
||||
\label{sec:problem}
|
||||
|
||||
Formally define the problem you're solving. Include mathematical notation and definitions.
|
||||
|
||||
\subsection{Notation}
|
||||
Define your notation clearly. For example:
|
||||
\begin{itemize}
|
||||
\item $\mathcal{X}$: input space
|
||||
\item $\mathcal{Y}$: output space
|
||||
\item $f: \mathcal{X} \rightarrow \mathcal{Y}$: function to learn
|
||||
\item $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$: training dataset
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Objective}
|
||||
State your learning objective formally, e.g.:
|
||||
\begin{equation}
|
||||
\min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[ \mathcal{L}(f_\theta(x), y) \right]
|
||||
\end{equation}
|
||||
where $\mathcal{L}$ is the loss function and $\theta$ are model parameters.
|
||||
|
||||
\section{Method}
|
||||
\label{sec:method}
|
||||
|
||||
Describe your proposed method in detail. This is the core technical contribution of your paper.
|
||||
|
||||
\subsection{Model Architecture}
|
||||
Describe the architecture of your model with sufficient detail for reproduction. Include figures if helpful.
|
||||
|
||||
\begin{figure}[t]
|
||||
\centering
|
||||
% \includegraphics[width=0.8\textwidth]{architecture.pdf}
|
||||
\caption{Model architecture diagram. Describe the key components and data flow. Use colorblind-safe colors.}
|
||||
\label{fig:architecture}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Training Procedure}
|
||||
Explain how you train the model, including:
|
||||
\begin{algorithm}[t]
|
||||
\caption{Training Algorithm}
|
||||
\label{alg:training}
|
||||
\begin{algorithmic}[1]
|
||||
\STATE \textbf{Input:} Training data $\mathcal{D}$, learning rate $\alpha$
|
||||
\STATE \textbf{Output:} Trained parameters $\theta$
|
||||
\STATE Initialize $\theta$ randomly
|
||||
\FOR{epoch $= 1$ to $T$}
|
||||
\FOR{batch $(x, y)$ in $\mathcal{D}$}
|
||||
\STATE Compute loss: $\mathcal{L} = \mathcal{L}(f_\theta(x), y)$
|
||||
\STATE Update: $\theta \leftarrow \theta - \alpha \nabla_\theta \mathcal{L}$
|
||||
\ENDFOR
|
||||
\ENDFOR
|
||||
\RETURN $\theta$
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
|
||||
\subsection{Key Components}
|
||||
Describe key technical innovations or components in detail.
|
||||
|
||||
\section{Theoretical Analysis}
|
||||
\label{sec:theory}
|
||||
|
||||
If applicable, provide theoretical analysis of your method.
|
||||
|
||||
\begin{theorem}
|
||||
\label{thm:main}
|
||||
State your main theoretical result here.
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
Provide proof or sketch of proof. Full proofs can go in the appendix.
|
||||
\end{proof}
|
||||
|
||||
\section{Experiments}
|
||||
\label{sec:experiments}
|
||||
|
||||
Describe your experimental setup and results.
|
||||
|
||||
\subsection{Experimental Setup}
|
||||
\textbf{Datasets:} Describe datasets used (e.g., ImageNet, CIFAR-10, etc.).
|
||||
|
||||
\textbf{Baselines:} List baseline methods for comparison.
|
||||
|
||||
\textbf{Implementation Details:} Provide implementation details including hyperparameters, hardware, training time.
|
||||
|
||||
\textbf{Evaluation Metrics:} Define metrics used (accuracy, F1, AUC, etc.).
|
||||
|
||||
\subsection{Main Results}
|
||||
Present your main experimental results.
