Files
gh-k-dense-ai-claude-scient…/skills/umap-learn/references/api_reference.md
2025-11-30 08:30:10 +08:00

18 KiB

UMAP API Reference

UMAP Class

umap.UMAP(n_neighbors=15, n_components=2, metric='euclidean', n_epochs=None, learning_rate=1.0, init='spectral', min_dist=0.1, spread=1.0, low_memory=True, set_op_mix_ratio=1.0, local_connectivity=1.0, repulsion_strength=1.0, negative_sample_rate=5, transform_queue_size=4.0, a=None, b=None, random_state=None, metric_kwds=None, angular_rp_forest=False, target_n_neighbors=-1, target_metric='categorical', target_metric_kwds=None, target_weight=0.5, transform_seed=42, transform_mode='embedding', force_approximation_algorithm=False, verbose=False, unique=False, densmap=False, dens_lambda=2.0, dens_frac=0.3, dens_var_shift=0.1, output_dens=False, disconnection_distance=None, precomputed_knn=(None, None, None))

Find low-dimensional embedding that approximates the underlying manifold of the data.

Core Parameters

n_neighbors (int, default: 15)

Size of the local neighborhood used for manifold approximation. Larger values result in more global views of the manifold, while smaller values preserve more local structure. Generally in the range 2 to 100.

Tuning guidance:

  • Use 2-5 for very local structure
  • Use 10-20 for balanced local/global structure (typical)
  • Use 50-200 for emphasizing global structure

n_components (int, default: 2)

Dimension of the embedding space. Unlike t-SNE, UMAP scales well with increasing embedding dimensions.

Common values:

  • 2-3: Visualization
  • 5-10: Clustering preprocessing
  • 10-100: Feature engineering for downstream ML

metric (str or callable, default: 'euclidean')

Distance metric to use. Accepts:

  • Any metric from scipy.spatial.distance
  • Any metric from sklearn.metrics
  • Custom callable distance functions (must be compiled with Numba)

Common metrics:

  • 'euclidean': Standard Euclidean distance (default)
  • 'manhattan': L1 distance
  • 'cosine': Cosine distance (good for text/document vectors)
  • 'correlation': Correlation distance
  • 'hamming': Hamming distance (for binary data)
  • 'jaccard': Jaccard distance (for binary/set data)
  • 'dice': Dice distance
  • 'canberra': Canberra distance
  • 'braycurtis': Bray-Curtis distance
  • 'chebyshev': Chebyshev distance
  • 'minkowski': Minkowski distance (specify p with metric_kwds)
  • 'precomputed': Use precomputed distance matrix

min_dist (float, default: 0.1)

Effective minimum distance between embedded points. Controls how tightly points are packed together. Smaller values result in clumpier embeddings.

Tuning guidance:

  • Use 0.0 for clustering applications
  • Use 0.1-0.3 for visualization (balanced)
  • Use 0.5-0.99 for loose structure preservation

spread (float, default: 1.0)

Effective scale of embedded points. Combined with min_dist to control clumped vs. spread-out embeddings. Determines how spread out the clusters are in the embedding space.

Training Parameters

n_epochs (int, default: None)

Number of training epochs. If None, automatically determined based on dataset size (typically 200-500 epochs).

Manual tuning:

  • Smaller datasets may need 500+ epochs
  • Larger datasets may converge with 200 epochs
  • More epochs = better optimization but slower training

learning_rate (float, default: 1.0)

Initial learning rate for the SGD optimizer. Higher values lead to faster convergence but may overshoot optimal solutions.

init (str or np.ndarray, default: 'spectral')

Initialization method for the embedding:

  • 'spectral': Use spectral embedding (default, usually best)
  • 'random': Random initialization
  • 'pca': Initialize with PCA
  • numpy array: Custom initialization (shape: (n_samples, n_components))

Advanced Structural Parameters

local_connectivity (int, default: 1.0)

Number of nearest neighbors assumed to be locally connected. Higher values give more connected manifolds.

set_op_mix_ratio (float, default: 1.0)

Interpolation between union and intersection when constructing fuzzy set unions. Value of 1.0 uses pure union, 0.0 uses pure intersection.

repulsion_strength (float, default: 1.0)

Weighting applied to negative samples in low-dimensional embedding optimization. Higher values push embedded points further apart.

negative_sample_rate (int, default: 5)

Number of negative samples to select per positive sample. Higher values lead to greater repulsion between points and more spread-out embeddings but increase computational cost.

