620 lines
16 KiB
Markdown
620 lines
16 KiB
Markdown
# Generalized Linear Models (GLM) Reference
|
|
|
|
This document provides comprehensive guidance on generalized linear models in statsmodels, including families, link functions, and applications.
|
|
|
|
## Overview
|
|
|
|
GLMs extend linear regression to non-normal response distributions through:
|
|
1. **Distribution family**: Specifies the conditional distribution of the response
|
|
2. **Link function**: Transforms the linear predictor to the scale of the mean
|
|
3. **Variance function**: Relates variance to the mean
|
|
|
|
**General form**: g(μ) = Xβ, where g is the link function and μ = E(Y|X)
|
|
|
|
## When to Use GLM
|
|
|
|
- **Binary outcomes**: Logistic regression (Binomial family with logit link)
|
|
- **Count data**: Poisson or Negative Binomial regression
|
|
- **Positive continuous data**: Gamma or Inverse Gaussian
|
|
- **Non-normal distributions**: When OLS assumptions violated
|
|
- **Link functions**: Need non-linear relationship between predictors and response scale
|
|
|
|
## Distribution Families
|
|
|
|
### Binomial Family
|
|
|
|
For binary outcomes (0/1) or proportions (k/n).
|
|
|
|
**When to use:**
|
|
- Binary classification
|
|
- Success/failure outcomes
|
|
- Proportions or rates
|
|
|
|
**Common links:**
|
|
- Logit (default): log(μ/(1-μ))
|
|
- Probit: Φ⁻¹(μ)
|
|
- Log: log(μ)
|
|
|
|
```python
|
|
import statsmodels.api as sm
|
|
import statsmodels.formula.api as smf
|
|
|
|
# Binary logistic regression
|
|
model = sm.GLM(y, X, family=sm.families.Binomial())
|
|
results = model.fit()
|
|
|
|
# Formula API
|
|
results = smf.glm('success ~ x1 + x2', data=df,
|
|
family=sm.families.Binomial()).fit()
|
|
|
|
# Access predictions (probabilities)
|
|
probs = results.predict(X_new)
|
|
|
|
# Classification (0.5 threshold)
|
|
predictions = (probs > 0.5).astype(int)
|
|
```
|
|
|
|
**Interpretation:**
|
|
```python
|
|
import numpy as np
|
|
|
|
# Odds ratios (for logit link)
|
|
odds_ratios = np.exp(results.params)
|
|
print("Odds ratios:", odds_ratios)
|
|
|
|
# For 1-unit increase in x, odds multiply by exp(beta)
|
|
```
|
|
|
|
### Poisson Family
|
|
|
|
For count data (non-negative integers).
|
|
|
|
**When to use:**
|
|
- Count outcomes (number of events)
|
|
- Rare events
|
|
- Rate modeling (with offset)
|
|
|
|
**Common links:**
|
|
- Log (default): log(μ)
|
|
- Identity: μ
|
|
- Sqrt: √μ
|
|
|
|
```python
|
|
# Poisson regression
|
|
model = sm.GLM(y, X, family=sm.families.Poisson())
|
|
results = model.fit()
|
|
|
|
# With exposure/offset for rates
|
|
# If modeling rate = counts/exposure
|
|
model = sm.GLM(y, X, family=sm.families.Poisson(),
|
|
offset=np.log(exposure))
|
|
results = model.fit()
|
|
|
|
# Interpretation: exp(beta) = multiplicative effect on expected count
|
|
import numpy as np
|
|
rate_ratios = np.exp(results.params)
|
|
print("Rate ratios:", rate_ratios)
|
|
```
|
|
|
|
**Overdispersion check:**
|
|
```python
|
|
# Deviance / df should be ~1 for Poisson
|
|
overdispersion = results.deviance / results.df_resid
|
|
print(f"Overdispersion: {overdispersion}")
|
|
|
|
# If >> 1, consider Negative Binomial
|
|
if overdispersion > 1.5:
|
|
print("Consider Negative Binomial model for overdispersion")
|
|
```
|
|
|
|
### Negative Binomial Family
|
|
|
|
For overdispersed count data.
