Files
gh-k-dense-ai-claude-scient…/skills/tooluniverse/references/api_reference.md
2025-11-30 08:30:10 +08:00

299 lines
5.5 KiB
Markdown

# ToolUniverse Python API Reference
## Core Classes
### ToolUniverse
Main class for interacting with the ToolUniverse ecosystem.
```python
from tooluniverse import ToolUniverse
tu = ToolUniverse()
```
#### Methods
##### `load_tools()`
Load all available tools into the ToolUniverse instance.
```python
tu.load_tools()
```
**Returns:** None
**Side effects:** Loads 600+ tools into memory for discovery and execution.
---
##### `run(tool_config)`
Execute a tool with specified arguments.
**Parameters:**
- `tool_config` (dict): Configuration dictionary with keys:
- `name` (str): Tool name to execute
- `arguments` (dict): Tool-specific arguments
**Returns:** Tool-specific output (dict, list, str, or other types)
**Example:**
```python
result = tu.run({
"name": "OpenTargets_get_associated_targets_by_disease_efoId",
"arguments": {
"efoId": "EFO_0000537"
}
})
```
---
##### `list_tools(limit=None)`
List all available tools or a subset.
**Parameters:**
- `limit` (int, optional): Maximum number of tools to return. If None, returns all tools.
**Returns:** List of tool dictionaries
**Example:**
```python
# List all tools
all_tools = tu.list_tools()
# List first 20 tools
tools = tu.list_tools(limit=20)
```
---
##### `get_tool_info(tool_name)`
Get detailed information about a specific tool.
**Parameters:**
- `tool_name` (str): Name of the tool
**Returns:** Dictionary containing tool metadata, parameters, and documentation
**Example:**
```python
info = tu.get_tool_info("AlphaFold_get_structure")
print(info['description'])
print(info['parameters'])
```
---
## Built-in Discovery Tools
These are special tools that help find other tools in the ecosystem.
### Tool_Finder
Embedding-based semantic search for tools. Requires GPU.
```python
tools = tu.run({
"name": "Tool_Finder",
"arguments": {
"description": "protein structure prediction",
"limit": 10
}
})
```
**Parameters:**
- `description` (str): Natural language description of desired functionality
- `limit` (int): Maximum number of tools to return
**Returns:** List of relevant tools with similarity scores
---
### Tool_Finder_LLM
LLM-based semantic search for tools. No GPU required.
```python
tools = tu.run({
"name": "Tool_Finder_LLM",
"arguments": {
"description": "Find tools for RNA sequencing analysis",
"limit": 10
}
})
```
**Parameters:**
- `description` (str): Natural language query
- `limit` (int): Maximum number of tools to return
**Returns:** List of relevant tools
---
### Tool_Finder_Keyword
Fast keyword-based search through tool names and descriptions.
```python
tools = tu.run({
"name": "Tool_Finder_Keyword",
"arguments": {
"description": "pathway enrichment",
"limit": 10
}
})
```
**Parameters:**
- `description` (str): Keywords to search for
- `limit` (int): Maximum number of tools to return
**Returns:** List of matching tools
---
## Tool Output Hooks
Post-processing hooks for tool results.
### Summarization Hook
```python
result = tu.run({
"name": "some_tool",
"arguments": {"param": "value"}
},
hooks={
"summarize": {
"format": "brief" # or "detailed"
}
})
```
### File Saving Hook
```python
result = tu.run({
"name": "some_tool",
"arguments": {"param": "value"}
},
hooks={
"save_to_file": {
"filename": "output.json",
"format": "json" # or "csv", "txt"
}
})
```
---
## Model Context Protocol (MCP)
### Starting MCP Server
Command-line interface:
```bash
tooluniverse-smcp
```
This launches an MCP server that exposes all ToolUniverse tools through the Model Context Protocol.
**Configuration:**
- Default port: Automatically assigned
- Protocol: MCP standard
- Authentication: None required for local use
---
## Integration Modules
### OpenRouter Integration
Access 100+ LLMs through OpenRouter API:
```python
from tooluniverse import OpenRouterClient
client = OpenRouterClient(api_key="your_key")
response = client.chat("Analyze this protein sequence", model="anthropic/claude-3-5-sonnet")
```
---
## AI-Tool Interaction Protocol
ToolUniverse uses a standardized protocol for LLM-tool communication:
**Request Format:**
```json
{
"name": "tool_name",
"arguments": {
"param1": "value1",
"param2": "value2"
}
}
```
**Response Format:**
```json
{
"status": "success",
"data": { ... },
"metadata": {
"execution_time": 1.23,
"tool_version": "1.0.0"
}
}
```
---
## Error Handling
```python
try:
result = tu.run({
"name": "some_tool",
"arguments": {"param": "value"}
})
except ToolNotFoundError as e:
print(f"Tool not found: {e}")
except InvalidArgumentError as e:
print(f"Invalid arguments: {e}")
except ToolExecutionError as e:
print(f"Execution failed: {e}")
```
---
## Type Hints
```python
from typing import Dict, List, Any, Optional
def run_tool(
tu: ToolUniverse,
tool_name: str,
arguments: Dict[str, Any]
) -> Any:
"""Execute a tool with type-safe arguments."""
return tu.run({
"name": tool_name,
"arguments": arguments
})
```
---
## Best Practices
1. **Initialize Once**: Create a single ToolUniverse instance and reuse it
2. **Load Tools Early**: Call `load_tools()` once at startup
3. **Cache Tool Info**: Store frequently used tool information
4. **Error Handling**: Always wrap tool execution in try-except blocks
5. **Type Validation**: Validate argument types before execution
6. **Resource Management**: Consider rate limits for remote APIs
7. **Logging**: Enable logging for production environments