Supervised Learning Parameters

target_n_neighbors (int, default: -1)

Number of nearest neighbors to use when constructing target simplicial set. If -1, uses n_neighbors value.

target_metric (str, default: 'categorical')

Distance metric for target values (labels):

  • 'categorical': For classification tasks
  • Any other metric for regression tasks

target_weight (float, default: 0.5)

Weight applied to target information vs. data structure. Range 0.0 to 1.0:

  • 0.0: Pure unsupervised embedding (ignores labels)
  • 0.5: Balanced (default)
  • 1.0: Pure supervised embedding (only considers labels)

Transform Parameters

transform_queue_size (float, default: 4.0)

Size of the nearest neighbor search queue for transform operations. Larger values improve transform accuracy but increase memory usage and computation time.

transform_seed (int, default: 42)

Random seed for transform operations. Ensures reproducibility of transform results.

transform_mode (str, default: 'embedding')

Method for transforming new data:

  • 'embedding': Standard approach (default)
  • 'graph': Use nearest neighbor graph

Performance Parameters

low_memory (bool, default: True)

Whether to use a memory-efficient implementation. Set to False only if memory is not a constraint and you want faster performance.

verbose (bool, default: False)

Whether to print progress messages during fitting.

unique (bool, default: False)

Whether to consider only unique data points. Set to True if you know your data contains many duplicates to improve performance.

force_approximation_algorithm (bool, default: False)

Force use of approximate nearest neighbor search even for small datasets. Can improve performance on large datasets.

angular_rp_forest (bool, default: False)

Whether to use angular random projection forest for nearest neighbor search. Can improve performance for normalized data in high dimensions.

DensMAP Parameters

DensMAP is a variant that preserves local density information.

densmap (bool, default: False)

Whether to use the DensMAP algorithm instead of standard UMAP. Preserves local density in addition to topological structure.

dens_lambda (float, default: 2.0)

Weight of density preservation term in DensMAP optimization. Higher values emphasize density preservation.

dens_frac (float, default: 0.3)

Fraction of dataset used for density estimation in DensMAP.

dens_var_shift (float, default: 0.1)

Regularization parameter for density estimation in DensMAP.

output_dens (bool, default: False)

Whether to output local density estimates in addition to the embedding. Results stored in rad_orig_ and rad_emb_ attributes.

Other Parameters

a (float, default: None)

Parameter controlling embedding. If None, determined automatically from min_dist and spread.

b (float, default: None)

Parameter controlling embedding. If None, determined automatically from min_dist and spread.

random_state (int, RandomState instance, or None, default: None)

Random state for reproducibility. Set to an integer for reproducible results.

metric_kwds (dict, default: None)

Additional keyword arguments for the distance metric.

disconnection_distance (float, default: None)

Distance threshold for considering points disconnected. If None, uses max distance in the graph.

precomputed_knn (tuple, default: (None, None, None))

Precomputed k-nearest neighbors as (knn_indices, knn_dists, knn_search_index). Useful for reusing expensive computations.

Methods

fit(X, y=None)

Fit the UMAP model to the data.

Parameters:

  • X: array-like, shape (n_samples, n_features) - Training data
  • y: array-like, shape (n_samples,), optional - Target values for supervised dimension reduction

Returns:

  • self: Fitted UMAP object

Attributes set:

  • embedding_: The embedded representation of training data
  • graph_: Fuzzy simplicial set approximation to the manifold
  • _raw_data: Copy of the training data
  • _small_data: Whether the dataset is considered small
  • _metric_kwds: Processed metric keyword arguments
  • _n_neighbors: Actual n_neighbors used
  • _initial_alpha: Initial learning rate
  • _a, _b: Curve parameters

fit_transform(X, y=None)

Fit the model and return the embedded representation.

Parameters:

  • X: array-like, shape (n_samples, n_features) - Training data
  • y: array-like, shape (n_samples,), optional - Target values for supervised dimension reduction

Returns:

  • X_new: array, shape (n_samples, n_components) - Embedded data

transform(X)

Transform new data into the existing embedded space.

Parameters:

  • X: array-like, shape (n_samples, n_features) - New data to transform

Returns:

  • X_new: array, shape (n_samples, n_components) - Embedded representation of new data

Important notes:

  • The model must be fitted before calling transform
  • Transform quality depends on similarity between training and test distributions
  • For significantly different data distributions, consider Parametric UMAP

inverse_transform(X)

Transform data from the embedded space back to the original data space.