|
|
|
|
**When to use:**
|
|
- Count data with variance > mean
|
|
- Excess zeros or large variance
|
|
- Poisson model shows overdispersion
|
|
|
|
```python
|
|
# Negative Binomial GLM
|
|
model = sm.GLM(y, X, family=sm.families.NegativeBinomial())
|
|
results = model.fit()
|
|
|
|
# Alternative: use discrete choice model with alpha estimation
|
|
from statsmodels.discrete.discrete_model import NegativeBinomial
|
|
nb_model = NegativeBinomial(y, X)
|
|
nb_results = nb_model.fit()
|
|
|
|
print(f"Dispersion parameter alpha: {nb_results.params[-1]}")
|
|
```
|
|
|
|
### Gaussian Family
|
|
|
|
Equivalent to OLS but fit via IRLS (Iteratively Reweighted Least Squares).
|
|
|
|
**When to use:**
|
|
- Want GLM framework for consistency
|
|
- Need robust standard errors
|
|
- Comparing with other GLMs
|
|
|
|
**Common links:**
|
|
- Identity (default): μ
|
|
- Log: log(μ)
|
|
- Inverse: 1/μ
|
|
|
|
```python
|
|
# Gaussian GLM (equivalent to OLS)
|
|
model = sm.GLM(y, X, family=sm.families.Gaussian())
|
|
results = model.fit()
|
|
|
|
# Verify equivalence with OLS
|
|
ols_results = sm.OLS(y, X).fit()
|
|
print("Parameters close:", np.allclose(results.params, ols_results.params))
|
|
```
|
|
|
|
### Gamma Family
|
|
|
|
For positive continuous data, often right-skewed.
|
|
|
|
**When to use:**
|
|
- Positive outcomes (insurance claims, survival times)
|
|
- Right-skewed distributions
|
|
- Variance proportional to mean²
|
|
|
|
**Common links:**
|
|
- Inverse (default): 1/μ
|
|
- Log: log(μ)
|
|
- Identity: μ
|
|
|
|
```python
|
|
# Gamma regression (common for cost data)
|
|
model = sm.GLM(y, X, family=sm.families.Gamma())
|
|
results = model.fit()
|
|
|
|
# Log link often preferred for interpretation
|
|
model = sm.GLM(y, X, family=sm.families.Gamma(link=sm.families.links.Log()))
|
|
results = model.fit()
|
|
|
|
# With log link, exp(beta) = multiplicative effect
|
|
import numpy as np
|
|
effects = np.exp(results.params)
|
|
```
|
|
|
|
### Inverse Gaussian Family
|
|
|
|
For positive continuous data with specific variance structure.
|
|
|
|
**When to use:**
|
|
- Positive skewed outcomes
|
|
- Variance proportional to mean³
|
|
- Alternative to Gamma
|
|
|
|
**Common links:**
|
|
- Inverse squared (default): 1/μ²
|
|
- Log: log(μ)
|
|
|
|
```python
|
|
model = sm.GLM(y, X, family=sm.families.InverseGaussian())
|
|
results = model.fit()
|
|
```
|
|
|
|
### Tweedie Family
|
|
|
|
Flexible family covering multiple distributions.
|
|
|
|
**When to use:**
|
|
- Insurance claims (mixture of zeros and continuous)
|
|
- Semi-continuous data
|
|
- Need flexible variance function
|
|
|
|
**Special cases (power parameter p):**
|
|
- p=0: Normal
|
|
- p=1: Poisson
|
|
- p=2: Gamma
|
|
- p=3: Inverse Gaussian
|
|
- 1<p<2: Compound Poisson-Gamma (common for insurance)
|
|
|
|
```python
|
|
# Tweedie with power=1.5
|
|
model = sm.GLM(y, X, family=sm.families.Tweedie(link=sm.families.links.Log(),
|
|
var_power=1.5))
|
|
results = model.fit()
|
|
```
|
|
|
|
## Link Functions
|
|
|
|
Link functions connect the linear predictor to the mean of the response.