|
||||
|
||||
\begin{table}[t]
|
||||
\centering
|
||||
\caption{Performance comparison on benchmark datasets. Bold indicates best performance. Results reported as mean ± std over 3 runs.}
|
||||
\label{tab:main_results}
|
||||
\begin{tabular}{lcccc}
|
||||
\toprule
|
||||
Method & Dataset 1 & Dataset 2 & Dataset 3 & Average \\
|
||||
\midrule
|
||||
Baseline 1 & 85.3 ± 0.5 & 72.1 ± 0.8 & 90.2 ± 0.3 & 82.5 \\
|
||||
Baseline 2 & 87.2 ± 0.4 & 74.5 ± 0.6 & 91.1 ± 0.5 & 84.3 \\
|
||||
\textbf{Our Method} & \textbf{91.7 ± 0.3} & \textbf{79.8 ± 0.5} & \textbf{94.3 ± 0.2} & \textbf{88.6} \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
\subsection{Ablation Studies}
|
||||
Conduct ablation studies to understand which components contribute to performance.
|
||||
|
||||
\subsection{Analysis}
|
||||
Provide deeper analysis of results, failure cases, limitations, etc.
|
||||
|
||||
\section{Discussion}
|
||||
\label{sec:discussion}
|
||||
|
||||
Discuss your findings, limitations, and broader implications.
|
||||
|
||||
\subsection{Limitations}
|
||||
Honestly acknowledge limitations of your work.
|
||||
|
||||
\subsection{Broader Impacts}
|
||||
Discuss potential positive and negative societal impacts (required by NeurIPS).
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:conclusion}
|
||||
|
||||
Summarize your main contributions and findings. Suggest future research directions.
|
||||
|
||||
% Acknowledgments (add after acceptance, not in submission version)
|
||||
\section*{Acknowledgments}
|
||||
Thank collaborators, funding sources (with grant numbers), and compute resources. Not included in double-blind submission.
|
||||
|
||||
% References
|
||||
\bibliographystyle{plainnat} % or other NeurIPS-compatible style
|
||||
\bibliography{references} % Your .bib file
|
||||
|
||||
% Appendix (optional, unlimited pages)
|
||||
\appendix
|
||||
|
||||
\section{Additional Proofs}
|
||||
\label{app:proofs}
|
||||
|
||||
Provide full proofs of theorems here.
|
||||
|
||||
\section{Additional Experimental Results}
|
||||
\label{app:experiments}
|
||||
|
||||
Include additional experiments, more ablations, qualitative results, etc.
|
||||
|
||||
\section{Hyperparameters}
|
||||
\label{app:hyperparameters}
|
||||
|
||||
List all hyperparameters used in experiments for reproducibility.
|
||||
|
||||
\begin{table}[h]
|
||||
\centering
|
||||
\caption{Hyperparameters used in all experiments}
|
||||
\begin{tabular}{ll}
|
||||
\toprule
|
||||
Hyperparameter & Value \\
|
||||
\midrule
|
||||
Learning rate & 0.001 \\
|
||||
Batch size & 64 \\
|
||||
Optimizer & Adam \\
|
||||
Weight decay & 0.0001 \\
|
||||
Epochs & 100 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
\section{Code and Data}
|
||||
\label{app:code}
|
||||
|
||||
Provide links to code repository (anonymized for review, e.g., anonymous GitHub):
|
||||
\begin{itemize}
|
||||
\item Code: \url{https://anonymous.4open.science/r/project-XXXX}
|
||||
\item Data: Available upon request / at [repository]
|
||||
\end{itemize}
|
||||
|
||||
\end{document}
|
||||
|
||||
% Notes for Authors:
|
||||
% 1. Main paper: 8 pages maximum (excluding references and appendix)
|
||||
% 2. References: unlimited pages
|
||||
% 3. Appendix: unlimited pages (reviewed at discretion of reviewers)
|
||||
% 4. Use double-blind anonymization for initial submission
|
||||