Parameters:

  • X: array-like, shape (n_samples, n_components) - Embedded data points

Returns:

  • X_new: array, shape (n_samples, n_features) - Reconstructed data in original space

Important notes:

  • Computationally expensive operation
  • Works poorly outside the convex hull of the training embedding
  • Reconstruction quality varies by region

update(X)

Update the model with new data. Allows incremental fitting.

Parameters:

  • X: array-like, shape (n_samples, n_features) - New data to incorporate

Returns:

  • self: Updated UMAP object

Note: Experimental feature, may not preserve all properties of batch training.

Attributes

embedding_

array, shape (n_samples, n_components) - The embedded representation of the training data.

graph_

scipy.sparse.csr_matrix - The weighted adjacency matrix of the fuzzy simplicial set approximation to the manifold.

_raw_data

array - Copy of the raw training data.

_sparse_data

bool - Whether the training data was sparse.

_small_data

bool - Whether the dataset was considered small (uses different algorithm for small datasets).

_input_hash

str - Hash of the input data for caching purposes.

_knn_indices

array - Indices of k-nearest neighbors for each training point.

_knn_dists

array - Distances to k-nearest neighbors for each training point.

_rp_forest

list - Random projection forest used for approximate nearest neighbor search.

ParametricUMAP Class

umap.ParametricUMAP(encoder=None, decoder=None, parametric_reconstruction=False, autoencoder_loss=False, reconstruction_validation=None, dims=None, batch_size=None, n_training_epochs=1, loss_report_frequency=10, optimizer=None, keras_fit_kwargs={}, **kwargs)

Parametric UMAP using neural networks to learn the embedding function.

Additional Parameters (beyond UMAP)

encoder (tensorflow.keras.Model, default: None)

Keras model for encoding data to embeddings. If None, uses default 3-layer architecture with 100 neurons per layer.

decoder (tensorflow.keras.Model, default: None)

Keras model for decoding embeddings back to data space. Only used if parametric_reconstruction=True.

parametric_reconstruction (bool, default: False)

Whether to use parametric reconstruction. Requires decoder model.

autoencoder_loss (bool, default: False)

Whether to include reconstruction loss in the optimization. Requires decoder model.

reconstruction_validation (tuple, default: None)

Validation data (X_val, y_val) for monitoring reconstruction loss during training.

dims (tuple, default: None)

Input dimensions for the encoder network. Required if providing custom encoder.

batch_size (int, default: None)

Batch size for neural network training. If None, determined automatically.

n_training_epochs (int, default: 1)

Number of training epochs for the neural networks. More epochs improve quality but increase training time.

loss_report_frequency (int, default: 10)

How often to report loss during training.

optimizer (tensorflow.keras.optimizers.Optimizer, default: None)

Keras optimizer for training. If None, uses Adam with learning_rate parameter.

keras_fit_kwargs (dict, default: {})

Additional keyword arguments passed to the Keras fit() method.

Methods

Same as UMAP class, but transform() and inverse_transform() use learned neural networks for faster inference.

Utility Functions

umap.nearest_neighbors(X, n_neighbors, metric, metric_kwds={}, angular=False, random_state=None)

Compute k-nearest neighbors for the data.

Returns: (knn_indices, knn_dists, rp_forest)

umap.fuzzy_simplicial_set(X, n_neighbors, random_state, metric, metric_kwds={}, knn_indices=None, knn_dists=None, angular=False, set_op_mix_ratio=1.0, local_connectivity=1.0, apply_set_operations=True, verbose=False, return_dists=None)

Construct fuzzy simplicial set representation of the data.

Returns: Fuzzy simplicial set as sparse matrix

umap.simplicial_set_embedding(data, graph, n_components, initial_alpha, a, b, gamma, negative_sample_rate, n_epochs, init, random_state, metric, metric_kwds, densmap, densmap_kwds, output_dens, output_metric, output_metric_kwds, euclidean_output, parallel=False, verbose=False)

Perform the optimization to find a low-dimensional embedding.

Returns: Embedding array

umap.find_ab_params(spread, min_dist)

Fit a, b params for the UMAP curve from spread and min_dist.

Returns: (a, b) tuple

AlignedUMAP Class

umap.AlignedUMAP(n_neighbors=15, n_components=2, metric='euclidean', alignment_regularisation=1e-2, alignment_window_size=3, **kwargs)

UMAP variant for aligning multiple related datasets.