|
|
|
|
### Available Links
|
|
|
|
```python
|
|
from statsmodels.genmod import families
|
|
|
|
# Identity: g(μ) = μ
|
|
link = families.links.Identity()
|
|
|
|
# Log: g(μ) = log(μ)
|
|
link = families.links.Log()
|
|
|
|
# Logit: g(μ) = log(μ/(1-μ))
|
|
link = families.links.Logit()
|
|
|
|
# Probit: g(μ) = Φ⁻¹(μ)
|
|
link = families.links.Probit()
|
|
|
|
# Complementary log-log: g(μ) = log(-log(1-μ))
|
|
link = families.links.CLogLog()
|
|
|
|
# Inverse: g(μ) = 1/μ
|
|
link = families.links.InversePower()
|
|
|
|
# Inverse squared: g(μ) = 1/μ²
|
|
link = families.links.InverseSquared()
|
|
|
|
# Square root: g(μ) = √μ
|
|
link = families.links.Sqrt()
|
|
|
|
# Power: g(μ) = μ^p
|
|
link = families.links.Power(power=2)
|
|
```
|
|
|
|
### Choosing Link Functions
|
|
|
|
**Canonical links** (default for each family):
|
|
- Binomial → Logit
|
|
- Poisson → Log
|
|
- Gamma → Inverse
|
|
- Gaussian → Identity
|
|
- Inverse Gaussian → Inverse squared
|
|
|
|
**When to use non-canonical:**
|
|
- **Log link with Binomial**: Risk ratios instead of odds ratios
|
|
- **Identity link**: Direct additive effects (when sensible)
|
|
- **Probit vs Logit**: Similar results, preference based on field
|
|
- **CLogLog**: Asymmetric relationship, common in survival analysis
|
|
|
|
```python
|
|
# Example: Risk ratios with log-binomial model
|
|
model = sm.GLM(y, X, family=sm.families.Binomial(link=sm.families.links.Log()))
|
|
results = model.fit()
|
|
|
|
# exp(beta) now gives risk ratios, not odds ratios
|
|
risk_ratios = np.exp(results.params)
|
|
```
|
|
|
|
## Model Fitting and Results
|
|
|
|
### Basic Workflow
|
|
|
|
```python
|
|
import statsmodels.api as sm
|
|
|
|
# Add constant
|
|
X = sm.add_constant(X_data)
|
|
|
|
# Specify family and link
|
|
family = sm.families.Poisson(link=sm.families.links.Log())
|
|
|
|
# Fit model using IRLS
|
|
model = sm.GLM(y, X, family=family)
|
|
results = model.fit()
|
|
|
|
# Summary
|
|
print(results.summary())
|
|
```
|
|
|
|
### Results Attributes
|
|
|
|
```python
|
|
# Parameters and inference
|
|
results.params # Coefficients
|
|
results.bse # Standard errors
|
|
results.tvalues # Z-statistics
|
|
results.pvalues # P-values
|
|
results.conf_int() # Confidence intervals
|
|
|
|
# Predictions
|
|
results.fittedvalues # Fitted values (μ)
|
|
results.predict(X_new) # Predictions for new data
|
|
|
|
# Model fit statistics
|
|
results.aic # Akaike Information Criterion
|
|
results.bic # Bayesian Information Criterion
|
|
results.deviance # Deviance
|
|
results.null_deviance # Null model deviance
|
|
results.pearson_chi2 # Pearson chi-squared statistic
|
|
results.df_resid # Residual degrees of freedom
|
|
results.llf # Log-likelihood
|
|
|
|
# Residuals
|
|
results.resid_response # Response residuals (y - μ)
|
|
results.resid_pearson # Pearson residuals
|
|
results.resid_deviance # Deviance residuals
|
|
results.resid_anscombe # Anscombe residuals
|
|
results.resid_working # Working residuals
|
|
```
|
|
|
|
### Pseudo R-squared
|