% 5. Include broader impact statement
|
||||
% 6. Code submission strongly encouraged (anonymous for review)
|
||||
% 7. Use official neurips_2024.sty file (download from NeurIPS website)
|
||||
% 8. Font: Times, 10pt (enforced by style file)
|
||||
% 9. Figures should be colorblind-friendly
|
||||
% 10. Ensure reproducibility: report seeds, hyperparameters, dataset splits
|
||||
|
||||
317
skills/venue-templates/assets/journals/plos_one.tex
Normal file
317
skills/venue-templates/assets/journals/plos_one.tex
Normal file
@@ -0,0 +1,317 @@
|
||||
% PLOS ONE Article Template
|
||||
% For submission to PLOS ONE and other PLOS journals
|
||||
% Last updated: 2024
|
||||
|
||||
\documentclass[10pt,letterpaper]{article}
|
||||
|
||||
% Packages
|
||||
\usepackage[top=0.85in,left=2.75in,footskip=0.75in]{geometry}
|
||||
\usepackage{amsmath,amssymb}
|
||||
\usepackage{changepage}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage{textcomp,marvosym}
|
||||
\usepackage{cite}
|
||||
\usepackage{nameref,hyperref}
|
||||
\usepackage[right]{lineno}
|
||||
\usepackage{microtype}
|
||||
\usepackage{graphicx}
|
||||
\usepackage[table]{xcolor}
|
||||
\usepackage{array}
|
||||
\usepackage{authblk}
|
||||
|
||||
% Line numbering
|
||||
\linenumbers
|
||||
|
||||
% Set up authblk for PLOS format
|
||||
\renewcommand\Authfont{\fontsize{12}{14}\selectfont}
|
||||
\renewcommand\Affilfont{\fontsize{9}{11}\selectfont}
|
||||
|
||||
% Title
|
||||
\title{Your Article Title Here: Concise and Descriptive}
|
||||
|
||||
% Authors and Affiliations
|
||||
\author[1]{First Author}
|
||||
\author[1,2]{Second Author}
|
||||
\author[2,$\dagger$]{Third Author}
|
||||
|
||||
\affil[1]{Department of Biology, University Name, City, State, Country}
|
||||
\affil[2]{Institute of Research, Institution Name, City, Country}
|
||||
|
||||
% Corresponding author
|
||||
\affil[$\dagger$]{Corresponding author. E-mail: [email protected]}
|
||||
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
% Abstract
|
||||
\begin{abstract}
|
||||
\noindent
|
||||
Write a structured or unstructured abstract of 250-300 words. The abstract should be accessible to a broad readership and should clearly state: (1) background/rationale, (2) objectives, (3) methods, (4) principal findings with key data, and (5) conclusions and significance. Do not include citations in the abstract.
|
||||
\end{abstract}
|
||||
|
||||
% Introduction
|
||||
\section*{Introduction}
|
||||
|
||||
Provide background and context for your study. The introduction should:
|
||||
\begin{itemize}
|
||||
\item Present the rationale for your study
|
||||
\item Clearly state what is currently known about the topic
|
||||
\item Identify the knowledge gap your study addresses
|
||||
\item State your research objectives or hypotheses
|
||||
\item Explain the significance of the research
|
||||
\end{itemize}
|
||||
|
||||
Review relevant literature \cite{smith2023,jones2022}, setting your work in context.
|
||||
|
||||
State your main research question or objective at the end of the introduction.
|
||||
|
||||
% Materials and Methods
|
||||
\section*{Materials and Methods}
|
||||
|
||||
Provide sufficient detail to allow reproduction of your work.
|
||||
|
||||
\subsection*{Study Design}
|
||||
Describe the overall study design (e.g., prospective cohort, randomized controlled trial, observational study, etc.).