Additional Parameters

alignment_regularisation (float, default: 1e-2)

Strength of alignment regularization between datasets.

alignment_window_size (int, default: 3)

Number of adjacent datasets to align.

Methods

fit(X)

Fit model to multiple datasets.

Parameters:

  • X: list of arrays - List of datasets to align

Returns:

  • self: Fitted model

Attributes

embeddings_

list of arrays - List of aligned embeddings, one per input dataset.

Usage Examples

Basic Usage with All Common Parameters

import umap

# Standard 2D visualization embedding
reducer = umap.UMAP(
    n_neighbors=15,          # Balance local/global structure
    n_components=2,          # Output dimensions
    metric='euclidean',      # Distance metric
    min_dist=0.1,           # Minimum distance between points
    spread=1.0,             # Scale of embedded points
    random_state=42,        # Reproducibility
    n_epochs=200,           # Training iterations (None = auto)
    learning_rate=1.0,      # SGD learning rate
    init='spectral',        # Initialization method
    low_memory=True,        # Memory-efficient mode
    verbose=True            # Print progress
)

embedding = reducer.fit_transform(data)

Supervised Learning

# Train with labels for class separation
reducer = umap.UMAP(
    n_neighbors=15,
    target_weight=0.5,           # Balance data structure vs labels
    target_metric='categorical',  # Metric for labels
    random_state=42
)

embedding = reducer.fit_transform(data, y=labels)

Clustering Preprocessing

# Optimized for clustering
reducer = umap.UMAP(
    n_neighbors=30,      # More global structure
    min_dist=0.0,        # Allow tight packing
    n_components=10,     # Higher dimensions for density
    metric='euclidean',
    random_state=42
)

embedding = reducer.fit_transform(data)

Custom Distance Metric

from numba import njit

@njit()
def custom_distance(x, y):
    """Custom distance function (must be Numba-compatible)"""
    result = 0.0
    for i in range(x.shape[0]):
        result += abs(x[i] - y[i])
    return result

reducer = umap.UMAP(metric=custom_distance)
embedding = reducer.fit_transform(data)

Parametric UMAP with Custom Architecture

import tensorflow as tf
from umap.parametric_umap import ParametricUMAP

# Define custom encoder
encoder = tf.keras.Sequential([
    tf.keras.layers.InputLayer(input_shape=(input_dim,)),
    tf.keras.layers.Dense(256, activation='relu'),
    tf.keras.layers.Dropout(0.3),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.3),
    tf.keras.layers.Dense(2)  # Output dimension
])

# Define decoder for reconstruction
decoder = tf.keras.Sequential([
    tf.keras.layers.InputLayer(input_shape=(2,)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(256, activation='relu'),
    tf.keras.layers.Dense(input_dim)
])

# Train parametric UMAP with autoencoder
embedder = ParametricUMAP(
    encoder=encoder,
    decoder=decoder,
    dims=(input_dim,),
    parametric_reconstruction=True,
    autoencoder_loss=True,
    n_training_epochs=10,
    batch_size=128,
    n_neighbors=15,
    min_dist=0.1,
    random_state=42
)

embedding = embedder.fit_transform(data)
new_embedding = embedder.transform(new_data)
reconstructed = embedder.inverse_transform(embedding)

DensMAP for Density Preservation

# Preserve local density information
reducer = umap.UMAP(
    densmap=True,           # Enable DensMAP
    dens_lambda=2.0,       # Weight of density preservation
    dens_frac=0.3,         # Fraction for density estimation
    output_dens=True,      # Output density estimates
    n_neighbors=15,
    min_dist=0.1,
    random_state=42
)

embedding = reducer.fit_transform(data)

# Access density estimates
original_density = reducer.rad_orig_  # Density in original space
embedded_density = reducer.rad_emb_   # Density in embedded space

Aligned UMAP for Time Series

from umap import AlignedUMAP

# Multiple related datasets (e.g., different time points)
datasets = [day1_data, day2_data, day3_data, day4_data]

# Align embeddings
mapper = AlignedUMAP(
    n_neighbors=15,
    alignment_regularisation=1e-2,  # Alignment strength
    alignment_window_size=2,        # Align with adjacent datasets
    n_components=2,
    random_state=42
)

mapper.fit(datasets)

# Access aligned embeddings
aligned_embeddings = mapper.embeddings_
# aligned_embeddings[0] is day1 embedding
# aligned_embeddings[1] is day2 embedding, etc.