|
|
|
```python
|
|
# McFadden's pseudo R-squared
|
|
pseudo_r2 = 1 - (results.deviance / results.null_deviance)
|
|
print(f"Pseudo R²: {pseudo_r2:.4f}")
|
|
|
|
# Adjusted pseudo R-squared
|
|
n = len(y)
|
|
k = len(results.params)
|
|
adj_pseudo_r2 = 1 - ((n-1)/(n-k)) * (results.deviance / results.null_deviance)
|
|
print(f"Adjusted Pseudo R²: {adj_pseudo_r2:.4f}")
|
|
```
|
|
|
|
## Diagnostics
|
|
|
|
### Goodness of Fit
|
|
|
|
```python
|
|
# Deviance should be approximately χ² with df_resid degrees of freedom
|
|
from scipy import stats
|
|
|
|
deviance_pval = 1 - stats.chi2.cdf(results.deviance, results.df_resid)
|
|
print(f"Deviance test p-value: {deviance_pval}")
|
|
|
|
# Pearson chi-squared test
|
|
pearson_pval = 1 - stats.chi2.cdf(results.pearson_chi2, results.df_resid)
|
|
print(f"Pearson chi² test p-value: {pearson_pval}")
|
|
|
|
# Check for overdispersion/underdispersion
|
|
dispersion = results.pearson_chi2 / results.df_resid
|
|
print(f"Dispersion: {dispersion}")
|
|
# Should be ~1; >1 suggests overdispersion, <1 underdispersion
|
|
```
|
|
|
|
### Residual Analysis
|
|
|
|
```python
|
|
import matplotlib.pyplot as plt
|
|
|
|
# Deviance residuals vs fitted
|
|
plt.figure(figsize=(10, 6))
|
|
plt.scatter(results.fittedvalues, results.resid_deviance, alpha=0.5)
|
|
plt.xlabel('Fitted values')
|
|
plt.ylabel('Deviance residuals')
|
|
plt.axhline(y=0, color='r', linestyle='--')
|
|
plt.title('Deviance Residuals vs Fitted')
|
|
plt.show()
|
|
|
|
# Q-Q plot of deviance residuals
|
|
from statsmodels.graphics.gofplots import qqplot
|
|
qqplot(results.resid_deviance, line='s')
|
|
plt.title('Q-Q Plot of Deviance Residuals')
|
|
plt.show()
|
|
|
|
# For binary outcomes: binned residual plot
|
|
if isinstance(results.model.family, sm.families.Binomial):
|
|
from statsmodels.graphics.gofplots import qqplot
|
|
# Group predictions and compute average residuals
|
|
# (custom implementation needed)
|
|
pass
|
|
```
|
|
|
|
### Influence and Outliers
|
|
|
|
```python
|
|
from statsmodels.stats.outliers_influence import GLMInfluence
|
|
|
|
influence = GLMInfluence(results)
|
|
|
|
# Leverage
|
|
leverage = influence.hat_matrix_diag
|
|
|
|
# Cook's distance
|
|
cooks_d = influence.cooks_distance[0]
|
|
|
|
# DFFITS
|
|
dffits = influence.dffits[0]
|
|
|
|
# Find influential observations
|
|
influential = np.where(cooks_d > 4/len(y))[0]
|
|
print(f"Influential observations: {influential}")
|
|
```
|
|
|
|
## Hypothesis Testing
|
|
|
|
```python
|
|
# Wald test for single parameter (automatically in summary)
|
|
|
|
# Likelihood ratio test for nested models
|
|
# Fit reduced model
|
|
model_reduced = sm.GLM(y, X_reduced, family=family).fit()
|
|
model_full = sm.GLM(y, X_full, family=family).fit()
|
|
|
|
# LR statistic
|
|
lr_stat = 2 * (model_full.llf - model_reduced.llf)
|
|
df = model_full.df_model - model_reduced.df_model
|
|
|
|
from scipy import stats
|
|
lr_pval = 1 - stats.chi2.cdf(lr_stat, df)
|
|
print(f"LR test p-value: {lr_pval}")
|
|