|
||||
|
||||
\subsection*{Participants/Samples}
|
||||
Describe your study population, sample collection, or experimental subjects:
|
||||
\begin{itemize}
|
||||
\item Sample size and how it was determined (power analysis)
|
||||
\item Inclusion and exclusion criteria
|
||||
\item Demographic information
|
||||
\item For animal studies: species, strain, age, sex, housing conditions
|
||||
\end{itemize}
|
||||
|
||||
\subsection*{Procedures}
|
||||
Detail all experimental procedures, measurements, and interventions. Include:
|
||||
\begin{itemize}
|
||||
\item Equipment and reagents (with manufacturer, catalog numbers)
|
||||
\item Protocols and procedures (step-by-step if novel)
|
||||
\item Controls used
|
||||
\item Blinding and randomization (if applicable)
|
||||
\end{itemize}
|
||||
|
||||
\subsection*{Data Collection}
|
||||
Describe how data were collected, including instruments, assays, and measurements.
|
||||
|
||||
\subsection*{Statistical Analysis}
|
||||
Clearly describe statistical methods used:
|
||||
\begin{itemize}
|
||||
\item Software and version (e.g., R 4.3.0, Python 3.9 with scipy 1.9.0)
|
||||
\item Statistical tests performed (e.g., t-tests, ANOVA, regression)
|
||||
\item Significance level ($\alpha$, typically 0.05)
|
||||
\item Corrections for multiple testing
|
||||
\item Sample size justification
|
||||
\end{itemize}
|
||||
|
||||
\subsection*{Ethical Approval}
|
||||
Include relevant ethical approval statements:
|
||||
\begin{itemize}
|
||||
\item Human subjects: IRB approval, protocol number, consent procedures
|
||||
\item Animal research: IACUC approval, protocol number, welfare considerations
|
||||
\item Field studies: Permits and permissions
|
||||
\end{itemize}
|
||||
|
||||
Example: "This study was approved by the Institutional Review Board of University Name (Protocol \#12345). All participants provided written informed consent."
|
||||
|
||||
% Results
|
||||
\section*{Results}
|
||||
|
||||
Present your findings in a logical sequence. Refer to figures and tables as you describe results. Do not interpret results in this section (save for Discussion).
|
||||
|
||||
\subsection*{First Major Finding}
|
||||
Describe your first key result. Statistical results should include effect sizes and confidence intervals in addition to p-values.
|
||||
|
||||
As shown in Figure~\ref{fig:results1}, we observed a significant increase in [outcome variable] (mean $\pm$ SD: 45.2 $\pm$ 8.3 vs. 32.1 $\pm$ 6.9; t = 7.42, df = 48, p < 0.001).
|
||||
|
||||
\begin{figure}[!ht]
|
||||
\centering
|
||||
% \includegraphics[width=0.75\textwidth]{figure1.png}
|
||||
\caption{{\bf Figure 1. Title of first figure.}
|
||||
Detailed figure legend describing what is shown. Include: (A) Description of panel A. (B) Description of panel B. Sample sizes (n), error bars represent [SD, SEM, 95\% CI], and statistical significance indicated by asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001). Statistical test used should be stated.}
|
||||
\label{fig:results1}
|
||||
\end{figure}
|
||||
|
||||
\subsection*{Second Major Finding}
|
||||
Describe your second key result, referencing Table~\ref{tab:results1}.
|
||||
|
||||
\begin{table}[!ht]
|
||||
\centering
|
||||
\caption{{\bf Table 1. Title of table.}}
|
||||
\label{tab:results1}
|
||||
\begin{tabular}{lccc}
|
||||
\hline
|
||||
\textbf{Condition} & \textbf{Measurement 1} & \textbf{Measurement 2} & \textbf{p-value} \\
|
||||
\hline
|
||||
Control & 25.3 $\pm$ 3.1 & 48.2 $\pm$ 5.4 & -- \\
|
||||
Treatment A & 32.7 $\pm$ 2.8 & 55.1 $\pm$ 4.9 & 0.003 \\
|
||||
Treatment B & 41.2 $\pm$ 3.5 & 62.8 $\pm$ 6.2 & < 0.001 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\begin{flushleft}
|
||||
Values shown as mean $\pm$ standard deviation (n = 20 per group). P-values from one-way ANOVA with Tukey's post-hoc test comparing to control.