|
|
# Wald test for multiple parameters
|
|
# Test beta_1 = beta_2 = 0
|
|
R = [[0, 1, 0, 0], [0, 0, 1, 0]]
|
|
wald_test = results.wald_test(R)
|
|
print(wald_test)
|
|
```
|
|
|
|
## Robust Standard Errors
|
|
|
|
```python
|
|
# Heteroscedasticity-robust (sandwich estimator)
|
|
results_robust = results.get_robustcov_results(cov_type='HC0')
|
|
|
|
# Cluster-robust
|
|
results_cluster = results.get_robustcov_results(cov_type='cluster',
|
|
groups=cluster_ids)
|
|
|
|
# Compare standard errors
|
|
print("Regular SE:", results.bse)
|
|
print("Robust SE:", results_robust.bse)
|
|
```
|
|
|
|
## Model Comparison
|
|
|
|
```python
|
|
# AIC/BIC for non-nested models
|
|
models = [model1_results, model2_results, model3_results]
|
|
for i, res in enumerate(models, 1):
|
|
print(f"Model {i}: AIC={res.aic:.2f}, BIC={res.bic:.2f}")
|
|
|
|
# Likelihood ratio test for nested models (as shown above)
|
|
|
|
# Cross-validation for predictive performance
|
|
from sklearn.model_selection import KFold
|
|
from sklearn.metrics import log_loss
|
|
|
|
kf = KFold(n_splits=5, shuffle=True, random_state=42)
|
|
cv_scores = []
|
|
|
|
for train_idx, val_idx in kf.split(X):
|
|
X_train, X_val = X[train_idx], X[val_idx]
|
|
y_train, y_val = y[train_idx], y[val_idx]
|
|
|
|
model_cv = sm.GLM(y_train, X_train, family=family).fit()
|
|
pred_probs = model_cv.predict(X_val)
|
|
|
|
score = log_loss(y_val, pred_probs)
|
|
cv_scores.append(score)
|
|
|
|
print(f"CV Log Loss: {np.mean(cv_scores):.4f} ± {np.std(cv_scores):.4f}")
|
|
```
|
|
|
|
## Prediction
|
|
|
|
```python
|
|
# Point predictions
|
|
predictions = results.predict(X_new)
|
|
|
|
# For classification: get probabilities and convert
|
|
if isinstance(family, sm.families.Binomial):
|
|
probs = predictions
|
|
class_predictions = (probs > 0.5).astype(int)
|
|
|
|
# For counts: predictions are expected counts
|
|
if isinstance(family, sm.families.Poisson):
|
|
expected_counts = predictions
|
|
|
|
# Prediction intervals via bootstrap
|
|
n_boot = 1000
|
|
boot_preds = np.zeros((n_boot, len(X_new)))
|
|
|
|
for i in range(n_boot):
|
|
# Bootstrap resample
|
|
boot_idx = np.random.choice(len(y), size=len(y), replace=True)
|
|
X_boot, y_boot = X[boot_idx], y[boot_idx]
|
|
|
|
# Fit and predict
|
|
boot_model = sm.GLM(y_boot, X_boot, family=family).fit()
|
|
boot_preds[i] = boot_model.predict(X_new)
|
|
|
|
# 95% prediction intervals
|
|
pred_lower = np.percentile(boot_preds, 2.5, axis=0)
|
|
pred_upper = np.percentile(boot_preds, 97.5, axis=0)
|
|
```
|
|
|
|
## Common Applications
|
|
|
|
### Logistic Regression (Binary Classification)
|
|
|
|
```python
|
|
import statsmodels.api as sm
|
|
|
|
# Fit logistic regression
|
|
X = sm.add_constant(X_data)
|
|
model = sm.GLM(y, X, family=sm.families.Binomial())
|
|
results = model.fit()
|
|
|
|
# Odds ratios
|
|
odds_ratios = np.exp(results.params)
|
|
odds_ci = np.exp(results.conf_int())
|
|
|
|
# Classification metrics
|
|
from sklearn.metrics import classification_report, roc_auc_score
|
|
|
|
probs = results.predict(X)
|
|
predictions = (probs > 0.5).astype(int)
|
|
|
|
print(classification_report(y, predictions))
|
|
print(f"AUC: {roc_auc_score(y, probs):.4f}")
|
|
|
|
# ROC curve
|
|
from sklearn.metrics import roc_curve
|
|
import matplotlib.pyplot as plt
|
|
|
|
fpr, tpr, thresholds = roc_curve(y, probs)
|
|
plt.plot(fpr, tpr)
|
|
plt.plot([0, 1], [0, 1], 'k--')
|
|
plt.xlabel('False Positive Rate')
|
|
plt.ylabel('True Positive Rate')
|
|
plt.title('ROC Curve')
|
|
plt.show()
|
|
```
|
|
|
|
### Poisson Regression (Count Data)
|
|
|
|
```python
|
|
# Fit Poisson model
|
|
X = sm.add_constant(X_data)
|
|
model = sm.GLM(y_counts, X, family=sm.families.Poisson())
|
|
results = model.fit()
|
|
|
|
# Rate ratios
|
|
rate_ratios = np.exp(results.params)
|
|
print("Rate ratios:", rate_ratios)
|
|
|
|
# Check overdispersion
|
|
dispersion = results.pearson_chi2 / results.df_resid
|
|
if dispersion > 1.5:
|
|
print(f"Overdispersion detected ({dispersion:.2f}). Consider Negative Binomial.")
|
|
```
|
|
|
|
### Gamma Regression (Cost/Duration Data)
|
|
|
|
```python
|
|
# Fit Gamma model with log link
|
|
X = sm.add_constant(X_data)
|
|
model = sm.GLM(y_cost, X,
|
|
family=sm.families.Gamma(link=sm.families.links.Log()))
|
|
results = model.fit()
|
|
|
|
# Multiplicative effects
|
|
effects = np.exp(results.params)
|
|
print("Multiplicative effects on mean:", effects)
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
1. **Check distribution assumptions**: Plot histograms and Q-Q plots of response
|
|
2. **Verify link function**: Use canonical links unless there's a reason not to
|
|
3. **Examine residuals**: Deviance residuals should be approximately normal
|
|
4. **Test for overdispersion**: Especially for Poisson models
|
|
5. **Use offsets appropriately**: For rate modeling with varying exposure
|
|
6. **Consider robust SEs**: When variance assumptions questionable
|
|
7. **Compare models**: Use AIC/BIC for non-nested, LR test for nested
|
|
8. **Interpret on original scale**: Transform coefficients (e.g., exp for log link)
|
|
9. **Check influential observations**: Use Cook's distance
|
|
10. **Validate predictions**: Use cross-validation or holdout set
|
|
|
|
## Common Pitfalls
|
|
|
|
1. **Forgetting to add constant**: No intercept term
|
|
2. **Using wrong family**: Check distribution of response
|
|
3. **Ignoring overdispersion**: Use Negative Binomial instead of Poisson
|
|
4. **Misinterpreting coefficients**: Remember link function transformation
|
|
5. **Not checking convergence**: IRLS may not converge; check warnings
|
|
6. **Complete separation in logistic**: Some categories perfectly predict outcome
|
|
7. **Using identity link with bounded outcomes**: May predict outside valid range
|
|
8. **Comparing models with different samples**: Use same observations
|
|
9. **Forgetting offset in rate models**: Must use log(exposure) as offset
|
|
10. **Not considering alternatives**: Mixed models, zero-inflation for complex data
|