|
||||
\end{flushleft}
|
||||
\end{table}
|
||||
|
||||
\subsection*{Additional Results}
|
||||
Present additional findings as needed.
|
||||
|
||||
% Discussion
|
||||
\section*{Discussion}
|
||||
|
||||
Interpret your results and place them in the context of existing literature.
|
||||
|
||||
\subsection*{Principal Findings}
|
||||
Summarize your main findings concisely.
|
||||
|
||||
\subsection*{Interpretation}
|
||||
Interpret your findings and explain their significance. How do they advance understanding of the topic? Compare and contrast with previous studies \cite{brown2021,williams2020}.
|
||||
|
||||
\subsection*{Strengths and Limitations}
|
||||
Discuss both strengths and limitations of your study honestly:
|
||||
|
||||
\textbf{Strengths:}
|
||||
\begin{itemize}
|
||||
\item Large sample size with adequate statistical power
|
||||
\item Rigorous methodology with appropriate controls
|
||||
\item Novel approach or finding
|
||||
\end{itemize}
|
||||
|
||||
\textbf{Limitations:}
|
||||
\begin{itemize}
|
||||
\item Cross-sectional design limits causal inference
|
||||
\item Generalizability may be limited to [specific population]
|
||||
\item Potential confounding variables not measured
|
||||
\end{itemize}
|
||||
|
||||
\subsection*{Implications}
|
||||
Discuss the practical or theoretical implications of your findings.
|
||||
|
||||
\subsection*{Future Directions}
|
||||
Suggest directions for future research.
|
||||
|
||||
% Conclusions
|
||||
\section*{Conclusions}
|
||||
|
||||
Provide a concise conclusion summarizing the main findings and their significance. Avoid repeating the abstract.
|
||||
|
||||
% Acknowledgments
|
||||
\section*{Acknowledgments}
|
||||
|
||||
Acknowledge individuals who contributed but do not meet authorship criteria, technical assistance, and writing assistance. Example: "We thank Dr. Jane Doe for technical assistance with microscopy and Dr. John Smith for helpful discussions."
|
||||
|
||||
% References
|
||||
\section*{References}
|
||||
|
||||
% Using BibTeX
|
||||
\bibliographystyle{plos2015}
|
||||
\bibliography{references}
|
||||
|
||||
% Or manually formatted (Vancouver style, numbered):
|
||||
\begin{thebibliography}{99}
|
||||
|
||||
\bibitem{smith2023}
|
||||
Smith JD, Johnson ML, Williams KR. Title of article. Journal Abbrev. 2023;45(3):301-318. doi:10.1371/journal.pone.1234567.
|
||||
|
||||
\bibitem{jones2022}
|
||||
Jones AB, Brown CD. Another article title. PLoS ONE. 2022;17(8):e0234567. doi:10.1371/journal.pone.0234567.
|
||||
|
||||
\bibitem{brown2021}
|
||||
Brown EF, Davis GH, Wilson IJ, Taylor JK. Comprehensive study title. Nat Commun. 2021;12:1234. doi:10.1038/s41467-021-12345-6.
|
||||
|
||||
\bibitem{williams2020}
|
||||
Williams LM, Anderson NO. Previous work on topic. Science. 2020;368(6489):456-460. doi:10.1126/science.abc1234.
|
||||
|
||||
\end{thebibliography}
|
||||
|
||||
% Supporting Information
|
||||
\section*{Supporting Information}
|
||||
|
||||
List all supporting information files (captions provided separately during submission):
|
||||
|
||||
\paragraph{S1 Fig.}
|
||||
\textbf{Title of supplementary figure 1.} Brief description.
|
||||
|
||||
\paragraph{S2 Fig.}
|
||||
\textbf{Title of supplementary figure 2.} Brief description.
|
||||
|
||||
\paragraph{S1 Table.}
|
||||
\textbf{Title of supplementary table 1.} Brief description.
|
||||
|
||||
\paragraph{S1 Dataset.}
|
||||
\textbf{Raw data.} Complete dataset used in analysis (CSV format).
|
||||
|
||||
\paragraph{S1 File.}
|
||||
\textbf{Supplementary methods.} Additional methodological details.
|
||||
|
||||
% Author Contributions (CRediT taxonomy recommended)
|
||||
\section*{Author Contributions}
|
||||
|
||||
Use CRediT (Contributor Roles Taxonomy):
|
||||
\begin{itemize}
|
||||
\item \textbf{Conceptualization:} FA, SA
|
||||
\item \textbf{Data curation:} FA
|
||||
\item \textbf{Formal analysis:} FA, SA
|
||||
\item \textbf{Funding acquisition:} TA
|
||||
\item \textbf{Investigation:} FA, SA
|
||||
\item \textbf{Methodology:} FA, SA, TA
|
||||
\item \textbf{Project administration:} TA
|
||||
\item \textbf{Resources:} TA
|
||||
\item \textbf{Software:} FA
|
||||
\item \textbf{Supervision:} TA
|
||||
\item \textbf{Validation:} FA, SA
|
||||
\item \textbf{Visualization:} FA
|
||||
\item \textbf{Writing – original draft:} FA
|
||||
\item \textbf{Writing – review \& editing:} FA, SA, TA
|
||||
\end{itemize}
|
||||
|
||||
(FA = First Author, SA = Second Author, TA = Third Author)
|
||||
|
||||
% Data Availability Statement (REQUIRED)
|
||||
\section*{Data Availability}
|
||||
|
||||
Choose one of the following:
|
||||
|
||||
\textbf{Option 1 (Public repository):}
|
||||
All data are available in the [repository name] repository at [URL/DOI].
|
||||
|
||||
\textbf{Option 2 (Supporting Information):}
|
||||
All relevant data are within the paper and its Supporting Information files.
|
||||
|
||||
\textbf{Option 3 (Available on request):}
|
||||
Data cannot be shared publicly because of [reason]. Data are available from the [institution/contact] (contact via [email]) for researchers who meet the criteria for access to confidential data.
|
||||
|
||||
\textbf{Option 4 (Third-party):}
|
||||
Data are available from [third party] (contact: [details]) for researchers who meet criteria for access.
|
||||
|
||||
% Funding Statement (REQUIRED)
|
||||
\section*{Funding}
|
||||
|
||||
State all funding sources including grant numbers. If no funding, state "The authors received no specific funding for this work."
|
||||
|
||||
Example: "This work was supported by the National Science Foundation (NSF) [grant number 123456 to TA] and the National Institutes of Health (NIH) [grant number R01-234567 to TA]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript."
|
||||
|
||||
% Competing Interests (REQUIRED)
|
||||
\section*{Competing Interests}
|
||||
|
||||
Declare any financial or non-financial competing interests. If none, state: "The authors have declared that no competing interests exist."
|
||||
|
||||
If competing interests exist, declare them explicitly: "Author TA is a consultant for Company X. This does not alter our adherence to PLOS ONE policies on sharing data and materials."
|
||||
|
||||
\end{document}
|
||||
|
||||
% Notes for Authors:
|
||||
% 1. PLOS ONE has no length limit - be concise but thorough
|
||||
% 2. Use Vancouver style for citations [1], [2], [3]
|
||||
% 3. Figures: TIFF or EPS format, 300-600 dpi
|
||||
% 4. All data must be made available (data availability statement required)
|
||||
% 5. Include line numbers for review
|
||||
% 6. PLOS ONE focuses on scientific rigor, not novelty or impact
|
||||
% 7. Reporting guidelines encouraged (CONSORT, STROBE, PRISMA, etc.)
|
||||
% 8. Ethical approval required for human/animal studies
|
||||
% 9. All authors must agree to submission
|
||||
% 10. Submit via PLOS online submission system
|
||||
|
||||
Reference in New Issue
Block a user